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This paper first presents a new generally perturbed compressed sensing (CS) model 𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒, which incorporated a
general nonzero perturbation 𝐸 into sensing matrix 𝐴 and a noise 𝑢 into signal 𝑥 simultaneously based on the standard CS model
𝑦 = 𝐴𝑥 + 𝑒 and is called noise folding in completely perturbed CS model. Our construction mainly will whiten the new proposed
CS model and explore in restricted isometry property (RIP) and coherence of the new CS model under some conditions. Finally,
we use OMP to give a numerical simulation which shows that our model is feasible although the recovered value of signal is not
exact compared with original signal because of measurement noise 𝑒, signal noise 𝑢, and perturbation 𝐸 involved.

1. Introduction

Compressed sensing (CS) model, which was proposed by
Candes et al. [1] and Donoho [2], had become a hot topic
and attracted a lot of researchers to study it over the past
years because it can recover a signal as a technique. Thus, it
had been widely applied in many areas such as radar systems
[3], signal processing [4], and image processing [5]. These
applications depended on the main function of CS model
to recover the original signal with some related algorithms
including convex relaxation [6, 7], greedy pursuit [7], and
Bayesian algorithm [8, 9], which were utilized to estimate the
best approximation value of the original signal.

The classic and basic CS model in an unperturbed
scenario and can be formulated as

𝑦 = 𝐴𝑥. (1)

Here, 𝑦 ∈ 𝑅𝑚 is the measurement vector or observation value
and𝐴 ∈ 𝑅

𝑚×𝑛 is a full rankmeasurement matrix with𝑚 ≪ 𝑛.
Signal 𝑥 ∈ 𝑅𝑛 is 𝑘-sparse if no more than 𝑘 entries of signal 𝑥
are nonzero. Thus, 𝑥 is called a 𝑘-sparse signal.

To date, the basicmodel hasmature theories and there are
a lot of different algorithms [6, 7] such as match pursuit (BP)
[1, 10], orthogonalmatch pursuit (OMP) [11–15], Compressive
Sampling Matching Pursuit (CoSaMP) [16], and Bayesian
algorithm [8, 9], which can be recovered exactly as signal
value and utilized in many areas [17–20].

But in practice, themeasurement vector 𝑦 in (1) was often
contaminated by a noise or an error. More concretely, a noise
term 𝑒 ∈ 𝑅

𝑚, called an additive noise, was incorporated into
𝑦 = 𝐴𝑥 to result in a partially perturbed model [21–23]:

𝑦 = 𝐴𝑥 + 𝑒, (2)

where a noise or an error 𝑒 (𝑒 ̸= 0) was uncorrelated with sig-
nal 𝑥.There were twomethods tomodel noise 𝑒 in [24]. Here,
a noise 𝑒 was randomly sampled from Gaussian distribution.
This model was used in many areas [21–23] and naturally had
mature theories in recent years. For example, a number of
accuracy algorithms on (2) emerged, for example, BP [1, 21],
OMP [21], CoSaMP [16], and Bayesian algorithm [8, 9].

In 2010, Herman and Strohmer [25] first incorporated a
randomly nontrivial perturbation 𝐸 into matrix 𝐴 in (2) to
generate a general perturbation model [25–27] as follows:

𝑦 = (𝐴 + 𝐸) 𝑥 + 𝑒, (3)

where 𝐸 ∈ 𝑅
𝑚×𝑛 was called a general perturbation or a mul-

tiplicative noise. They studied influence of 𝐸 on signal 𝑥 and
indicated that considering this CSmodel was a must [25–27].
Intuitively, it was harder to analyze the multiplicative noise
𝐸 compared to the additive noise 𝑒 because 𝐸 was related to
signal 𝑥 with 𝐸𝑥.
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As for (3), there were two different scenarios from dif-
ferent points of view [25–27]. First, from user’s point of view,
the sensing process can be formulated as follows:

�̂� = 𝐴𝑥 + 𝑒,

�̂� = 𝐴 + 𝐸.

(4)

Its recovery process can be expressed by

�̂� = (�̂�, �̂�, . . .) . (𝑁
1
)

Thus, the useful measurement matrix was the perturbed
matrix �̂� not the original measurement matrix𝐴.The system
was researched on the recovery signal with BP in [16, 25] and
OMP in [26, 27].

The second model was from designer’s perspective [25–
27]. The sensing process was just written as

�̂� = �̂�𝑥 + 𝑒,

�̂� = 𝐴 + 𝐸

(5)

and the recovery process was written as

�̂� = 𝑅 (�̂�, 𝐴, . . .) . (𝑁


1
)

The useful sensing matrix was 𝐴 not �̂� and the observation
value was �̂�. To the best of our knowledge, no work focused
on recovery signal in the context of general perturbation 𝐸

except for [25–27].
In some practical scenarios, signal itself was often con-

taminated by noise and such case was applied in sub-Nyquist
converter.Though introducing noise to signal was significant,
no prolific paper studied such signal noise 𝑢 except for [24]
which first added an unknown random noise 𝑢 ∈ 𝑅𝑛 to sinal
𝑥 of 𝑦 = 𝐴𝑥 + 𝑒 to produce noise folding CS model [24]:

𝑦 = 𝐴 (𝑥 + 𝑢) + 𝑒. (6)

They analyzed the RIP and 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 of the equivalent system
after whitening and showed that the difference of the RIP and
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 between original𝐴 and whitenedmatrix was small
[24]. Based on [24–27], we propose a newCSmodel and study
its related properties in Section 3.

2. Preliminaries

In this paper, we will restrict our attention to RIP and coher-
ence of our new CS model. By convention, sensing matrix
𝐴 and perturbation 𝐸 are assumed to sample independently
and identically distributed (i.i.d.) Gaussian random variables
since such matrix satisfies RIP and coherence, and so forth
[7, 24], with probability one.

Definition 1 (see [7]). A sensing matrix 𝐴 satisfies the re-
stricted isometry property (RIP) of order 𝑘 if there exists
𝛿
𝑘
∈ (0, 1) s.t.:

(1 − 𝛿
𝑘
) ‖𝑥‖
2

2
≤ ‖𝐴𝑥‖

2

2
≤ (1 + 𝛿

𝑘
) ‖𝑥‖
2

2
(7)

for any 𝑘-sparse vector with 𝑘 = 1, 2, . . ., where 𝛿
𝑘
is the

smallest nonnegative number called the restricted isometry
constant (RIC).

Definition 1 (see [24]). For (1) and (2), there is another equiv-
alent statement for RIP of𝐴, denoted by RIP, in some special
cases. For any index setΛ ⊂ {1, . . . , 𝑁} of size 𝑘, let𝐴

Λ
denote

the submatrix of 𝐴 consisting of the column vectors indexed
byΛ, and thematrix𝐴possesses RIP with constants 0 < 𝛼

𝑘
≤

𝛽
𝑘
, if

𝛼
𝑘
‖ℎ‖
2

≤
𝐴Λℎ


2

≤ 𝛽
𝑘
‖ℎ‖ ∀ℎ ∈ 𝑅

𝑘 (8)

for any index setΛ ⊂ {1, . . . , 𝑁} of size 𝑘, where𝑁 is a positive
integer.

For (6), there existed another form of RIP for matrix
𝐴 which was given by Lemma 2 [24] since matrix 𝐴 was
whitened.

Lemma 2 (see [24]). As for folding noise model (6), 𝑅𝐼𝑃 for
whitened 𝐴 can be formulated as

𝛼
𝑘
(1 − 𝜌

1
) ‖ℎ‖
2

2
≤
𝐵Λℎ


2

2
≤ 𝛽
𝑘
(1 + 𝜌

1
) ‖ℎ‖
2

2
, (9)

where 𝜌
1
= 𝜌/(1 − 𝜌) with 0 < 𝜌 < 1/2 and matrix 𝐵 was

obtained after whitening sensing matrix 𝐴.

The perturbation 𝐸 and sensing matrix 𝐴 in (3) can be
quantified below in [25–27]

‖𝐸‖
2

‖𝐴‖
2

≤ 𝜀
𝐴
,

‖𝐸‖
(𝑘)

2

‖𝐴‖
(𝑘)

2

≤ 𝜀
(𝑘)

𝐴
,

‖𝐴‖
(𝑘)

2
= 𝜎
(𝑘)

max (𝐴) ,

(10)

where the symbol ‖𝐴‖
2
denotes spectral norm of a matrix

𝐴, ‖𝐴‖(𝑘)
2

denotes the largest spectral norm taken over all 𝑘-
column submatrices of matrix 𝐴, and 𝜎(𝑘)max(𝐴) [25] denotes
the largest nonzero singular value taken over all 𝑘-column
submatrices of matrix𝐴. It was appropriate to assume 0 < 𝜀

𝐴
,

𝜀
(𝑘)

𝐴
, and 𝜀

𝑦
≪ 1.

