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This paper presents a control problem for the optimization of the production and setup activities of an industrial system operating
in an uncertain environment. This system is subject to random disturbances (breakdowns and repairs). These disturbances can
engender stock shortages. The considered industrial system represents a well-known production context in industry and consists
of a machine producing two types of products. In order to switch production from one product type to another, a time factor and
a reconfiguration cost for the machine are associated with the setup activities. The parts production rates and the setup strategies
are the decision variables which influence the inventory and the capacity of the system. The objective of the study is to find the
production and setup policies which minimize the setup and inventory costs, as well as those associated with shortages. A modeling
approach based on stochastic optimal control theory and a numerical algorithm used to solve the obtained optimality conditions
are presented. The contribution of the paper, for industrial systems not studied in the literature, is illustrated through a numerical

example and a comparative study.

1. Introduction

The production and setup planning problem surfaces in
manufacturing systems when significant cost and time are
required to set up the production unit for the processing of
multiple part types. The setup scheduling problem involves
deciding which part type has to be processed next and when
the production unit has to stop its current operations and
make a setup change to begin the processing of that part type.
The time required to switch from producing one part type
to another and the associated cost are significant. Given that
it is not realistic (or advantageous) to devote one machine
to a single part type, different part types must share the
same machine, and capacity is lost due to each setup change.
In addition, the considered machine is subject to random
breakdowns and repairs. It is therefore essential to jointly
investigate setup scheduling and production policies in order

to optimize the system performance measure of the failure-
prone manufacturing system under study.

For the class of completely flexible machines (based on a
crucial assumption that no setup time and cost are required
when production is switched from one part type to another),
an explicit formulation of the optimal control problem for
an unreliable flexible machine which produces multiple part
types is provided in [1]. In addition, Gharbi and Kenné
[2] provided a suboptimal control policy for the multiple
parts, multiple-machines problem. The considered planning
problem falls under an important class of stochastic manu-
facturing systems involving nonflexible machines, given that
the setup time and costs are considered when production
is switched from one product type to another. This class of
systems is a subset of manufacturing systems for which the
problem of determining the optimal production policies has
been considered by many authors. A significant portion of
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the research by the latter is based on a feedback formulation
of the control problem in a dynamic manufacturing environ-
ment. It is shown in [3] that the optimal control policy has
a special structure called the Hedging Point Policy (HPP)
in the case of a single-machine, single product system. For
such a policy, a nonnegative production surplus of parts,
corresponding to optimal inventory levels, is maintained
during times of excess capacity in order to hedge against
future capacity shortages caused by machine failures for the
case of a single-machine, two-product manufacturing system
with setup (see [4]). Various researchers have considered the
problems of setup scheduling in production using advanced
optimization approaches in the context of multiple-product
manufacturing systems. As recently stated in [5], the prob-
lems of sequence-dependent setup times have been attracting
increasing interest [6]. Previous sequence-dependent setup
times are studied using objective functions such as makespan,
total completion time, and their combinations, with an
emphasis on the learning aspects of the sorting algorithms. In
the same context, Feng et al. [7] optimized various scheduling
policies and then analyzed them from the point of view
of their robustness to uncertainties and system parameter
variations. The obtained setup policy had a cyclic policy
structure resilient to parameter variations.

The stochastic optimal control problem of a manufactur-
ing system with setup costs and time was formally presented
in [4] following the series of papers published in the same
domain by Sethi and Zhang [8], Yan and Zhang [9], Boukas
and Kenné [10] and Hajji et al. [11]. The proposed models
led to the optimality conditions described by the Hamilton
Jacobi Bellman equations (HJB). Such equations are difficult
to resolve analytically for more general cases. An explicit solu-
tion for such equations was obtained by Akella and Kumar
[12] for a one-machine, one-product manufacturing system.
Numerical methods based on the Kushner approach (see
Kushner and Dupuis [13]) were used by Yan and Zhang [9]
and Boukas and Kenné [10] for a one-machine, two-product
manufacturing system. They were able to develop near-
optimal control policies for production and setup scheduling
in the case of a homogeneous and machine age-dependent
Markovian process.

