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The main purpose of this paper is to study the convergence properties of Generalized Fibonacci Sequences and the series of partial
sums associated with them.When the proper values of an 𝑠×𝑠 real matrix𝐴 are real and different, we give a necessary and sufficient
condition for the convergence of the matrix sequence 𝐴,𝐴2, 𝐴3, . . . to a matrix 𝐵.

1. Introduction

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . . (1)

is an interesting numerical sequence that occurs quite fre-
quently in many parts of nature. This sequence has a special
feature; every element of this sequence, starting from the
third, is the sum of its two predecessors and can be generated
recursively by the formula

𝑥
𝑛+2
= 𝑥
𝑛
+ 𝑥
𝑛+1
. (2)

It is clear that we need the first two terms 𝑥
0
= 0, 𝑥

1
= 1 and

the recursive formula to define the sequence.
If we want to know the term 𝑥

𝑘
without constructing the

previous terms, we can use the unexplainable formula (see
[1]):

𝑥
𝑘
=

1

√5

[(

1 + √5

2

)

𝑘

− (

1 − √5

2

)

𝑘

] . (3)

What do the irrational numbers √5 have to do with the
original sequence?

The so-called Golden ratio 𝜆 = (1 + √5)/2 appears in
nature very frequently. It is also considered the most esthetic
ratio between the basis and height of a rectangle:

𝐻

𝐵

𝐵

𝐻

=

1 + √5

2

. (4)

If we replace the recursive formula by

2𝑥
𝑛+2
= 𝑥
𝑛
+ 𝑥
𝑛+1
, (5)

we obtain a new sequence 0, 1, 1/2, 3/4, 5/8, 11/16, 21/32, . . .
and this sequence is no longer divergent; in fact, it converges
to 2/3.

To define a Generalized Fibonacci Sequence, we fix a
natural number 𝑠 and two elements

(𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑠−1
) ,

(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑠−1
)

(6)

in the Euclidean space R𝑠. The recursive formula is

𝑥
𝑘+𝑠
= 𝑎
0
𝑥
𝑘
+ 𝑎
1
𝑥
𝑘+1
+ ⋅ ⋅ ⋅ + 𝑎

𝑠−1
𝑥
𝑘+𝑠−1
. (7)
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The main purpose of this paper is to study the convergence
properties of Generalized Fibonacci Sequences and the series
of partial sums associated with them.When the proper values
of an 𝑠 × 𝑠 real matrix 𝐴 are real and different, we give a
necessary and sufficient condition for the convergence of the
matrix sequence 𝐼, 𝐴, 𝐴2, 𝐴3, . . . to amatrix𝐵: we say𝐴𝑘 → 𝐵
if for every ordered pair (𝑖, 𝑗), where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑠}, the
sequence of the (𝑖, 𝑗)-entries of 𝐴𝑘 converges to the (𝑖, 𝑗)-
entry of 𝐵. As a particular case, we study when do we have
the convergence of the powers 𝜑, 𝜑2, 𝜑3, . . . of a Moebius
transformation to a constant function.

Thenwewould like to list the four publishedmonographs
about generalized Fibonacci sequences [1–4] and several
more specialized articles [5–8].

2. Main Results

Consider a Generalized Fibonacci Sequence (GFS) with
initial terms 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑠−1
and recursive formula (7). Define

the matrices 𝑠 × 𝑠:

𝐶 =

(

(

(

(

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 ⋅ ⋅ ⋅ 1

𝑎
0
𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑠−1

)

)

)

)

,

𝐷
𝑘
=(

𝑥
𝑘
𝑥
𝑘+1
⋅ ⋅ ⋅ 𝑥

𝑘+𝑠−1

𝑥
𝑘+1
𝑥
𝑘+2
⋅ ⋅ ⋅ 𝑥

𝑘+𝑠

.

.

.

.

.

.

.

.

.

.

.

.

𝑥
𝑘+𝑠−1
𝑥
𝑘+𝑠
⋅ ⋅ ⋅ 𝑥
𝑘+2𝑠−2

), 𝑘 ∈ N ∪ {0} .