Lemma 3 (RIP for �̂� [25]). For 𝑘 = 1, 2, . . ., given the 𝑅𝐼𝐶
associated with matrix 𝐴 in (3) and the relative perturbation
𝜀
(𝑘)

𝐴
, fix the constant

�̂�
𝑘,max = (1 + 𝛿𝑘) (1 + 𝜀

(𝑘)

𝐴
)
2

− 1. (11)

Assume that the 𝑅𝐼𝐶 �̂�
𝑘
≤ �̂�
𝑘,max for matrix �̂� = 𝐴 + 𝐸 is the

smallest nonnegative number, and the𝑅𝐼𝑃 for �̂� can be written
as

(1 − �̂�
𝑘
) ‖𝑥‖
2

2
≤

�̂�𝑥



2

2

≤ (1 + �̂�
𝑘
) ‖𝑥‖
2

2
(12)

for any 𝑘-sparse vector 𝑥.
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FromLemma 3with (6), there is one equivalent statement
for the RIP for �̂� in some special cases given by Lemma 3
[24].

Lemma 3 (see [24]). For any index set Λ ⊂ {1, . . . , 𝑁} of size
𝑘, let �̂�

Λ
denote the submatrix of �̂� consisting of the column

vectors indexed by Λ. A matrix �̂� possesses 𝑅𝐼𝑃 with constants
0 < �̂�
𝑘
≤ �̂�
𝑘
, if

�̂�
𝑘
‖ℎ‖
2

≤

�̂�
Λ
ℎ


2

≤ �̂�
𝑘
‖ℎ‖ , ∀ℎ ∈ 𝑅

𝑘 (13)

for any index set Λ ⊂ {1, . . . , 𝑁} of size 𝑘, where𝑁 is a positive
integer.

Definition 4 (see [7]). The coherence, 𝜇(𝐴), of a matrix 𝐴 is
the largest absolute inner product between any two columns
𝐴
𝑖
, 𝐴
𝑗
, 𝑖 ̸= 𝑗, of matrix 𝐴 as follows:

𝜇 (𝐴) = max
1≤𝑖<𝑗≤𝑛


𝐴
𝑇

𝑖
𝐴
𝑗


𝐴 𝑖

2


𝐴
𝑗

2

. (14)

3. Constructions

3.1. A New Completely Perturbed CS Model. As mentioned
above, for (2), (3), and (6), only one noise in (2) or two noises
in (3) and (6) affected the CS model. Maybe a noise 𝑒, a
noise 𝑢, and a perturbation 𝐸 simultaneously affect the CS
model although no paper studies this. In terms of the idea,
[24] together with [25–27] motivate us to introduce a noise
𝑢 to general perturbation model (3) to generate noise folding
in generally perturbed situation or to incorporate a nontrivial
perturbation 𝐸 into (6) to produce a complete perturbation
CS model with folding noise, which for the first time yields
so called noise folding in completely perturbed CS model. We
formulate the CS model as

𝑦 = (𝐴 + 𝐸) (𝑥 + 𝑢) + 𝑒, (15)

where 𝑒 ∈ 𝑅
𝑚 is a random noise vector with covariance

𝜎
2

𝐼 and 𝑢 ∈ 𝑅
𝑛 presents a random premeasurement noise

vector whose covariance is 𝜎2
0
𝐼 independent of 𝑒. Here 𝑒 and

𝑢 are regarded as additive noise. 𝐸 ∈ 𝑅
𝑚×𝑛 is a random per-

turbation matrix and more details on perturbation 𝐸 can
be seen in [25]. Here we call CS model (15) noise folding
in completely perturbed CS model. Analogous to (3) in [25–
27], (15) can also be considered in two different situations.
Similarly, from user’s point of view, an incorrect sensing
matrix can be obtained via an unknownmeasurementmodel:

�̂� = 𝐴 (𝑥 + 𝑢) + 𝑒,

�̂� = 𝐴 + 𝐸

(16)

and the recovery process algorithm can be written as

�̂� = 𝑅 (�̂�, �̂�, 𝑢, . . .) . (𝑁
2
)

The only difference between (𝑁
1
) and (𝑁

2
) is noise 𝑢 in

(𝑁
2
). From the designer’s view, sensing process can be for-

mulated as

�̂� = �̂� (𝑥 + 𝑢) + 𝑒,

�̂� = 𝐴 + 𝐸

(17)

and its recovery process is as

�̂� = 𝑅 (�̂�, 𝐴, 𝑢, . . .) . (𝑁


2
)

Similarly, compared to (𝑁


1
), noise 𝑢 belongs to (𝑁



2
).

In this paper, we only study simply its properties: RIP and
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 after whitening. Obviously, (15) can be extended to
general multiperturbation CS model:

𝑦 = (𝐴 +

𝑛

∑

𝑖=1

𝐸
𝑖
) (𝑥 + 𝑢) + 𝑒, 𝑖 = 1, 2, . . . , 𝑛, (18)

where 𝐸
𝑖
is perturbation. System (18) can be viewed as a

generalization of our proposedCS (15), which implies that the
general conclusion of (18) can be obtained from the special
conclusion of (15). The concrete results can be seen in the
next section. Simultaneously, other general CS systems can
be conjectured naturally as follows:

𝑦 = (

𝑠

∑

𝑖=1

𝐴
𝑖
+ 𝐸) (𝑥 + 𝑢) + 𝑒,

𝑦 = (

𝑠

∑

𝑖=1

𝐴
𝑖
+ 𝐸)(𝑥 +

𝑠

∑

𝑖=1

𝑢
𝑖
) + 𝑒,

𝑦 = (

𝑠

∑

𝑖=1

𝐴
𝑖
+

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝑥 +

𝑠

∑

𝑖=1

𝑢
𝑖
) + 𝑒.

(19)

Although their properties seem to be many but we do not
know how to exploit and analyze them, we leave them as open
problems. Here we mainly study relative RIP and 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒
on (15) and (18). In the next section, we give general results.

3.2. Problem Formulation. For (15), our goal is to analyze the
effect of the premeasurement noise 𝑢 and 𝐸 on its RIP and
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒.

Throughout this paper, assume that 𝑒 is a random noise
vector with covariance 𝜎2𝐼, and 𝑢 is a random noise vector
with covariance 𝜎2

0
𝐼 independent of 𝑒. Under these assump-

tions, (15) will be proved to be equivalent to 𝑦 = �̂�𝑥 + 𝑤,
where �̂� is a matrix whose 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 and RIP constants are
very close to that of 𝐴, 𝑤 is whitened noise with variance
(𝜎
2

+ (𝑛/𝑚)𝜎
2

0
)𝐼, and 𝐼 is identity matrix.

3.3. Equivalent Formulation. To set up our conclusion, (15)
can be expressed as

𝑦 = (𝐴 + 𝐸) 𝑥 + 𝑤,

𝑤 = (𝐴 + 𝐸) 𝑢 + 𝑒.

(20)
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By hypothesis of whitened noise, the covariance of effec-
tive vector 𝑤 is 𝑄 : 𝑄 = 𝜎

2

𝐼 + 𝜎
2

0
(𝐴 + 𝐸)(𝐴 + 𝐸)

𝑇. Obviously,
noise 𝑤 is not whitened where the recovery process analysis
becomes complicated. If𝑤 still preserves whitening, one case
�̂� = 𝐴 + 𝐸 must be proportional to identity matrix. For
example, suppose that 𝐴 + 𝐸 consists of 𝑟 = 𝑛/𝑚 orthogonal
basis such as

𝐴 = [𝐴
1
+ 𝐸
1
, 𝐴
2
+ 𝐸
2
, . . . , 𝐴

𝑟
+ 𝐸
𝑟
] (21)

inwhich𝐴
𝑖
+𝐸
𝑖
, 𝑖 = 1, 2, . . . , 𝑟, are𝑚×𝑚 orthogonalmatrices.

Therefore, we have

(𝐴 + 𝐸) (𝐴 + 𝐸)
𝑇

= (𝐴
1
+ 𝐸
1
) (𝐴
1
+ 𝐸
1
)
𝑇

+ ⋅ ⋅ ⋅

+ (𝐴
𝑟
+ 𝐸
𝑟
) (𝐴
𝑟
+ 𝐸
𝑟
)
𝑇

= 𝑟𝐼

=
𝑛

𝑚
𝐼,

(22)

where noise covariance of 𝑤 is 𝑄 = 𝛾𝐼, 𝛾 = 𝜎
2

+ (𝑛/𝑚)𝜎
2

0
.