For the one-machine, two products’ case, Yan and Zhang
[9] provide a characterization of the optimal production
and setup policy by four exclusive regions as a main result,
while Bai and Elhafsi [14] focused their contribution on
providing a suitable production and setup policy structure
and obtained the so-called Hedging Corridor Policy (HCP).
Following these studies, Gharbi et al. [4] developed a pro-
duction and setup policy for unreliable multiple-machine,
multiple part type manufacturing system, for which the
production and setup policy are known across the sample
space. They obtained a control policy called the Modified
Hedging Corridor Policy (MHCP), qualified as more realistic
and useful in the context of the production planning of
manufacturing systems with setup.

The main contribution of this paper is to develop a
production and setup policy for a more realistic unreliable
one-machine, one-part type manufacturing system under
appropriate assumptions in different industrial situations,
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called here industrial scenarios. The resultant control policy
is more realistic and useful in the context of the production
planning of manufacturing systems with setup. This paper’s
contribution is further illustrated through the fact that the
proposed control policy guarantees a system performance
for systems that have not yet been studied in the relevant
literature. Our proposal is an extension of the works of Bai
and Elhafsi [14], Boukas and Kenné [10], and Hajji et al. [11].

This paper is organized as follows: Section 2 presents
the notations and main assumptions of the proposed model.
Section 3 presents the statement of the optimal production
and setup scheduling problem. The optimality conditions
and numerical approach are presented in Section 4. Section 5
describes the numerical example with results analysis, and the
paper is concluded in Section 6.

2. Model Assumptions and Hypotheses

This section presents the notations and assumptions used
throughout this paper.

2.1. Notations

P:parttypei (i € I = {1,2}),

0;;: setup time to go from P, to P;,

K;;: setup cost to go from P, to P;,

d;: rate of P, product request,

x(t): vector inventory levels/shortage, product type i,
p;: product processing time, type i,

u,(t): production rate, product type i,

U;": maximum production rate, product type i,

z;: optimal inventory level, product type i,

a(t): stochastic process describing the dynamics of
the machine,

S;j: setup policy from product part type i to j,
qap: transition rate, mode af3,

¢; : shortage cost, product type i,

¢': inventory cost, product type i,

p: cost discount rate,

g(+): cost function,

R(:): total cost function during setup,

J(-): total cost function,

v(+): value function.

2.2. Context and Assumptions. The following is a summary of
the general context and main assumptions considered in this

paper:
(1) The model is time-continuous.

(2) Raw materials for the production of each product part
type are always available and unlimited.
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FIGURE 1: Manufacturing system studied.

(3) Customer demand of finished products for each part
type is known and represented by a constant rate over
time.

(4) The maximal production rate of each part type is
known.

(5) All failures are instantly detected and repaired. A
corrective maintenance action renews the production
system to its initial state (as good as new condition).

(6) The machine shares the production of different prod-
uct part types with significant setup time and cost.

(7) The shortage cost depends on the shortage quantity
and time (average value ($/product/unit of time)).

(8) The holding cost depends on the mean inventory level
(average value ($/product/unit of time)).

(9) For each product part type, once the production starts
at a given rate, no adjustment of the rate will be
allowed until either the machine is down (failure
mode) or the current unit is completed.

We complete the assumptions by two hypotheses that help
us to study different industrial contexts (or production
scenarios) with setup.

Hypothesis 1. The setup operation is performed only when the
machine is in operational mode and cannot be interrupted by
any machine failure such that it has to be started all over again.

Hypothesis 2. The setup operation is only allowed if the
machine is in operational mode, and the setup process is
interrupted by failure such that it can be continued after a
repair.

In this paper, we show how the hypotheses affect the
optimality conditions of the associated stochastic optimal
control problem. We then develop appropriate optimality
conditions consisting of a modified form of the traditional

HJB equations. We finally compare the results obtained for
the two hypotheses (or contexts of production) in order to
provide more realistic production and setup policies.

3. Problem Formulation

The production system presented in Figure 1 consists of one
machine capable of producing two different part types. The
machine is not completely flexible in the sense that the setup
activities between the two part types involve both time and
cost to switch from the production of one part type to another.
The system under study is dynamic and the associated costs
to be minimized are illustrated in Figure 1.

Let 6;; and K;; be the duration and the cost incurred for
switching the production from P, to P; withi # j, respectively.
Note that, fori, j = 1,2andi # j,0; > 0and K;; > 0.