(8)

The characteristic polynomial of the matrix 𝐶 is

𝜑 (𝑥) = 𝑥
𝑠
− 𝑎
𝑠−1
𝑥
𝑠−1
− 𝑎
𝑠−2
𝑥
𝑠−2
− ⋅ ⋅ ⋅ − 𝑎

0
. (9)

Suppose all the roots 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
of 𝜑(𝑥) are real and

pairwise different; that is, 𝜆
𝑖
̸= 𝜆
𝑗
, for 𝑖 ̸= 𝑗. Consider

Vandermonde’s matrix:

𝑉 =

(

(

(

(

(

1 1 ⋅ ⋅ ⋅ 1

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠

𝜆
2

1
𝜆
2

2
⋅ ⋅ ⋅ 𝜆

2

𝑠

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑠

)

)

)

)

)

. (10)

Since |𝑉| = ±∏
1≤𝑖<𝑗≤𝑠
(𝜆
𝑖
− 𝜆
𝑗
), we deduce that |𝑉| ̸= 0 and,

hence, 𝑉 is invertible. We need the following matrix relation.

Theorem 1. 𝑉 and 𝐶 are related by the following formula:

𝑉𝐸𝑉
−1
= 𝐶, (11)

where 𝐸 is the diagonal matrix:

𝐸 =(

𝜆
1
0 ⋅ ⋅ ⋅ 0

0 𝜆
2
⋅ ⋅ ⋅ 0

.

.

.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 𝜆
𝑠

). (12)

Proof. Let V
1
, V
2
, . . . , V

𝑠
∈ R𝑠 be the proper vectors of the

matrix 𝐶. We have then V
𝑖
𝐶 = 𝜆

𝑖
V
𝑖
for each 𝑖 = 1, 2, . . . , 𝑠.

If 𝑤 = V
1
+ V
2
+ ⋅ ⋅ ⋅ + V

𝑠
and 𝑘 ∈ N, we have 𝑤𝐶𝑘 =

𝜆
𝑘

1
V
1
+ 𝜆
𝑘

2
V
2
+ ⋅ ⋅ ⋅ + 𝜆

𝑘

𝑠
V
𝑠
, 𝑘 = 0, 1, . . . , 𝑠 − 1. Since |𝑉| ̸= 0,

we deduce that the vectors𝑤,𝑤𝐶,𝑤𝐶2, . . . , 𝑤𝐶𝑠−1 are linearly
independent and hence they constitute a basis forR𝑠. Calling
B = {V

1
, V
2
, . . . V
𝑠
}, B = {𝑤,𝑤𝐶, . . . , 𝑤𝐶𝑠−1}, we have

𝑉 = 𝑚(𝐼𝑑,B,B). On the other hand, consider the linear
transformation 𝑇 : R𝑠 → R𝑠 defined by the formula 𝑇(V) =
V𝐶. Clearly,

𝐶 = 𝑚(𝑇,B

,B

) . (13)

Therefore,

𝐶 = 𝑚(𝑇,B

,B

)

= 𝑚 (𝐼𝑑,B

,B)𝑚 (𝑇,B,B)𝑚 (𝐼𝑑,B,B


)

= 𝑉𝐸𝑉
−1
.

(14)

In the next theorem, we relate 𝑉 and 𝐶 with𝐷
𝑘
.

Theorem 2. One has the following formulas:

(a) 𝐶𝐷
𝑘
= 𝐷
𝑘+1

and 𝐶𝑘𝐷
0
= 𝐷
𝑘
for every 𝑘 ∈ N.

(b) 𝐷
𝑘
= 𝑉𝐸
𝑘
𝑉
−1
𝐷
0
for every 𝑘 ∈ N.

Proof. (a) It is straightforward.
(b) Using (36), we have

𝐷
𝑘
= 𝐶
𝑘
𝐷
0
= (𝑉𝐸𝑉

−1
)

𝑘

𝐷
0
= 𝑉𝐸
𝑘
𝑉
−1
𝐷
0
. (15)

Using the formula𝐷
𝑘
= 𝑉𝐸
𝑘
𝑉
−1
𝐷
0
, we obtain any mem-

ber of the corresponding Generalized Fibonacci Sequence.

Theorem 3. Consider

𝑥
𝑘
=

(−1)
𝑠−1

|𝑉|
































𝜆
𝑘

1
𝜆
𝑘

2
⋅ ⋅ ⋅ 𝜆

𝑘

𝑠
0

1 1 ⋅ ⋅ ⋅ 1 𝑥
0

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑥
1

.

.

.

.

.

. d
.
.
.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑠
𝑥
𝑠−1
































. (16)
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Proof. The first row of the matrix 𝑉𝐸𝑘 is the following:
(𝜆
𝑘

1
, 𝜆
𝑘

2
, . . . , 𝜆

𝑘

𝑠
). The first column of the matrix 𝑉−1𝐷

0
is

1

|𝑉|

(

(

(

(

(

(

(

(

(

𝑠

∑

𝑗=1

𝑉
𝑗1
𝑥
𝑗−1

𝑠

∑

𝑗=1

𝑉
𝑗2
𝑥
𝑗−1

.