Under the special case, 𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒 (or 𝑦 = (𝐴 +

𝐸)𝑥 + 𝑤) is equivalent to 𝑦 = 𝐴𝑥 + 𝑒. Compared with noise
covariance of 𝑒, noise covariance of 𝑤 has increased by 𝛾/𝜎2.
If 𝜎2
0
≈ 𝜎
2, the noise covariance of 𝑤 is increased by 𝑛/𝑚,

which was called noise folding [24].

3.4. RIP and Coherence of Our CS Model. We will show that
the conclusion holds generally. In other words, if (𝐴+𝐸)(𝐴+
𝐸)
𝑇 is not proportional to the identity matrix 𝐼, (15) and (20)

are roughly equivalent really. Now we describe it in detail.
Note that if 𝐸 is one random matrix, �̂� = 𝐴 + 𝐸 is a

random matrix. To study RIP and 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 of �̂�, we must
whiten noise 𝑤 by multiplying 𝑄−1/2

1
with 𝑄

1
= 𝑄/𝛾 and get

the equivalent system:

𝑦 = �̂�𝑥 + V,

s.t. �̂� = 𝑄
−1/2

1
(𝐴 + 𝐸) ,

V = 𝑄−1/2
1

𝑤.

(23)

Note that noise vector V is whitened with covariance matrix
𝛾𝐼 exactly if (𝐴 + 𝐸)(𝐴 + 𝐸)

𝑇 is proportional to identity
matrix. But the biggest difference lies in measurement matrix
changing from original matrix �̂� to �̂� by whitening. The
changing range is measured with three important indexes:
RIP constant, 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒, and 𝑠𝑡𝑎𝑏𝑙𝑒. Our theory mainly
depends on approximating (𝐴 + 𝐸)(𝐴 + 𝐸)

𝑇 with (𝑛/𝑚)𝐼 and
even �̂� is an arbitrary matrix. Let

𝜂 =


𝐼 −

𝑚

𝑛
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

2
(24)

measure accuracy of the approximating, in which ‖⋅‖ denotes
the standard operator norm in 𝑅𝑛. For derivation convenient,
assume that 𝜂 is very small and show that the 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 and
RIP constant of �̂� are very close to that of 𝐴. By convention,
the entries of𝐴 are i.i.d.mean zero and variance 1/𝑚 random

variables with Gaussian distribution; thus, it is easy to justify
that 𝜂 is always small.

Another useful formula can be formulated:

𝜂
0
=


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

2
(25)

which was introduced in [24]. The fact that 𝜂
0
was very small

had been proved in [24] with restrictions on only matrix
𝐴. It is natural to think whether the difference between 𝜂

and 𝜂
0
is very small. Theorem 5 confirms our conjecture and

further inspires us to thinkwhether the difference between �̂�’s
𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 and RIP and �̂�’s and 𝐴’s is very small, respectively.
The later related theorems will give us the positive answers.

Theorem 5 shows the relation between 𝜂
0
and 𝜂 under the

context ‖𝐸‖
2
/‖𝐴‖
2
≤ 𝜀
𝐴
.

Theorem 5. Assume that sensing matrix 𝐴 ∈ 𝑅
𝑚×𝑛, an un-

known random matrix 𝐸 ∈ 𝑅
𝑚×𝑛, 𝑚 ≪ 𝑛, ‖𝐸‖

2
/‖𝐴‖
2
≤ 𝜀
𝐴
,

0 < 𝜀
𝐴
≪ 1,

𝜂
0
=


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

2
,

𝜂 =


𝐼 −

𝑚

𝑛
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

2

(26)

0 < 𝜂
0
< 1/2, ‖𝐴‖ = 𝜎

1
, where 𝜎

1
is the largest nonzero positive

singular value of 𝐴; then

𝜂
0
−
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) 𝜎
2

1
≤ 𝜂 ≤ 𝜂

0
+
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) 𝜎
2

1
. (27)

Proof. The detailed proof is postponed to the Appendix.

Remark 6. For (27), by assumption𝑚 ≪ 𝑛, 𝑛 → ∞, obtain

𝑚

𝑛
→ 0,

𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) 𝜎
2

1
→ 0

(28)

due to 0 < 𝜀
𝐴
≪ 1, a positive number 𝜎

1
. Thus, 𝜂

0
≤ 𝜂
1
≤ 𝜂
0
;

that is, 𝜂
0
= 𝜂, such that 𝑚 ≪ 𝑛, 𝑛 → ∞, 0 < 𝜀

𝐴
≪ 1 and

there is a positive number 𝜎
1
. Theorem 5 shows the relation

between 𝜂 and 𝜂
0
which implies that 𝜂 = 𝜂

0
under some

special conditions.Therefore, we can let 𝜂 < 1/2 like 𝜂
0
< 1/2

in [24].

Theorem 7 shows the RIP of �̂� in the case of 𝜂 < 1/2

though 0 < 𝜂 < 1 is sufficient for the proof of the RIC for
�̂�.

Theorem 7. Assume that sensing matrix 𝐴 ∈ 𝑅
𝑚×𝑛, an un-

known randommatrix𝐸 ∈ 𝑅
𝑚×𝑛,𝑚 ≪ 𝑛. Let ‖𝐸‖

2
/‖𝐴‖
2
≤ 𝜀
𝐴
,

0 < 𝜀
𝐴
≪ 1,

𝜂 =


𝐼 −

𝑚

𝑛
(𝐴 + 𝐸) (𝐴 + 𝐸)

2
,

𝜂
0
=


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

2

(29)
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0 < 𝜂 < 1/2, 0 < 𝜂
0
< 1/2, suppose that �̂� satisfies the 𝑅𝐼𝑃

of order 𝑘 with 0 < �̂�
Λ
≤ �̂�
Λ
, and 𝜎

1
> 0 is the largest sin-

gular value of matrix𝐴; then �̂� satisfies the𝑅𝐼𝑃 of order 𝑘with
different constants below:

�̂�
𝑘
(1 − 𝜇



1
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



1
) ‖ℎ‖
2

2
,

𝜇


1
=

𝜇
1

1 − 𝜇
1

�̂�
𝑘
(1 − 𝜂



1
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜂



1
) ‖ℎ‖
2

2
,

𝜂


1
=

𝜂
1

1 − 𝜂
1

�̂�
𝑘
(1 − 𝜇



2
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



2
) ‖ℎ‖
2

2
,

𝜇


2
=

𝜇
2

1 − 𝜇
2

.

(30)

Proof. The detailed proof is postponed to the Appendix.

Remark 8. InTheorems 5 and 7, the condition ‖𝐸‖/‖𝐴‖ ≤ 𝜀
𝐴

with 0 < 𝜀
𝐴
≪ 1 can be taken in place of 𝐸 = 𝜀𝐴 [25], in

which 𝐸 is a simple version of 𝐴, so that we can get another
result. Due to paper volume, they are omitted here. But their
proofs are very simple that researchers can prove them and
yield perfect results.

Multiperturbation CS system (18) can be viewed as a
generalization of the new proposed CS system (15) so that
the general conclusion of the (18) can come from that of (15).
Theorems 9 and 11 give us the results.

Theorem 9. Assume that 𝐴 ∈ 𝑅
𝑚×𝑛 is sensing matrix, and

𝐸
𝑖
∈ 𝑅
𝑚×𝑛 is an unknown random matrix with𝑚 ≪ 𝑛. Let

𝜂
0
=


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

2
,

�̃� =



𝐼 −
𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

.

(31)

‖𝐸
𝑖
‖
2
/‖𝐴‖
2
≤ 𝜀
𝐴
, 0 < 𝜀

𝐴
≪ 1, and let 𝜎

1
be the largest

singular value of matrix 𝐴, ‖𝐴‖ = 𝜎
1
; and suppose that matrix

𝐴 satisfies𝑅𝐼𝑃, a number 𝑠 is an integer, 𝑠 < 𝑛; then the relation
between �̃� and 𝜂

0
can be formulated as

𝜂
0
−
𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
1
+ 𝑠
2

𝜀
2

𝐴
𝜎
1
) ≤ �̃�

≤ 𝜂
0
+
𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
1
+ 𝑠
2

𝜀
2

𝐴
𝜎
1
) .

(32)

Proof. The detailed proof is postponed to the Appendix.

Remark 10. For (32), since 1 ≤ 𝑠 ≪ 𝑛, 𝑚 ≪ 𝑛, and 𝑠, 𝑚,
𝑛 are positive integers and 𝜎

1
is a constant, (𝑚/𝑛)(2𝑠𝜀

𝐴
𝜎
2

1
+

𝑠
2

𝜀
2

𝐴
𝜎
2

1
) → 0 when 𝑛 → ∞ which implies �̃� → 𝜂

0
.