The i-type product requires an average production time
denoted as p; > 0 (i = 1,2) and ordered with a constant
demand rate d;.

Let x;(t), u;(t) be the stock level and the rate of production
of two part types of products P, i = 1,2, respectively.

Let x, u, and d denote the vectors (x,, x,)’, (17, 1,)", and
(d,,d,)", respectively, knowing that the notation A’ denotes
the transpose of A.

At a given moment, we can describe the system by a
hybrid state that consists of a continuous portion (stock
dynamics) and a discrete portion (modes of the machine).
A stochastic process &(¢) is used to describe the mode of the
machine as follows:

1  if the machine is operational
§(t) = )

2 if the machine is under repair.

The machine uptimes and downtimes are assumed to be
exponentially distributed with rates p and g, respectively.
Hence, the machine state evolves according to a continuous-
time Markov process with modes §(t) € M = {1, 2}. The states



4
Production qi2 =P Repair
qll:l_p @qZZIr
Operation G =1 Breakdown

FIGURE 2: States transition diagram of the system studied.

transition diagram of the Markov chain associated with the
machine dynamics is shown in Figure 2.

The evolution of machine states in the interval (¢, t + 6t)
can be expressed by

prob (§(t +6t) =1 | &(¢) = 2) = q,,0t +0(51),
prob (E(t+8t) = 1| E() = 1) = 1 + q,,0t + 0(5¢),
prob (§(t +6t) =2 | £(¢) = 1) = g,,6t + 0(5%),
prob (E(t +8t) = 2 | E(t) = 2) = 1 + g, 8t + 0 (5¢).

The process &(t) can be described by a transition rate matrix
Q= {qaﬁ}’ defined bY 9ap >20sia# ﬁ and Qo =~ Za#ﬁ 9ap>
knowing that «, f € M.

The transition rate from a state « € M to a state § € M at
time ¢ is defined by

i [ orep EEFO0 =B1E®) = a)
qaﬁ_&tﬂo P ot ’

(3)

. _0(3t)
kn hat lim —— =0.
« # 3 knowing that i, — 0

The corresponding matrix of transition rates e is given in the

following:
Q- (“112 912 ) . (4)
91 —9n

The differential equation representing the dynamics of the
finished products stocks is

dx(t) .
Fr u(t) —d, )

x (0) = x,,

x(t) =

where x,, is the initial stock level.
The production rates satisfy the system capacity con-
straint given by the following equation:

i=1,2, (6)
where U:r denotes the maximal production rate of product
i on the machine. The set of feasible production rates of the

machine for a product i is given by

I'(x) = {u:u:(ul,uz), OSui(~)§U:, i= 1,2}. (7)
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The decision variables of the optimal control problem under
study are production rates u = (u;,u,) and a sequence of
setups denoted by Q = {(1, iyi,), (7}, 1,1,), . . .}. A setup (7, ij)
is defined by the time 7 at which it begins and a pair ij,
denoting that the system was already set up to produce part
i, and is being switched to be able to produce part j. Let A
denote the set of admissible decisions (Q, u;, u,).

The instantaneous cost function depends on the state of
the system (stock level, mode of the machine) and is given by

glxa)=(c/x +¢,x; +6x, +6x,)+c"  (8)

where ¢* is the cost incurred at mode a of the machine
(assuming that ¢! = 0and ¢ # 0). Note that x; = max(0, x;)

and x; = max(-x;,0); ci+and ¢ are inventory and backlog
costs for part type i per unit of product per unit of time,
respectively.

Given that the setup cost is consumed at the beginning
of the operation, the instantaneous cost as a function of the
setups denoted as R(-) is therefore expressed by the following
expression:

R (x,5) = K;; Ind {s = @,»j} + JO eg(x—d)dt,
)
se0,0;], ij=1,2i%#j,

where p is the discount rate. The first part of (9) expresses
the setup cost at the beginning of the operation. The second
part evaluates the penalty incurred for an inventory during
the setup, depending on the time remaining in the setup

operation, denoted as s, with
1 if s=0;
Ind (s = ®,-j) = { ! (10)

0 otherwise.