.

.

𝑠

∑

𝑗=1

𝑉
𝑗𝑠
𝑥
𝑗−1

)

)

)

)

)

)

)

)

)

, (17)

where 𝑉
𝑖𝑗
is the cofactor of the entry of 𝑉 in the (𝑖, 𝑗)

position. 𝑥
𝑘
is the entry in the (1, 1) position of the matrix

𝐷
𝑘
. Therefore,

𝑥
𝑘
=

1

|𝑉|

[

[

𝜆
𝑘

1

𝑠

∑

𝑗=1

𝑉
𝑗1
𝑥
𝑗−1
+ 𝜆
𝑘

2

𝑠

∑

𝑗=1

𝑉
𝑗2
𝑥
𝑗−1
+ ⋅ ⋅ ⋅

+ 𝜆
𝑘

𝑠

𝑠

∑

𝑗=1

𝑉
𝑗𝑠
𝑥
𝑗−1
]

]

.

(18)

The expression inside the square brackets coincides with

(−1)
𝑠−1
































𝜆
𝑘

1
𝜆
𝑘

2
⋅ ⋅ ⋅ 𝜆

𝑘

𝑠
0

1 1 ⋅ ⋅ ⋅ 1 𝑥
0

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑥
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑠
𝑥
𝑠−1
































. (19)

To see this, develop this determinant by the first row and the
last column. The coefficient of 𝜆𝑘

𝑖
𝑥
𝑗−1

is then

(−1)
𝑖−1
(−1)
𝑠+𝑗















































1 1 ⋅ ⋅ ⋅ 1 1

𝜆
1
⋅ ⋅ ⋅ 𝜆

𝑖−1
𝜆
𝑖+1
⋅ ⋅ ⋅ 𝜆

𝑠

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑗−1

1
⋅ ⋅ ⋅ 𝜆
𝑗−1

𝑖−1
𝜆
𝑗−1

𝑖+1
⋅ ⋅ ⋅ 𝜆
𝑗−1

𝑠

𝜆
𝑗+1

1
⋅ ⋅ ⋅ 𝜆
𝑗+1

𝑖−1
𝜆
𝑗+1

𝑖+1
⋅ ⋅ ⋅ 𝜆
𝑗+1

𝑠

.

.

.

.

.

. d
.
.
.

.

.

.

𝜆
𝑠−1

1
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑖−1
𝜆
𝑠−1

𝑖+1
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑠















































= (−1)
𝑠−1
𝑉
𝑗𝑖
.

(20)

This completes the proof.

In the particular case 𝑘 = 2, we obtain

𝑥
𝑘
= −

1

𝜆
2
− 𝜆
1

















𝜆
𝑘

1
𝜆
𝑘

2
0

1 1 𝑥
0

𝜆
1
𝜆
2
𝑥
1

















. (21)

If we further assume that 𝑥
0
= 0 and 𝑥

1
= 1, we obtain

𝑥
𝑘
=

1

𝜆
1
− 𝜆
2

(𝜆
𝑘

1
− 𝜆
𝑘

2
) . (22)

In the original Fibonacci sequence, we have

𝐶 = (

0 1

1 1

) (23)

and hence 𝜑(𝑥) = 𝑥2 − 𝑥 − 1. The roots of this polynomial
are 𝜆
1
= (1 +√5)/2 and 𝜆

2
= (1 −√5)/2. We justify then the

mythical formula 𝑥
𝑘
= (1/√5)[((1+√5)/2)

𝑘
−((1−√5)/2)

𝑘
].

In the case 𝑎
0
= 𝑎
1
= 1/2, we obtain

𝐶 = (

0 1

1

2

1

2

) ,

𝜑 (𝑥) =














𝑥 −1

−

1

2

𝑥 −

1

2














= 𝑥
2
−

1

2

𝑥 −

1

2

.

(24)

The roots of 𝜑(𝑥) are 𝜆
1
= 1 and 𝜆

2
= −1/2. Hence, 𝑥

𝑘
=

(2/3)[1− (−1/2)
𝑘
]. It is now clear that this last GFS converges

to 2/3.
We give next a sufficient condition for the convergence of

the series of a GFS.