Theorem 11. Assume that 𝐴 ∈ 𝑅
𝑚×𝑛 is sensing matrix, and

𝐸
𝑖
∈ 𝑅
𝑚×𝑛 is an unknown random matrix with𝑚 ≪ 𝑛. Let

𝜂
0
=



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼

2
,

�̃� =



𝐼 −
𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

,

(33)

‖𝐸
𝑖
‖
2
/‖𝐴‖
2
≤ 𝜀
𝐴
, and 0 < 𝜀

𝐴
≪ 1, and suppose that �̃� < 1/2,

𝜎
1
is the largest singular value of matrix𝐴, 𝑠 and 𝑛 are integers,

𝑠 < 𝑛, and

𝑄 = 𝜎
2

𝐼 + 𝜎
2

0
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

,

𝛾 = 𝜎
2

+
𝑛

𝑚
𝜎
2

0
,

𝑄
1
=
𝑄

𝛾
;

(34)

then,

�̂�
𝑘
(1 − 𝜇



3
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



3
) ‖ℎ‖
2

2
,

𝜇


3
=

𝜇
3

1 − 𝜇
3

�̂�
𝑘
(1 − 𝜂



3
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜂



3
) ‖ℎ‖
2

2
,

𝜂


3
=

𝜂
3

1 − 𝜂
3

�̂�
𝑘
(1 − 𝜇



4
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



4
) ‖ℎ‖
2

2
,

𝜇


4
=

𝜇
4

1 − 𝜇
4

.

(35)

Proof. The detailed proof is postponed to the Appendix.

Remark 12. Though 0 < �̃� < 1 is sufficient for the proof, the
RIC for �̂� is positive in the restriction of �̃� < 1/2.

Next, we compare the 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 of �̂� after whitening �̂�
to that of �̂�. 𝐴

𝑖
, 𝑖 = 1, . . . , 𝑛, is used to denoted the 𝑖th

column vector of a matrix 𝐴. Similar to the coherence of 𝐴,
the coherence of �̂� is first given in Definition 13.

Definition 13. Assume that𝐴 ∈ 𝑅
𝑚×𝑛 is a randommatrix, 𝐸 ∈

𝑅
𝑚×𝑛 is an unknown random matrix in CS, and �̂� = 𝐴 + 𝐸;

then 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 of �̂�, denoted by 𝜇(�̂�), can be formulated as

𝜇 (�̂�) = max
1≤𝑖<𝑗≤𝑛


�̂�
𝑇

𝑖
�̂�
𝑗



�̂�
𝑖

2


�̂�
𝑗

2

. (36)

In fact, 𝜇(�̂�) is the largest absolute inner product between any
columns �̂�

𝑖
, �̂�
𝑗
, 𝑖 ̸= 𝑗.
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As mentioned above, ‖𝑄
1
− 𝐼‖ < 1, respectively, in some

special contexts with ‖𝐸‖
2
/‖𝐴‖
2
≤ 𝜀
𝐴
in Theorem 7. We can

take advantage of ‖𝑄
1
− 𝐼‖ < 1 to prove Theorem 14. For the

lack of space, we only take ‖𝑄
1
− 𝐼‖ < 𝜇

2
, ‖𝑄−1
1
− 𝐼‖ < 𝜇



2
as

an example with 𝜂 < 1/2. The proofs of the rest of the cases,
including ‖𝑄

1
−𝐼‖ < 𝜇

1
, 𝜂
1
, and ‖𝑄−1

1
−𝐼‖ < 𝜇



1
, 𝜂


1
, are similar,

and we leave them to readers. As for the general results 𝜇(𝐴+
∑
𝑛

𝑖=1
𝐸
𝑖
) of the general CSmodel𝑦 = (𝐴+∑𝑛

𝑖=1
𝐸
𝑖
)(𝑥+𝑢)+𝑒, we

omit them too due to space constrains. The proof of general
coherence of 𝑄−1/2

1
(𝐴 + ∑

𝑛

𝑖=1
𝐸
𝑖
) is similar too. Theorem 14

demonstrates the relation between coherence of �̂� and that of
�̂�.

Theorem 14. Assume that 𝜇
2
< 3/4 in ‖𝑄

1
− 𝐼‖ ≤ 𝜇

2
, �̂� =

𝑄
−1/2

1
�̂� with �̂� = 𝐴 + 𝐸; then,

𝜇 (�̂�) ≤
(1 + �̂�

2
)

(1 − �̂�
2
)
2
𝜇 (�̂�) , (37)

where �̂�
2
= (1 − 𝜇

2
)
−1/2

− 1, 𝜇(�̂�) = max(|�̂�𝑇
𝑖
�̂�
𝑗
|/‖�̂�
𝑖
‖
2
‖�̂�
𝑗
‖
2
).

�̂�
𝑗
denotes the 𝑗th column vector of whitening matrix �̂�; �̂�

𝑗

denotes the 𝑗th column vector of �̂�; that is, �̂�
𝑗
= 𝐴
𝑗
+ 𝐸
𝑗
.

Proof. The detailed proof is postponed to the Appendix.

In [25], 𝐸 is simply version of random matrix 𝐴 such as
𝐸 = 𝜀𝐴 with 0 < 𝜀 ≪ 1. The relation between 𝜇(�̂�) and 𝜇(𝐴)
will be seen from Theorem 15 below in the case of 𝐸 = 𝜀𝐴,
0 < 𝜀 ≪ 1.

Theorem 15. Let �̂� = 𝐴 + 𝐸, 𝐸 = 𝜀𝐴, 0 < 𝜀 ≪ 1. The cor-
relation of coherence between 𝐴 and �̂� proceeds as

𝜇 (�̂�) ≤
(1 + 𝜀)

2

(1 − 𝜀)
2
𝜇 (𝐴) (38)

with 0 < 𝜀 ≪ 1.

Proof. The proof of Theorem 15 is similar to that of Theo-
rem 14; here we omit it.

4. Numerical Experiment

Vertical coordinate (sinusoidal) denotes the degree of recov-
ery signal. Horizontal coordinate denotes time whose unit
is seconds. Black line denotes original signal and red line
denotes recovery signal.

Here we use OMP to give three numerical simulation
results which demonstrate that our new proposed generally
perturbed CS is feasible. To compare signal recovering with
OMP from three figures, signal recovery from measurement
noise model 𝑦 = 𝐴𝑥 + 𝑒 is almost exact because of only
noise 𝑒 in basic CS model 𝑦 = 𝐴𝑥 + 𝑒. There are a lot of
differences between recovery signal and original signal in
both 𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒 and 𝑦 = 𝐴(𝑥 + 𝑢) + 𝑒 CS
models because there are noises 𝑢, 𝐸, 𝑒 in the two CS models.
Comparing the change between recovered signal and original
signal of Figure 1(b) with that of Figure 1(c), the change of
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Figure 1: (a) Recover 𝑥 from 𝑦 = 𝐴𝑥 + 𝑒. The error of the re-
covered signal value and original signal value is 6.4835𝑒 − 004 by
the Euclidean norm which indicates that the recovered signal and
original signal are almost the same. (b) Recover𝑥 from𝑦 = 𝐴(𝑥+𝑢)+

𝑒.The error of the recovered signal value and the original signal value
is 6.2258 by the Euclidean norm which means that the recovered
signal and original signal are quite different. (c) Recover 𝑥 from
𝑦 = (𝐴+𝐸)(𝑥+𝑢)+𝑒.The error of the recovered signal value and the
original signal value is 5.8855 by the Euclideannormwhich indicates
that the recovered signal is much different from the original signal.
Compared with the change (error) between the recovery signal and
the original signal in (a), the changes (errors) in (b) and (c) differ
little. What is more, comparing the change between the recovery
signal and the original signal of (c) with that of (b), the change of
(c) is quite a little bigger because 𝐸 is involved in (c) but 𝐸 is not
involved in (b).

Figure 1(c) is a bit bigger than that of Figure 1(b) because
perturbation𝐸 is involved in Figure 1(c) (𝑦 = (𝐴+𝐸)(𝑥+𝑢)+𝑒)
and 𝐸 is not involved in Figure 1(b) (𝑦 = 𝐴(𝑥+𝑢) + 𝑒), which
shows that the different noises 𝐸, 𝑢, 𝑒, have a different impact
on signal recovering.