We can deduce the instantaneous cost function of the
setup as follows:

Ry, (x, @12) =Ky,

®12
+ J e P g(x, —dit;x, — dyt)dt,

’ ()
Ry (x, @)21) =Ky

®21
+ Jo e P g(x, —dt;x, — dyt)dt.

The total discounted cost over an infinite horizon can then be
defined by the following expression:

J (G, x, 0,8, Qu(:))

= Tt
Le g (x (1)) dt (12)

[} 00
+ Ei,x—ds,ocs |:J e—ptg (x (t)) dt + Z e_PTiKiliHl
s

i=0
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The production planning problem is to find an admissible
decision or control policy (Q, u(-)) that minimizes J(-), given
by (12). For the production of part type i, the value function
can be given by the following:

v; (%, ,8) = min J (i, x, 0,5, Q,u)
(Qu)eA
(13)
Vx € R", o € M.

In the next section, we present the optimality conditions and
the corresponding discrete form obtained by the application

min { n%l(n) [((u—d)(v;), (%, &) + g (%) + Qv; (x,-) ()]

of the numerical methods inspired from the Kushner
approach (see [11] for more details).

4. Optimality Conditions and
Numerical Approach

In this section, we present the modified HJB equations related
to Hypotheses 1 and 2. We then compare the results obtained
for those hypotheses to the results given by the application of
the traditional form used in Yan and Zhang [9], Bourkas and
Kenné [10], and Hajji et al. [11].

The value function v;(x, ) that satisfies the HJB equations
in mode 1 for Hypothesis 1 is

—pv,»(x,oc);n}iln[R,»j(x,Gij)+(Pj)e”6’1 v(x de;; 1) (1 Plj)ep@U v](x dr;; 1)]—vi(x,oc)}=

The value function v;(x,«) that satisfies HJB equations in
mode 1 for Hypothesis 2 is
min { rr%i(n) [(u—d)(v), (%) + g (x) + Qv; (x,°) ()]
uel; (o
= pvi (%, ); (15)

rl:]lgl[R x,® l])+e—P@Tj-vJ(x d®z]’1)]} 0,

where (v;),.(-) is the gradient of v;(-) related to x. Moreover,

Qi (5,) (@) = Y 4o (v (6, B) = (). g4

a#f

Let S;(«) be the machine configuration changes (setup)
defined by the following:

h
(v (.-

h
(vl- (xl,...,xj, .

,xj+hj,...

\rl’_‘

(Vi)xj (x’ 06) =

| =

=
[N

h
,xz)—vi (xl,...,xj,...

h
,xz)—v,- (xl,...,xj—hj,...

(14)
ij>
(a) for Hypothesis 1,
S; (@) = {x m1n [RU( ) ( )e POy
v (x-d@y 1)+ (1-P;)e ™ (17)
(x dr;j, 1)] v; (x, oc)} ;
(b) for Hypothesis 2,
S; ()
= {x : n}iln [Rij (x, @;) +e O v (x dG)U, 1)] 18)
=v;(x, oc)} .

Let us use the Kushner approach method (Kushner and
Dupuis [13]), as in [16], to develop the numerical form of
HJB equations. The basic idea behind it consists in using an
approximation scheme for the gradient of the value function.
Let hj, j = 1,2, denote the length of the finite difference
interval of the variable x;. Using the finite difference approx-

imation, v(x, ) could be given by v; (x a)and (v;), (x «) by

,xz)) ifu;-d; >0

(19)
,%,)) ifu;—d; <0.
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-Ind{uj -d; < ()} _ |ufl,:dj'
—d. :
(Llj _d]) (Vi)x]' (-x,(X) = 'u]_]’l. —]' 'Vih (xl,_._,xj,...,x2).
| (20)

-v,-h(xl,...,xj+hj,...,x2)1nd{uj—dj20}

The following expression can be deduced:

Following the previous approximation, we can express (14)

| —d | and (15) in terms of v;"(x, &) as follows:
+ —v,»h (xl,...,xj —hj,...,xz)
h; (a) for Hypothesis 1,
v-h (x, )
—mm{mm <p+lqm| Z|u |> {Z‘u J| h + Ind(u -d; >O) (x(h ))Ind(u -d; <0))+g(x)+2qaﬁ*v (xﬁ):”
@) h h; pra (21)