Theorem 4 (main theorem). Suppose the roots of the charac-
teristic polynomial 𝜑(𝑥) of a GFS {𝑥

𝑘
} are pairwise different

and all of them lie in the open interval (−1, 1). Then the series
of {𝑥
𝑘
} converges to

(−1)
𝑠−1

|𝑉|


































1

1 − 𝜆
1

1

1 − 𝜆
2

⋅ ⋅ ⋅

1

1 − 𝜆
𝑠

0

1 1 ⋅ ⋅ ⋅ 1 𝑥
0

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑥
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆

𝑠−1

𝑠
𝑥
𝑠−1


































. (25)

Proof. This is a consequence of the identity

𝑥
0
+ 𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑘
=

(−1)
𝑠−1

|𝑉|

⋅
































1 + 𝜆
1
+ 𝜆
2

1
+ ⋅ ⋅ ⋅ + 𝜆

𝑘−1

1
⋅ ⋅ ⋅ 1 + 𝜆

𝑠
+ 𝜆
2

𝑠
+ ⋅ ⋅ ⋅ + 𝜆

𝑘−1

𝑠
0

1 ⋅ ⋅ ⋅ 1 𝑥
0

𝜆
1

⋅ ⋅ ⋅ 𝜆
𝑠

𝑥
1

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
⋅ ⋅ ⋅ 𝜆

𝑠−1

𝑠
𝑥
𝑠−1
































(26)

and the convergence ∑∞
𝑗=0
𝜆
𝑗

𝑖
to 1/(1 − 𝜆

𝑖
).

We give now two examples.
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Example 5. One has 𝑠 = 3, 𝑥
0
= 𝑥
1
= 0, 𝑥

2
= 1, 𝑎

0
= 1/6,

𝑎
1
= −1, and 𝑎

2
= 11/6.

The characteristic polynomial 𝜑(𝑥) of the corresponding
GFS is

𝜑 (𝑥) =




















𝑥 −1 0

0 𝑥 −1

−

1

6

1 𝑥 −

11

6




















= 𝑥
3
−

11

6

𝑥
2
+ 𝑥 −

1

6

= (𝑥 − 1) (𝑥 −

1

2

) (𝑥 −

1

3

) .

(27)

Therefore, 𝜆
1
= 1, 𝜆

2
= 1/2, 𝜆

3
= 1/3, and

|𝑉| =






















1 1 1

1

1

2

1

3

1

1

4

1

9






















= −

1

18

. (28)

Hence

𝑥
𝑘
= (−1)

3−1
(−18)




























1 2
−𝑘
3
−𝑘
0

1 1 1 0

1

1

2

1

3

0

1

1

4

1

9

1




























= −18




















1 2
−𝑘
3
−𝑘

1 1 1

1

1

2

1

3




















.

(29)

Clearly

𝑥
𝑘
→ −18




















1 0 0

1 1 1

1

1

2

1

3




















= 3. (30)

Example 6. One has 𝑠 = 3, 𝑥
0
= 𝑥
1
= 0, 𝑥

2
= 1, 𝑎

0
=

1/18, 𝑎
1
= −11/8, and 𝑎

2
= 3/2. In this case, 𝜑(𝑥) = 𝑥3 −

(3/2)𝑥
2
+ (11/18)𝑥 − 1/18 = (𝑥 − 1/2)(𝑥 − 1/3)(𝑥 − 2/3).

Therefore, 𝜆
1
= 1/2, 𝜆

2
= 1/3, 𝜆

3
= 2/3, and |𝑉| = −1/108.

Hence,

𝑥
𝑘
= −108

































(

1

2

)

𝑘

(

1

3

)

𝑘

(

2

3

)

𝑘

0

1 1 1 0

1

2

1

3

2

3

0

1

4

1

9

4

9

1

































. (31)

In this case, 𝑥
𝑘
→ 0, but

∞

∑

𝑘=1

𝑥
𝑘
= −108
































1

1 − 1/2

1

1 − 1/3

1

1 − 2/3

0

1 1 1 0

1

2

1

3

2

3

0

1

4

1

9

4

9

1
































= 9. (32)

Given 𝑠 different real numbers 𝜆
1
, 𝜆
2
, 𝜆
2
, . . . , 𝜆

𝑠
, we may

construct, for every (𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑠−1
) ∈ R𝑠, a GFS; namely,

𝑥
𝑘
=

(−1)
𝑠−1

∏
1≤𝑗<𝑖≤𝑠
(𝜆
𝑖
− 𝜆
𝑗
)
































𝜆
𝑘

1
𝜆
𝑘

2
⋅ ⋅ ⋅ 𝜆

𝑘

𝑠
0

1 1 ⋅ ⋅ ⋅ 1 𝑥
0

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑥
1

.