Compared with the change (error) between the recovery
signal and the original signal in Figure 1(a), the changes
(errors) in Figures 1(b) and 1(c) differ little. Namely, the
differences between recovered signal and original signal from
𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒 are almost the same as the differences
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between recovery signal and original signal from 𝑦 = 𝐴(𝑥 +

𝑢)+𝑒, which indicates that our proposed CSmodel is feasible.
Comparing the change between recovered signal and

original signal in Figure 1(a), the changes in Figures 1(b) and
1(c) are quite different. The fact shows that OMP is not the
best algorithm to recover 𝑥 from 𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒 and
𝑦 = 𝐴(𝑥 + 𝑢) + 𝑒 although OMP is used to recover exact
original signal from 𝑦 = 𝐴𝑥 + 𝑒. Thus, it is important to
search for a powerful algorithmormore algorithms to recover
exactly for original sparse signal from 𝑦 = 𝐴(𝑥 + 𝑢) + 𝑒 and
𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒 as open problems. And here leave
these problems to the interested researchers to exploit them
because the paper cannot focus on searching for optimal
algorithms to recover exactly original signal from CS models
𝑦 = 𝐴(𝑥 + 𝑢) + 𝑒 and 𝑦 = (𝐴 + 𝐸)(𝑥 + 𝑢) + 𝑒.

5. Conclusion

We first propose a new CS system (15) by introducing a
multiplicative noise𝐸, a signal noise 𝑢, and an additive noise 𝑒
into unperturbed CSmodel (1). We derive RIP and 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒
for �̂� = 𝐴 + 𝐸 after whitening (15). As a matter of fact,
this paper proves that our proposed completely perturbed CS
model (15) equals to the classic CSmodel (2).The only differ-
ence is the changed measurement matrix by incorporating a
nontrivial perturbationmatrix 𝐸 to measurement matrix and
a nontrivial noise 𝑢 to signal 𝑥. And thus this induces noise
variance increased by a factor of 𝑛/𝑚 so that a tighter upper
bound and lower bound of RIC is produced. As for 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒
of deformedmeasurementmatrix �̂� = 𝐴+𝐸 in CSmodel (15),
the constant is nearly invariant essentially with 𝑛/𝑚 → 0,
𝑚, 𝑛 → ∞. Finally, we use OMP to give three figures to
recover signal from CS model 𝑦 = 𝐴𝑥 + 𝑒, 𝑦 = 𝐴(𝑥 + 𝑢) + 𝑒,
𝑦 = (𝐴+𝐸)(𝑥+𝑢)+𝑒, respectively. Figures 1(b) and 1(c) in our
experiment demonstrate that the change between recovered
signal and original signal is much bigger than that in
Figure 1(a) which indicates our proposed CSmodel is feasible
andOMP is not fit for recovering signal from 𝑦 = 𝐴(𝑥+𝑢)+𝑒

and 𝑦 = (𝐴+𝐸)(𝑥+𝑢)+𝑒.Thus, we can try to search one opti-
mal algorithm or more algorithms to recover signal exactly
from the two CS model although OMP is the best algorithm
to recover exactly original signal from 𝑦 = 𝐴𝑥 + 𝑒 now.

6. Future Work

Thanks to the features of our proposed CS model (15), there
are many works to do. The change between recovered signal
and original signal in Figures 1(a), 1(b), and 1(c) indicates
that our proposed CS in this paper is feasible although the
differences between the recovery signal and original signal in
Figures 1(b) and 1(c) are much bigger with OMP than the dif-
ferences in Figure 1(a). Thus, an obvious problem is to search
one algorithm or more optimal algorithms suitable for 𝑦 =

𝐴(𝑥+𝑢)+𝑒 and 𝑦 = (𝐴+𝐸)(𝑥+𝑢)+𝑒 to recover signal exactly.
The related RIP of 𝐸 in [24] further motivates us to

think that 𝐸 as a perturbation sensing matrix could form one
perturbed CS model as 𝑦

1
= 𝐸(𝑥 + 𝑢) + 𝑒. Thus, (15) may

consist of two similar systems𝑦
2
= 𝐴(𝑥+𝑢)+𝑒 and𝑦

1
= 𝐸(𝑥+

𝑢) + 𝑒. Similarly, our model may be divided into another two

models𝑦
3
= (𝐴+𝐸)𝑥+𝑒,𝑦

4
= (𝐴+𝐸)𝑢+𝑒, or three basic parts

𝑦


1
= 𝐴𝑥+𝑒,𝑦

2
= 𝐴𝑢+𝑒, and𝑦

3
= 𝐸(𝑥+𝑢)+𝑒. If possible, what

can we do to reduce or eliminate the influence of an error CS
system 𝑦



3
= 𝐸(𝑥 + 𝑢) + 𝑒? Can we recover signal 𝑥 from the

error system𝑦


3
= 𝐸(𝑥+𝑢)+𝑒? And if can, how to do it?Maybe

there exists CSmodels 𝑦 = 𝐴(𝑥+𝑢) and 𝑦 = (𝐴+𝐸)(𝑥+𝑢). In
addition, maybe we can also consider the impulse noise and
use 𝑒+𝐼 instead of 𝑒where 𝐼 is the impulse noise. If so, maybe
it can generalize our model and we can get very good results
in impulse noise model. Here we cannot study such impulse
noise model and leave it as an open problem, too.

These open problems are worth considering and are to be
waited for studying in futurework.This paper only does some
elementary researches on our proposed CS and we hope that
the idea and simple study in this paper will be helpful to study
its wide application in the future. We hope that higher level
compressed sensing model will be put forward and more and
more people explore this areas in the future.

Appendix

Proof of Theorem 5. On the one hand,
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−
𝑚

𝑛


𝐸𝐴
𝑇
2

−
𝑚

𝑛


𝐸𝐸
𝑇
2

≥ 𝜂
0
−
𝑚

𝑛
‖𝐴‖
2


𝐸
𝑇
2
−
𝑚

𝑛
‖𝐸‖
2


𝐴
𝑇
2

−
𝑚

𝑛
‖𝐸‖
2


𝐸
𝑇
2

≥ 𝜂
0
−
𝑚

𝑛
‖𝐴‖
2
𝜀
𝐴


𝐴
𝑇
2
−
𝑚

𝑛
𝜀
𝐴
‖𝐴‖
2


𝐴
𝑇
2

−
𝑚

𝑛
𝜀
𝐴
‖𝐴‖
2
𝜀
𝐴


𝐴
𝑇
2

= 𝜂
0
−
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) ‖𝐴‖
2


𝐴
𝑇
2

= 𝜂
0
−
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) 𝜎
2

1
.

(A.1)

Equation (A.1) holds because of ‖𝐴‖
2
= 𝜎
1
and ‖𝐴‖

2
= ‖𝐴
𝑇

‖
2
.

On the other hand,

𝜂 =


𝐼 −

𝑚

𝑛
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

2
=


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

−
𝑚

𝑛
(𝐴𝐸
𝑇

+ 𝐸𝐴
𝑇

+ 𝐸𝐸
𝑇

)

2
≤


𝐼 −

𝑚

𝑛
𝐴𝐴
𝑇

2

+
𝑚

𝑛
(

𝐴𝐸
𝑇
2
+

𝐸𝐴
𝑇
2
+

𝐸𝐸
𝑇
2
) ≤ 𝜂
0

+
𝑚

𝑛
(‖𝐴‖
2


𝐸
𝑇
2
+ ‖𝐸‖

2


𝐴
𝑇
2
+ ‖𝐸‖

2


𝐸
𝑇
2
)
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≤ 𝜂
0
+
𝑚

𝑛
(‖𝐴‖
2
𝜀
𝐴


𝐴
𝑇
2
+ 𝜀
𝐴
‖𝐴‖
2


𝐴
𝑇
2

+ 𝜀
𝐴
‖𝐴‖
2
𝜀
𝐴


𝐴
𝑇
2
) ≤ 𝜂
0
+
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) ‖𝐴‖
2

⋅

𝐴
𝑇
2
= 𝜂
0
+
𝑚

𝑛
(2𝜀
𝐴
+ 𝜀
2

𝐴
) 𝜎
2

1
.

(A.2)

The last equation holds because of ‖𝐴‖
2
= 𝜎
1
, ‖𝐴‖
2
=

‖𝐴
𝑇

‖
2
. Combine (A.1) with (A.2) to obtain (32).

Proof of Theorem 7. The three different inequalities come
from different proving processes but in essence they are the
same. Here we only prove the first inequality in more detail;
the proofs of the second and third inequality are similar. For
convenience, we denote them by Cases 1, 2, and 3 related to
Cases 1, 2, and 3, respectively. The proofs depend on one
fact that 𝑄

1
= 𝑄/𝛾 is close to 𝐼 due to the definition of 𝜂.

Suppose that

𝛾 = 𝜎
2

+
𝑛

𝑚
𝜎
0
,

𝑄 = 𝜎
2

𝐼 + 𝜎
2

0
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

.