J#i

min Ry (x,0;) + (By) e "™ - v; (x = @y, 1) + (1= By) e 7 -, ("‘df"f’l)]};

(b) for Hypothesis 2,

h
v, (x,a)

i (vl ploal) i 200 ol N1 <0) 0 T /3)”

(22)
i [Ry (2.8;) + 70y, (x—d@'j)l)]}
with a o
h h Ph (X,xihj,u)zth]a—(xju),
v; (x(hj,+))=v,- (xl,...,xj+h,...,x2), Q. (x,
h h (23) P (x o, Bu) = o (x O e
) =9 (). h o

For all « € M, let us define the following expressions:

|u | Substituting these expressions in (21) and (22), we obtain the
(% 1) = |qual + Z following two equations:
h;

(a) for Hypothesis 1,

v,-h (x, )

o . Q" (x,u) h = @ ok g (x)
- {urer}il(lgc){/)'f'Qh (x,u)<zph (oox e hpu) v (o) + 3 P (i o) (x’ﬁ)>+P+Qha(x,l/l)} (25)

Pa

njl#lzn [RlJ (x’®'j) + (P])e P Vi (x d®u’ 1) (1 - b )e PO Vj (x dTIJ’ 1)]}
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(b) for Hypothesis 2,

h
Vi (% a)

o 2
= min { min {M <ZPha (x,x + hj,u) v (o) + Zf)h“ (x, 0 Bou) - v, (x,[3)> + 9 )

ueli(a) | p+ Qh“ (x,u) 1

i[5 s+ -] |

Let us specify the terms of the previous equations, the
discretization domain, and the limit conditions and illustrate
the algorithm used to solve the modified numerical version
of the HJB equations obtained. In addition, (25) and (26)
correspond to four equations, expressing the optimality
conditions concerning the production system under study,
involving two products and a machine with two modes.

(i) Hypothesis 1. Let us denote by P;, the probability that the
machine is in failure mode at the end of a setup from P, to P,,
if it was operational when the setup started, and by 7, the
corresponding failure time. Similarly, P,; is the probability
that the machine is in failure mode at the end of a setup from
P, to P, if it was operational when the setup started, with
T,; denoting the corresponding failure time. According to the
random machine failure process,

P, = e, 27)

B#a

In order to calculate 7,, we evaluate the conditional expecta-
tion Eft | t < ©,,} and obtain

1 _
T = q_ (1 — e 10 (1+ ‘Z12®12))- (28)
12

For the setup from product 2 to product 1, we have P, =
e“hz@n and

1 _
T = q_ (1 — e 1% (1+ %2@)21))- (29)
12

We then have

1 2
vlh (x,1) = min { min {M <ZP,11 (x,x + hj,u) vlh (%, 1) + 13,11 (x,1,2,u) - vlh (x,2)> + L}

wenh () | p+Q,t (x,u) s

P + th (x> M)

: [Rlz (%,01,) + (Pr2) e PO Vzh (%) = d1015,1,x, =)0y, 1) + (1 - Py,) [e_pm ) Vlh (%) = dimip 1, X, — dy1y, 1)”} ’

th (x,u)

2
h o ‘ 1 h 5 1 h g(x)
v, (x’l)_mln{"zrg}zr(ll){p+th(x,u) <ZP;, (x,xihj,u)v2 (D) + Py (x,1,2,u)- v, (x,2)>+—}

j=1

p+Qy (x,u)
(30)

—PY2 h —pTy; h
’ [RZI (%,0,) +(P)e ro vy (% = d1©,1,1,x, = d,0,,,1) + (1= Pyy) [e Py () = di 1y, 1, x5 = dy Ty, I)H >

h o
V" (x,2) = min {—p 0 (0 0)

j=1

h o
v, (x,2)—m1n<[p+th =0

j=1

p+ Q2 (x,0)

2 2
Q" (%,0) <z th (x,x + h]-,O) vlh (x,2) + IShl (x,2,1,0) - vlh (x, 1)> + 9% ) } ,

p+Qy’° (x,0)