.

.

.

.

. d
.
.
.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
𝑠−1

𝑠
𝑥
𝑠−1
































. (33)

Themissing sequence (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑠−1
)may be obtained from

the coefficients of the polynomial:

𝜑 (𝑥) = (𝑥 − 𝜆
1
) (𝑥 − 𝜆

2
) ⋅ ⋅ ⋅ (𝑥 − 𝜆

𝑠
) . (34)

For instance, 𝑎
𝑠−1
= 𝜆
1
+ 𝜆
2
+ ⋅ ⋅ ⋅ + 𝜆

𝑠
and 𝑎

𝑠−2
=

−∑
1≤𝑗<𝑖≤𝑠
𝜆
𝑖
𝜆
𝑗
.

With the help of this remark, we prove the following.

Theorem 7. Let (𝑎
𝑖𝑗
) be an invertible 𝑠 × 𝑠matrix. Suppose the

characteristic polynomial 𝜑(𝑥) of 𝐴 factors into the form:

𝜑 (𝑥) = (𝑥 − 𝜆
1
) (𝑥 − 𝜆

2
) ⋅ ⋅ ⋅ (𝑥 − 𝜆

𝑠
) , (35)

where 𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑠
are pairwise different real numbers. Let

𝑎
(𝑘)

𝑖𝑗
be the entry in the (𝑖, 𝑗) position of the matrix 𝐴𝑘. Then

𝑎
(𝑘)

𝑖𝑗
=

(−1)
𝑠−1

|𝑉|








































𝜆
𝑘

1
𝜆
𝑘

2
⋅ ⋅ ⋅ 𝜆

𝑘

𝑠
0

1 1 ⋅ ⋅ ⋅ 1 𝑎
(0)

𝑖𝑗

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑎
(1)

𝑖𝑗

𝜆
2

1
𝜆
2

2
⋅ ⋅ ⋅ 𝜆

2

𝑠
𝑎
(2)

𝑖𝑗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
(𝑠−1)

𝑠
𝑎
(𝑠−1)

𝑖𝑗








































. (36)

Proof. Let (𝑥
𝑘
) be the GFS determined by (36). It is clear that

𝑥
𝑘
= 𝑎
(𝑘)

𝑖𝑗
for 𝑘 ≤ 𝑠 − 1. Proceeding by induction, suppose

𝑥
𝑡
= 𝑎
(𝑡)

𝑖𝑗
for every 𝑡 ≤ 𝑘, where 𝑘 ≥ 𝑠 − 1. We clearly have

𝑎
(𝑘+1)

𝑖𝑗
= (𝑎
(𝑘)

𝑖1
, 𝑎
(𝑘)

𝑖2
, . . . , 𝑎

(𝑘)

𝑖𝑠
) ⋅ (𝑎
(1)

1𝑗
, 𝑎
(1)

2𝑗
, . . . , 𝑎

(1)

𝑠𝑗
)

= 𝑎
(𝑘)

𝑖1
𝑎
1𝑗
+ 𝑎
(𝑘)

𝑖2
𝑎
2𝑗
+ ⋅ ⋅ ⋅ + 𝑎

(𝑘)

𝑖𝑠
𝑎
𝑠𝑗
.

(37)
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Be induction, the terms 𝑎(𝑘)
𝑖1
, . . . , 𝑎

(𝑘)

𝑖𝑠
may be obtained using

determinants of type (36). We consider the last columns of
determinants (36) and we obtain

𝑎
1𝑗

(

(

(

(

(

(

(

0

𝑎
(0)

𝑖1

𝑎
(1)

𝑖1

.

.

.

𝑎
(𝑠−1)

𝑖1

)

)

)

)

)

)

)

+𝑎
2𝑗

(

(

(

(

(

(

(

0

𝑎
(0)

𝑖2

𝑎
(1)

𝑖2

.

.

.

𝑎
(𝑠−1)

𝑖2

)

)

)

)

)

)

)

+ ⋅ ⋅ ⋅

=

(

(

(

(

(

(

(

0

𝑎
(1)

𝑖𝑗

𝑎
(2)

𝑖𝑗

.

.

.

𝑎
(𝑠)

𝑖𝑗

)

)

)

)

)

)

)

.