(A.3)

Assume that (15) can be written as 𝑦 = �̂�𝑥 + V, where

�̂� = 𝑄
−1/2

1
(𝐴 + 𝐸) = 𝑄

−1/2

1
�̂�,

V = 𝑄−1/2
1

((𝐴 + 𝐸) 𝑢 + 𝑒) .

(A.4)

Case 1. Consider

𝑄1 − 𝐼
2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾

𝑄 − 𝛾𝐼
2 =

1

𝛾


𝜎
2

𝐼

+ 𝜎
2

0
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

− 𝛾𝐼
2
=
1

𝛾


𝜎
2

𝐼 + 𝜎
2

0
𝐴𝐴
2

+ 𝜎
2

0
𝐴𝐸
𝑇

+ 𝜎
2

0
𝐸𝐴
𝑇

+ 𝜎
2

0
𝐸𝐸
𝑇

− 𝜎
2

𝐼 −
𝑛

𝑚
𝜎
2

0
𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝛾



𝑚

𝑛
𝐴𝐴
𝑇

+
𝑚

𝑛
𝐴𝐸
𝑇

+
𝑚

𝑛
𝐸𝐴
𝑇

+
𝑚

𝑛

⋅ 𝐸𝐸
𝑇

− 𝐼

2
≤
(𝑛/𝑚) 𝜎

2

0

𝛾
(
𝑚

𝑛
(‖𝐴‖
2


𝐴
𝑇
2

+ 2𝜀
𝐴
‖𝐴‖
2
⋅

𝐴
𝑇
2
+ 𝜀
𝐴
‖𝐴‖
2
𝜀
𝐴


𝐴
𝑇
2
) + ‖𝐼‖

2
)

=
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
0

(
𝑚

𝑛
(𝜎
2

1
+ 2𝜀
𝐴
𝜎
2

1
+ 𝜀
2

𝐴
𝜎
2

1
) + 1)

≜ 𝜇
1
.

(A.5)

The last equation holds because of ‖𝐴‖
2
= ‖𝐴
𝑇

‖
2
= 𝜎
1
,

‖𝐼‖
2
= 1.
For (A.5), since 0 < 𝜀

𝐴
≪ 1,𝑚 ≪ 𝑛, 𝜎

1
is positive; thus,

𝑚

𝑛
(𝜎
2

1
+ 2𝜀
𝐴
𝜎
2

1
+ 𝜀
2

𝐴
𝜎
2

1
) + 1 → 1 (A.6)

holds when 𝑛 → ∞; therefore, (A.5) → (𝑛/𝑚)𝜎
2

0
/(𝜎
2

+ (𝑛/

𝑚)𝜎
0
) < 1.

That is, ‖𝑄
1
− 𝐼‖
2
< 𝜇
1
< 1 when 𝑛 → ∞.

Case 2. Consider
𝑄1 − 𝐼

2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾

𝑄 − 𝛾𝐼
2

=
1

𝛾


𝜎
2

𝐼 + 𝜎
2

0
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

− 𝜎
2

𝐼 −
𝑛

𝑚
𝜎
0
𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
2

0



𝑚

𝑛
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

− 𝐼

2

≤
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
2

0

𝜂 ≜ 𝜂
1
< 𝜂 <

1

2
.

(A.7)

That is, ‖𝑄
1
− 𝐼‖
2
≤ 𝜂
1
< 𝜂 < 1/2.

Case 3. Consider
𝑄1 − 𝐼

2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾

𝑄 − 𝛾𝐼
2 =

1

𝛾


𝜎
2

𝐼

+ 𝜎
2

0
(𝐴 + 𝐸) (𝐴 + 𝐸)

𝑇

− 𝛾𝐼
2
=
1

𝛾


𝜎
2

𝐼 + 𝜎
2

0
𝐴𝐴
2

+ 𝜎
2

0
𝐴𝐸
𝑇

+ 𝜎
2

0
𝐸𝐴
𝑇

+ 𝜎
2

0
𝐸𝐸
2

− 𝜎
2

𝐼 −
𝑛

𝑚
𝜎
2

0
𝐼

2

≤
(𝑛/𝑚) 𝜎

2

0

𝛾
(



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼

2

+
𝑚

𝑛
(‖𝐴‖
2


𝐸
𝑇
2
+ ‖𝐸‖

2


𝐴
𝑇
2
+ ‖𝐸‖

2


𝐸
𝑇
2
))

=
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
0

(𝜂
0
+
𝑚

𝑛
(2𝜀
𝐴
𝜎
2

1
+ 𝜀
2

𝐴
𝜎
2

1
))

≜ 𝜇
2
.

(A.8)

The last equation holds due to ‖𝐴‖
2
= ‖𝐴
𝑇

‖
2
= 𝜎
1
.

From (A.8), since 0 < 𝜀
𝐴
≪ 1, 𝑚 ≪ 𝑛, and ‖𝐴‖

2
= 𝜎
1
is

positive,
𝑚

𝑛
(2𝜀
𝐴
𝜎
2

1
+ 𝜀
2

𝐴
𝜎
2

1
) → 0 (A.9)

with 𝑛 → ∞; thus,

(A.8) →
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
0

𝜂
0
. (A.10)

That is, ‖𝑄
1
− 𝐼‖
2
< 𝜇
2
< 𝜂
0
< 1/2 with 𝑛 → ∞.

As mentioned above, ‖𝑄
1
− 𝐼‖
2
< 1 holds under some

conditions. Using Cases 1, 2, and 3, we can obtain three dif-
ferent results, denoted by Cases 1, 2, and 3, respectively.

Here 𝑄−1
1
− 𝐼 can be expressed as follows:

𝑄
−1

1
− 𝐼 =

𝐼 − 𝑄
1

𝑄
1

= (
𝑄
1

𝐼 − 𝑄
1

)

−1

=
𝐼 − 𝑄
1

𝐼 − (1 − 𝑄
1
)

= ∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

.

(A.11)
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Case 1. Note that𝑄−1
1
− 𝐼 converges due to (A.5) ‖𝐼 − 𝑄

1
‖
2
<

𝜇
1
< 1, where ‖ ⋅ ‖

2
is an operator norm. Take such norm

on both sides of the above equality and utilize the triangle
inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜇
𝑘

1
=

𝜇
1

1 − 𝜇
1

≜ 𝜇


1
.

(A.12)

Let Λ be an index set of size 𝑘, ∀ℎ ∈ 𝑅𝑘;


�̂�
Λ
ℎ


2

2

−

�̂�
Λ
ℎ


2

2

= ℎ
𝑇

�̂�
𝑇

Λ
(𝑄
−1

1
− 𝐼) �̂�

Λ
ℎ (A.13)

holds. Since

ℎ
𝑇

�̂�
𝑇

Λ
(𝑄
−1

1
− 𝐼) �̂�

Λ
ℎ

≤

𝑄
−1

1
− 𝐼

2


�̂�
Λ
ℎ


2

2

≤ 𝜇


1


�̂�
Λ
ℎ


2

2

,

(A.14)

we obtain



�̂�
Λ
ℎ


2

2

−

�̂�
Λ
ℎ


2

2


≤ 𝜇


1


�̂�
Λ
ℎ


2

2

. (A.15)

Remove the absolute value to get

(1 − 𝜇


1
)

�̂�
Λ
ℎ


2

2

≤

�̂�
Λ
ℎ


2

2

≤ (1 + 𝜇


1
)

�̂�
Λ
ℎ


2

2

. (A.16)

Due to

�̂�
𝑘
‖ℎ‖
2

2
≤

�̂�ℎ



2

2

≤ �̂�
𝑘
‖ℎ‖
2

2
, ∀ℎ ∈ 𝑅

𝑘

, (A.17)

if set 𝜇
1
= 𝜇
1
/(1 − 𝜇

1
), we have

�̂�
𝑘
(1 − 𝜇



1
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



1
) ‖ℎ‖
2

2
. (A.18)

Case 2. Note that𝑄−1
1
−𝐼 converges due to (A.7), ‖𝐼−𝑄

1
‖
2
<

𝜂
1
< 1/2. Take spectral norm on both sides of 𝑄−1

1
− 𝐼 and

utilize the triangle inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜂
𝑘

1
=

𝜂
1

1 − 𝜂
1

≜ 𝜂


1
.

(A.19)

The remaining proof ofCase 2 is similar to that ofCase 1
except for 𝜂

1
instead of 𝜇

1
. At last we have

�̂�
𝑘
(1 − 𝜂



1
) ‖ℎ‖
2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜂



1
) ‖ℎ‖
2

2
,

𝜂


1
=

𝜂
1

1 − 𝜂
1

.