2 2
M <ZPh2 (x,xihj,O)vzh (x,2)+13h1 (x,2,1,0)~v2h(x,1)> + L}



We notice that the setup expression no longer appears in both
failure mode equations and that the first two operational
mode equations are different from the equivalent equations
for the reference hypothesis of the literature.
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(ii) Hypothesis 2. Using a known formula = ©,,/MTTEF,
we get the terms of the corrections due to repairs ry, =
(®,, * MTTR)/MTTF and r,; = (©,; * MTTR)/MTTF
(here MTTF = 1/q,,). Finally, the modified setup time is
calculated:

— ® MTTR
0, =0, + L>
MTTF
— 0,, * MTTR
0, =@, + A T8
MTTF
v (1)
1 2
= min { min le,u) Z Ph1 (x,x + hj,u) vlh (x,1) + 13h1 (x,1,2,u) - vlh (x,2) )+ le)
weh() | p+Qy (x,u) i p+Q, (xu)
— _ ’@‘r h o o
: [R12 (x,@lz) +e oy, (x1 -d0,, 1, x, —d,0,,, 1)] ,
v (x,1) (31)
1 2
= min 4 min le,u) Z Phl (x,x + hj,u) vzh (x, 1)+ Fhl (x,1,2,u) - vzh (x,2) )+ le)
wmeh () [ p+Qy (% u) \ 5 p+Q, (x,u)

. [R21 (x, @21) +e PO, vlh (x1

vlh (x,2) = min

P + Qh (x7 0) j=1

Qh (x,0) 2
P+Qh (x,0) <§

Vzh (x,2) = min

We also notice that the setup expression no longer appears
in both of the failure mode equations and that the first
two operational mode equations are similar to those of the
reference hypothesis (with the setup times modified), but
different from equations related to the case of Hypothesis 1. In
the next section, we present a numerical example and analyze
the results obtained in different situations.

5. Numerical Example and Results Analysis

In order to characterize the production and setup policies and
to show the influence of the interactions between the setup
procedure and the random machine failure process, for two
new hypotheses in comparison with the reference hypothesis,
we present three different cases in three data groups. The
first two groups had identical economic parameters, and only
technical parameters such as the setup duration were varied
according to the groups. In the third group, both products

h;,0)v," (x, 2)+ P, (x,2,1,0)- vzh(x,l)>+

- d,8,,1,%, - ,8,,1)]

2
Qh (x,0) <Z x,xih]«,O) vlh(x,Z)+}~7h1(x,2,1,0)-v1’1 (x,1)> + g (x)

p+Q,° (x,0)
g (x)

p+Q,° (x,0)

had different economic parameters. Table 1 shows the con-
stant parameters for the numerical examples considered, with

G =Gs

+ _ +‘

G =6;
Ky, = K5 (32)
dy =dy;

1 =U;

for the two first groups.
In addition,

(i) group 1 represents the case ®,, = ©,, = 1.25;
(ii) group 2 represents the case ®,, = ©,; = 1.75;

(iil) group 3 is the case of two nonidentical products ®,, =
0, =1.25and C| =C; = 1;C| = 20; C, = 40.
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TaBLE 1: Data parameters.

q ¢ Ky, Uy d Xy 912 a2 P hx{

20 1 0.5 5 1.5 -5 0.1 0.8 0.1 0.2

TABLE 2: Setup times for machine tools (Boothroyd et al. [15]).

Some nonproductive times for common machine tools

Machine tool

Time to engage tool and so forth (s)

Basic setup time (h) Additional setup per tool (h)

Horizontal band saw —

Manual turret lathe 9

NC turret lathe 15
Milling machine 30
Drilling machine 9

Horizontal-boring machine 30
Broaching machine 13
Gear hobbling machine 39
Grinding machine 19
Internal grinding machine 24
Machining center 8

The setup times are given by the table of the machine tools
setup times (see Table 2).

With these data, the system is capable of producing
with setup at the request of both products if the following
feasibility condition is satisfied:

Ui Le_‘hzelz >d , d
"1, + g v
We present six figures for every case (three figures for
each product). Each figure contains the production or setup
policies for the two new hypotheses and for the reference
hypothesis. For group 1, Figures 3 and 6, respectively, illus-
trate the production policy of P, and P, for three hypotheses.
Then, also for group 1, Figures 4 and 7 illustrate the setup
policies for P, to P, and for P, to P, respectively. Finally, for
group 1, Figures 5 and 8, respectively, illustrate the association
of both policies (production and setup) for P, and the
association of both policies (production and setup) for P,.
In the next section, analyses of sensibility will be provided
to study the effects of variation of the various costs on the
control policies.