(38)

Therefore

𝑎
(𝑘+1)

𝑖𝑗
=

(−1)
𝑠−1

|Δ|














































𝜆
𝑘

1
𝜆
𝑘

2
⋅ ⋅ ⋅ 𝜆

𝑘

𝑠
0

1 1 ⋅ ⋅ ⋅ 1 𝑎
(1)

𝑖𝑗

𝜆
1
𝜆
2
⋅ ⋅ ⋅ 𝜆

𝑠
𝑎
(2)

𝑖𝑗

𝜆
2

1
𝜆
2

2
⋅ ⋅ ⋅ 𝜆

2

𝑠
𝑎
(3)

𝑖𝑗

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜆
𝑠−1

1
𝜆
𝑠−1

2
⋅ ⋅ ⋅ 𝜆
(𝑠−1)

𝑠
𝑎
(𝑠)

𝑖𝑗














































. (39)

The GFS on the right side of this equation starts with 𝑦
0
=

𝑎
(1)

𝑖𝑗
, 𝑦
1
= 𝑎
(2)

𝑖𝑗
, . . . , 𝑦

𝑠−1
= 𝑎
(𝑠)

𝑖𝑗
and has the same proper values

of the GFS (𝑥
𝑘
). Hence 𝑎(𝑘+1)

𝑖𝑗
= 𝑦
𝑘
= 𝑥
𝑘+1

and the proof is
complete.

As an exercise, we calculate the powers of a 2 × 2matrix:

𝐴 = (

𝑎 𝑏

ℎ 𝑘

) , where Δ = 𝑎𝑘 − ℎ𝑏 ̸= 0. (40)

In this case we have 𝑎(0)
11
= 1, 𝑎(0)

12
= 0, 𝑎(0)

21
= 0, 𝑎(0)

22
= 1,

𝑎
(1)

11
= 𝑎, 𝑎(1)

12
= 𝑏, 𝑎(1)

21
= ℎ, 𝑎(1)

22
= 𝑘. Hence

𝑎
(𝑡)

𝑖𝑗
= −

1







1 1

𝜆
1
𝜆
2



























𝜆
𝑡

1
𝜆
𝑡

2
0

1 1 𝑎
(0)

𝑖𝑗

𝜆
1
𝜆
2
𝑎
(1)

𝑖𝑗





















. (41)

Therefore

𝑎
(𝑡)

11
=

1

𝜆
1
− 𝜆
2


















𝜆
𝑡

1
𝜆
𝑡

2
0

1 1 1

𝜆
1
𝜆
2
𝑎


















;

𝑎
(𝑡)

12
=

1

𝜆
1
− 𝜆
2

















𝜆
𝑡

1
𝜆
𝑡

2
0

1 1 0

𝜆
1
𝜆
2
𝑏

















;

𝑎
(𝑡)

21
=

1

𝜆
1
− 𝜆
2

















𝜆
𝑡

1
𝜆
𝑡

2
0

1 1 0

𝜆
1
𝜆
2
ℎ

















;

𝑎
(𝑡)

22
=

1

𝜆
1
− 𝜆
2

















𝜆
𝑡

1
𝜆
𝑡

2
0

1 1 1

𝜆
1
𝜆
2
𝑘

















,

(42)

where 𝜆
1
= (1/2)[(𝑎 + 𝑘) − √(𝑎 − 𝑘)

2
+ 4ℎ𝑏] and 𝜆

2
=

(1/2)[(𝑎 + 𝑘) + √(𝑎 − 𝑘)
2
+ 4ℎ𝑏]. If 𝜆

1
= 1 and |𝜆

2
| < 1,

we have

𝐴
𝑡
→

1

1 − 𝜆
2

(

𝑎 − 𝜆
2
𝑏

ℎ 𝑘 − 𝜆
2

) . (43)

This limit matrix has determinant = 0. So in the case of a
Moebius transformation

𝜑 (𝑧) =

𝑎 + 𝑏𝑧

ℎ + 𝑘𝑧

, 𝑎𝑘 ̸= ℎ𝑏 (44)

we have the following corollary.

Corollary 8. If 1 is a proper value of the matrix𝐴 = ( 𝑎 𝑏
ℎ 𝑘
) and

if |𝑎𝑘 − ℎ𝑏| < 1, then the powers 𝜑𝑡 converge to the constant
map 𝜙(𝑧) = (𝑎 − 𝜆

2
)/ℎ(1 − 𝜆

2
) = 𝑏/(1 − 𝜆

2
)(𝑘 − 𝜆

2
).
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