(A.20)

Case 3. Note that 𝑄−1
1
− 𝐼 converges from (A.8) due to ‖𝐼 −

𝑄
1
‖
2
< 𝜇
2
< 1/2. Take spectral norm on both sides of𝑄−1

1
−𝐼

and utilize the triangle inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜇
𝑘

2
=

𝜇
2

1 − 𝜇
2

≜ 𝜇


2
.

(A.21)

The remaining proof of Case 3 is similar to that of Case 1
except for 𝜇

2
instead of 𝜇

1
. At last, we obtain

�̂�
𝑘
(1 − 𝜇



2
) ‖ℎ‖
2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



2
) ‖ℎ‖
2

2
,

𝜇


2
=

𝜇
2

1 − 𝜇
2

.

(A.22)

Proof of Theorem 9. On the one hand,

�̃� =



𝐼 −
𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

=



𝑚

𝑛

⋅ 𝐴𝐴
𝑇

− 𝐼 +
𝑚

𝑛
(𝐴

𝑠

∑

𝑖=1

𝐸
𝑇

𝑖
+ 𝐴
𝑇

𝑠

∑

𝑖=1

𝐸
𝑖

+ (

𝑠

∑

𝑖=1

𝐸
𝑖
)(

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

)

2

≥



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼

2

−
𝑚

𝑛
(



𝐴

𝑠

∑

𝑖=1

𝐸
𝑇

𝑖
+ 𝐴
𝑇

𝑠

∑

𝑖=1

𝐸
𝑖

+ (

𝑠

∑

𝑖=1

𝐸
𝑖
)(

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

) ≥ 𝜂
0
−
𝑚

𝑛
(‖𝐴‖

2

⋅

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝐸𝑖
2 + (

𝑠

∑

𝑖=1

𝐸𝑖
2)

⋅ (

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
)) ≥ 𝜂

0
−
𝑚

𝑛
(‖𝐴‖

2
𝜀
𝐴

𝑠

∑

𝑖=1


𝐴
𝑇
2

+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2
+ (

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2
)

⋅ (

𝑠

∑

𝑖=1

𝜀
𝐴


𝐴
𝑇
2
)) = 𝜂

0
−
𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
2

1

+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
) .

(A.23)

The last equation holds due to ‖𝐴𝑇‖
2
= ‖𝐴‖

2
= 𝜎
1
.
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On the other hand,

�̃� =



𝐼 −
𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

=



𝑚

𝑛

⋅ 𝐴𝐴
𝑇

− 𝐼 +
𝑚

𝑛
(𝐴

𝑠

∑

𝑖=1

𝐸
𝑇

𝑖
+ 𝐴
𝑇

𝑠

∑

𝑖=1

𝐸
𝑖

+ (

𝑠

∑

𝑖=1

𝐸
𝑖
)(

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

)

2

≤



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼

2

+
𝑚

𝑛
(



𝐴

𝑠

∑

𝑖=1

𝐸
𝑇

𝑖
+ 𝐴
𝑇

𝑠

∑

𝑖=1

𝐸
𝑖

+ (

𝑠

∑

𝑖=1

𝐸
𝑖
)(

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇2

) ≤ 𝜂
0
+
𝑚

𝑛
(‖𝐴‖

2

⋅

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝐸𝑖
2 + (

𝑠

∑

𝑖=1

𝐸𝑖
2)

⋅ (

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
)) ≤ 𝜂

0
+
𝑚

𝑛
(‖𝐴‖

2
𝜀
𝐴

𝑠

∑

𝑖=1


𝐴
𝑇
2

+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2
+ (

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2
)

⋅ (

𝑠

∑

𝑖=1

𝜀
𝐴


𝐴
𝑇
2
)) = 𝜂

0
+
𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
2

1

+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
) .

(A.24)

The last equation holds because of ‖𝐴𝑇‖
2
= ‖𝐴‖

2
= 𝜎
1
. As

mentioned above, combine (A.23)with (A.24) to get (32).

Proof of Theorem 11. There are three different results of whit-
ening 𝐴 + ∑

𝑠

𝑖=1
𝐸
𝑖
due to the different proving process. The

proof depends on one fact that 𝑄
1
is close to 𝐼 due to the

definition of �̃�. Assume that (A.1) can bewritten as𝑦 = �̂�𝑥+𝑤,
where �̂� = 𝑄

−1/2

1
(𝐴+∑

𝑠

𝑖=1
𝐸
𝑖
),𝑤 = 𝑄

−1/2

1
((𝐴+∑

𝑠

𝑖=1
𝐸
𝑖
)𝑢+ 𝑒).

Case 1. Consider

𝑄1 − 𝐼
2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾



𝜎
2

𝐼 + 𝜎
2

0
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

⋅ (𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝛾𝐼

2

=
1

𝛾



𝜎
2

𝐼 + 𝜎
2

0
(𝐴

+

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− (𝜎
2

+
𝑛

𝑚
𝜎
2

0
) 𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝛾



𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝛾



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼 +
𝑚

𝑛
(𝐴

𝑠

∑

𝑖=1

𝐸
𝑇

𝑖

+ 𝐴
𝑇

𝑠

∑

𝑖=1

𝐸
𝑖
+ (

𝑠

∑

𝑖=1

𝐸
𝑖
)(

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

)

2

≤
(𝑛/𝑚) 𝜎

2

0

𝛾
(



𝑚

𝑛
𝐴𝐴
𝑇

− 𝐼

2

+
𝑚

𝑛
(‖𝐴‖

2

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝐸𝑖
2

+ (

𝑠

∑

𝑖=1

𝐸𝑖
2)(

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
))) ≤

(𝑛/𝑚) 𝜎
2

0

𝛾
(𝜂
0

+
𝑚

𝑛
(‖𝐴‖

2
𝜀
𝐴

𝑠

∑

𝑖=1


𝐴
𝑇
2
+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2

+ 𝜀
2

𝐴
(

𝑠

∑

𝑖=1

‖𝐴‖
2
)(

𝑠

∑

𝑖=1


𝐴
𝑇
2
)))

=
(𝑛/𝑚) 𝜎

2

0

𝛾
(𝜂
0
+
𝑚

𝑛
(𝜀
𝐴

𝑠

∑

𝑖=1

𝜎
2

1
+ 𝜀
𝐴

𝑠

∑

𝑖=1

𝜎
2

1

+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
)) =

(𝑛/𝑚) 𝜎
2

0

𝜎2 + (𝑛/𝑚) 𝜎
2

0

(𝜂
0

+
𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
2

1
+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
)) ≜ 𝜇

3
.

(A.25)

The last equation holds because of ‖𝐴‖
2
= 𝜎
1
and ‖𝐴‖

2
=

‖𝐴
𝑇

‖
2
.

From (A.25), since 0 < 𝜀
𝐴
≪ 1, 𝑚 ≪ 𝑛, and ‖𝐴‖

2
= 𝜎
1
is

a constant, we have

𝑚

𝑛
(2𝑠𝜀
𝐴
𝜎
2

1
+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
) → 0 (A.26)

when 𝑛 → ∞; therefore, (A.25) → ((𝑛/𝑚)𝜎
2

0
/(𝜎
2

+ (𝑛/

𝑚)𝜎
2

0
))𝜂
0
< 𝜂
0
< 1/2. That is, ‖𝑄

1
− 𝐼‖
2
< 𝜇
3
< 1/2 when

𝑛 → ∞.

Case 2. Consider

𝑄1 − 𝐼
2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾



𝜎
2

𝐼

+ 𝜎
2

0
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝛾𝐼

2

=
1

𝛾



𝜎
2

𝐼 + 𝜎
2

0
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− (𝜎
2

+
𝑛

𝑚
𝜎
2

0
) 𝐼

2
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=
(𝑛/𝑚) 𝜎

2

0

𝛾



𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝜎2 + (𝑛/𝑚) 𝜎
2

0

�̃� ≜ 𝜂
2
< �̃� <

1

2
.

(A.27)

From (A.27), we get ‖𝑄
1
− 𝐼‖
2
< 1.