(i=1,2). (33)

Group 1 (product type 1) ®,, = 0O, = 1.25 (see
Figures 3-5).
Group 1 (product type 2) ©,, = 0, = 1.25 (see

Figures 6-8).

Group 2 (product type 1) @, = 0,; = 1.75 (see
Figures 9-11).

Group 2 (product type 2) ®,, = ©,, = 1.75 (see
Figures 12-14).

Group 3 (product type 1) ©,, = ©,; = 1.25and C| =
1; C| = 20 (see Figures 15-17).

Group 3 (product type 2) ®;, = ®,, = 1.25and C| =
1; C| = 20 (see Figures 18-20).

0.17 —
0.15 0.2
0.5 0.15
L5 —
1 _
13 —
0.6 —
0.9 —
0.6 —
0.6 —
0.7 0.05
20 T
15 1
10 + R
<
5F B
otk ]
-5 1
-5 0 20

—— Hypothesis 1
—— Hypothesis 2
—— Reference hypothesis (from literature)

FIGURE 3: Production policy for P,.

Let us now interpret the results obtained and illustrated
by Figures 3-20. This analysis will allow us to present
the structure of the production and setup policies for the
two product part types and with regard to the formulated
hypotheses.
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Group 1 Group 1
20 T T T T 20 T T T T
15 b
-
5 -
ot 0t 1
-5 L -5 : : L L
-5 0 -5 0 5 10 15 20
Xy
—— Hypothesis 1 —— Hypothesis 1
—— Hypothesis 2 —— Hypothesis 2
—— Reference hypothesis (from literature) —— Reference hypothesis (from literature)
FIGURE 4: Setup policy (product 1 to product 2). FIGURE 6: Production policy for P,.
20 T T T
15 i
10 g
=
S L -
ot o} -
-5 1 -5 L 1 L L
-5 0 -5 0 5 10 15 20
X
—— Hypothesis 1 —— Hypothesis 1
—— Hypothesis 2 —— Hypothesis 2
—— Reference hypothesis (from literature) —— Reference hypothesis (from literature)

FIGURE 5: Production policy for P, and setup policy (P, to P,). FIGURE 7: Setup policy (product 2 to product 1).
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Group 1 Group 2
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Xy
—— Hypothesis 1 —— Hypothesis 1
—— Hypothesis 2 —— Hypothesis 2
—— Reference hypothesis (from literature) —— Reference hypothesis (from literature)
FIGURE 8: Production policy for P, and setup policy (P, to P,). F1GURE 10: Setup policy (product 1 to product 2).
Group 2
P 20 T
20 T
15
15 R
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Hypothesis 1
Hypothesis 2
—— Reference hypothesis (from literature)

FIGURE 11: Production policy for P, and setup policy (product 1 to

FIGURE 9: Production policy for P,. product 2).
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Group 2 Group 2
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—— Hypothesis 1 —— Hypothesis 1
—— Hypothesis 2 —— Hypothesis 2
—— Reference hypothesis (from literature) —— Reference hypothesis (from literature)
FIGURE 12: Production policy for P,. FIGURE 14: Production policy for P, and setup policy (product 2 to
product 1).
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—— Hypothesis 1
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FIGURE 13: Setup policy (product 2 to product 1). FIGURE 15: Production policy for P,.
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FIGURE 17: Production policy for P, and setup policy (product 1 to

Group 3

—— Hypothesis 1
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—— Reference hypothesis (from literature)

FIGURE 16: Setup policy (product 1 to product 2).

—— Hypothesis 1
—— Hypothesis 2
—— Reference hypothesis (from literature)

product 2).

20

Group 3

13

—— Hypothesis 1
—— Hypothesis 2
—— Reference hypothesis (from literature)

FIGURE 19: Setup policy (product 2 to product 1).

-5 5 10 15 20
X
—— Hypothesis 1
—— Hypothesis 2
—— Reference hypothesis (from literature)
FIGURE 18: Production policy for P,.
10 15 20
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—— Hypothesis 1
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—— Reference hypothesis (from literature)

FIGURE 20: Production policy for P, and setup policy (product 2 to
product 1).