Case 3. Consider

𝑄1 − 𝐼
2 =



𝑄

𝛾
− 𝐼

2

=
1

𝛾



𝜎
2

𝐼 + 𝜎
2

0
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

⋅ (𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝛾𝐼

2

=
1

𝛾



𝜎
2

𝐼 + 𝜎
2

0
(𝐴

+

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− (𝜎
2

+
𝑛

𝑚
𝜎
2

0
) 𝐼

2

=
(𝑛/𝑚) 𝜎

2

0

𝛾



𝑚

𝑛
(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)(𝐴 +

𝑠

∑

𝑖=1

𝐸
𝑖
)

𝑇

− 𝐼

2

≤
(𝑛/𝑚) 𝜎

2

0

𝛾
(‖−𝐼‖

2
+
𝑚

𝑛
(

𝐴𝐴
𝑇
2

+ ‖𝐴‖
2

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝐸𝑖
2

+ (

𝑠

∑

𝑖=1

𝐸𝑖
2)(

𝑠

∑

𝑖=1


𝐸
𝑇

𝑖

2
))) ≤

(𝑛/𝑚) 𝜎
2

0

𝛾
(1

+
𝑚

𝑛
(‖𝐴‖

2


𝐴
𝑇
2
+ ‖𝐴‖

2
𝜀
𝐴

𝑠

∑

𝑖=1


𝐴
𝑇
2

+

𝐴
𝑇
2

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2

+ (

𝑠

∑

𝑖=1

𝜀
𝐴
‖𝐴‖
2
)(

𝑠

∑

𝑖=1

𝜀
𝐴


𝐴
𝑇
2
)))

=
(𝑛/𝑚) 𝜎

2

0

𝛾
(1 +

𝑚

𝑛
(𝜎
2

1
+ 𝜀
𝐴

𝑠

∑

𝑖=1

𝜎
2

1
+ 𝜀
𝐴

𝑠

∑

𝑖=1

𝜎
2

1

+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
)) =

𝜎
2

0

𝜎2 + (𝑛/𝑚) 𝜎
2

0

(1 +
𝑚

𝑛
(𝜎
2

1

+ 2𝑠𝜀
𝐴
𝜎
2

1
+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
)) ≜ 𝜇

4
.

(A.28)

The last equation holds due to ‖𝐴‖
2
= 𝜎
1
and ‖𝐴‖

2
=

‖𝐴
𝑇

‖
2
.

From (A.28), since 0 < 𝜀
𝐴
≪ 1, 𝑚 ≪ 𝑛, and ‖𝐴‖

2
= 𝜎
1
is

a constant, then
𝑚

𝑛
(𝜎
2

1
+ 2𝑠𝜀
𝐴
𝜎
2

1
+ 𝑠
2

𝜀
2

𝐴
𝜎
2

1
) → 0 (A.29)

when 𝑛 → ∞; thus, (A.28)→ (𝑛/𝑚)𝜎
2

0
/(𝜎
2

+ (𝑛/𝑚)𝜎
2

0
) < 1.

That is, ‖𝑄
1
−𝐼‖
2
< 𝜇
4
< 1. Asmentioned above, ‖𝑄

1
−𝐼‖
2
< 1

under some conditions. Using the above three cases (Cases 1,
2, and 3), we can obtain three different results, denoted by
Cases 1, 2, and 3, respectively.

Here 𝑄−1
1
− 𝐼 can be expressed as follows:

𝑄
−1

1
− 𝐼 =

𝐼 − 𝑄
1

𝑄
1

= (
𝑄
1

𝐼 − 𝑄
1

)

−1

=
𝐼 − 𝑄
1

𝐼 − (1 − 𝑄
1
)

= ∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

.

(A.30)

Case 1. Note that (A.30) converges due to Case 1: ‖𝐼−𝑄
1
‖
2
<

𝜇
3
< 1. Take spectral norm on both sides of the equality and

utilize the triangle inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜇
𝑘

3
=

𝜇
3

1 − 𝜇
3

≜ 𝜇


3
.

(A.31)

Let Λ be an index set of size 𝑘; we have


�̂�
Λ
ℎ


2

2

−

�̂�
Λ
ℎ


2

2

= ℎ
𝑇

�̂�
𝑇

Λ
(𝑄
−1

1
− 𝐼) �̂�

Λ
ℎ,

∀ℎ ∈ 𝑅
𝑘

.

(A.32)

Since

ℎ
𝑇

�̂�
𝑇

Λ
(𝑄
−1

1
− 𝐼) �̂�

Λ
ℎ

≤

𝑄
−1

1
− 𝐼

2


�̂�
Λ
ℎ


2

2

≤ 𝜇


3


�̂�
Λ
ℎ


2

2

,

(A.33)

we obtain that



�̂�
Λ
ℎ


2

2

−

�̂�
Λ
ℎ


2

2


≤ 𝜇


3


�̂�
Λ
ℎ


2

2

. (A.34)

Remove the absolute value to get

(1 − 𝜇


3
)

�̂�
Λ
ℎ


2

2

≤

�̂�
Λ
ℎ


2

2

≤ (1 + 𝜇


3
)

�̂�
Λ
ℎ


2

2

. (A.35)

Due to

�̂�
𝑘
‖ℎ‖
2

2
≤

�̂�ℎ



2

2

≤ �̂�
𝑘
‖ℎ‖
2

2
, ∀ℎ ∈ 𝑅

𝑛

, (A.36)

we have

�̂�
𝑘
(1 − 𝜇



3
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



3
) ‖ℎ‖
2

2
,

𝜇


3
=

𝜇
3

1 − 𝜇
3

.

(A.37)
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Case 2. Note that (A.30) converges due to Case 2: ‖𝐼−𝑄
1
‖
2
<

𝜂
2
< 1. Take spectral norm on both sides of the equality

(A.45) and utilize the triangle inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜂
𝑘

2
=

𝜂
2

1 − 𝜂
2

≜ 𝜂


2
.

(A.38)

The remaining proving is similar to that of Case 1 except
for 𝜂
2
instead of 𝜇

3
. At last we have

�̂�
𝑘
(1 − 𝜂



2
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜂



2
) ‖ℎ‖
2

2
. (A.39)

Case 3. Note that (A.45) converges due to Case 3: ‖𝐼−𝑄
1
‖
2
<

𝜇
4
< 1. Take spectral norm on both sides of the equality

(A.45) and utilize the triangle inequality to get


𝑄
−1

1
− 𝐼

2
=



∑

𝑘≥1

(𝐼 − 𝑄
1
)
𝑘

2

≤ ∑

𝑘≥1

𝐼 − 𝑄1

𝑘

2

< ∑

𝑘≥1

𝜇
𝑘

4
=

𝜇
4

1 − 𝜇
4

≜ 𝜇


4
.

(A.40)

The remaining proving is similar to that of Case 1 except for
𝜇


4
instead of 𝜇

3
. At last we have

�̂�
𝑘
(1 − 𝜇



4
) ‖ℎ‖
2

2
≤

�̂�
Λ
ℎ


2

2

≤ �̂�
𝑘
(1 + 𝜇



4
) ‖ℎ‖
2

2
,

𝜇


4
=

𝜇
4

1 − 𝜇
4

.

(A.41)

Proof ofTheorem 14. Toprove the theorem,we should findout
an upper bound of the numerator |�̂�𝑇

𝑖
�̂�
𝑗
| of 𝜇(�̂�) and a lower

bound of the denominator ‖�̂�
𝑖
‖
2
. For 𝑖 ̸= 𝑗, by assumption,

we obtain

�̂�
𝑇

𝑖
�̂�
𝑗


=

�̂�
𝑇

𝑖
𝑄
−1

1
�̂�
𝑗


≤

�̂�
𝑇

𝑖
�̂�
𝑗


+

�̂�
𝑇

𝑖
(𝑄
−1

1
− 𝐼) �̂�

𝑗



≤ (1 + 𝜇


2
)

�̂�
𝑇

𝑖
�̂�
𝑗


.

(A.42)

Next, we estimate lower bound ‖�̂�
𝑖
‖
2
with restrictions on ‖𝐴

𝑖
‖

and 𝜇
2
. Similar to the proof of Theorem 7, 𝑄−1/2

1
− 𝐼 can be

expressed as a power series:

𝑄
−1/2

1
− 𝐼 = ∑

𝑘≥1

𝑐
𝑘
(𝐼 − 𝑄

1
) , (A.43)

where 𝑐
𝑘
is the coefficients in the Taylor expansion of (1 −

𝑥)
1/2. Both sides of the equality are taken norm obtaining


𝑄
1/2

1
− 𝐼

2
≤ ∑

𝑘≥1

𝑐
𝑘


(𝑄
1
− 𝐼)
𝑘


𝑘

2

≤ ∑

𝑘≥1

𝑐
𝑘
𝜇
2

= (1 − 𝜇
2
)
−1/2

− 1 ≜ �̂�
2
.

(A.44)

Thus,

�̂�
𝑖

2
=

𝑄
−1/2

1
�̂�
𝑖

2
≥

�̂�
𝑖

2
−

(𝑄
−1/2

1
− 𝐼) �̂�

𝑖

2

≥ (1 − �̂�
2
)

�̂�
𝑖

2
,

(A.45)

where �̂�
2
= (1 − 𝜇

2
)
−1/2

− 1. Combine (A.42) with (A.45) to
get the result in Theorem 14.
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