5.1. Optimal Production Policy. An analysis of three cases
shows that we have to produce at the maximum rate in region
I when the machine is configured for the same product. In
region II, the machine is configured (according to the setup
policy) for the production of the other type of product. In
region III, the production policy recommends stopping the
machine and producing nothing by setting the production
rate to zero. It is interesting to note that, in Hypothesis 1, the
optimal inventory level is very big, contrary to Hypothesis 2
and to the reference hypothesis, as seen in Bai and Elhafsi
[14], Boukas and Kenné [10], and Hajji et al. [11]. This
increase in the inventory level is understandable given that
if a breakdown occurs during the setup operation, we have
to stop the setup until the machine repair is completed.
This breakdown cancels all the data relative to the setup
activities started before the failure. In this case, the operator
has to resume the setup operation, which increases the overall
setup time and leads to a loss of availability of the machine.
According to Hypothesis 2, the optimal inventory level is
slightly bigger than that of the reference hypothesis. This
light increase in the inventory level is understandable, given
that the setup operation must be stopped when a breakdown
occurs. This breakdown does not cancel all the data relative to
the setup activities (contrary to Hypothesis 1). The operator
pursues the setup activities after the repair of the machine.
The global setup time of Hypothesis 2 is then higher than
that of the reference hypothesis. In fact, we have a loss of
availability of the machine, but to a smaller extent than in
the case of Hypothesis 1. The optimal production policy is

Journal of Applied Mathematics

TaBLE 3: Comparative study of optimal threshold inventory levels.

Group Hypothesis] =~ Hypothesis2  Literature hypothesis
. Z, =14 Z,=98 Z, =9
Z, =14 Z,=98 Z,=9
5 Z, =176 Z, =124 Z, =118
Z,=17.6 Z, =124 Z,=118
3 Z, =14 Z,=98 Z, =9
Z, =152 Z, =11 Z, =104

then of hedging policy structure and can be expressed by the
following two equations (for product 1 and product 2):

U/ ifx; <Z;(x,)
uy (%1,%,) = .
0 ifx;>Z(x,),
(34)
U, ifx,<Z(x)

U, (x1,x,) =
2 0 ifx,>Z (x).

5.2. Optimal Setup Policy. By analyzing Figures 4 and 5 in
region II (zone in which a setup from P, to P, or from P,
to P, is allowed), we can observe that the setup policies of
Hypotheses 1 and 2 give a margin bigger than that of the
reference hypothesis. This trend reduces region IIT and so
allows the system the possibility of performing the setup
without any shortage risk for the other product. The setup
policies are given in this case by the following expressions:

X, 2 4ay, x, <0,
1 if or
Si2 = 7 X, 20 X, < =b,
|0 otherwise,
(35)
X, S6x,+b, Xy 2 ay,
1 if or
Sy =17 x,20, x,20 x; £0
|0 otherwise
with
0<a <27,
b <0,
(36)
0<a <2,

0<ga,+b,<Z,.

To conclude this section, we recapitulate the results obtained
according to the critical thresholds Z, and Z,, which char-
acterize the production and setup policies presented by (34)
and (35). The values of the optimal threshold inventory
levels obtained numerically for the three groups of data are
presented in Table 3.

These results show our contribution, given that all the
previous works in the literature did not handle the case of
industrial systems subjected to Hypotheses 1 and 2. In this
paper, we determined the production structures and setup
policies for these industrial systems.
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6. Conclusion

This research clearly defines the production planning prob-
lem and the setup strategies for industrial systems subjected
to specific hypotheses. In this paper, we considered two
hypotheses that hold that a breakdown can occur during a
setup activity. This breakdown can cancel (or may not cancel)
the setup activities undertaken before the breakdown occurs.
Hence, we propose new optimality conditions integrating the
probability of breakdowns during the setup. A numerical
approach is used to solve the optimality conditions obtained.
A numerical example and a comparative analysis of the results
for three groups of data allow us to determine the production
structures and setup policies for manufacturing systems that
have previously never been studied in the literature. This work
can be extended to the cases of industrial systems allowing
setup activities in all modes of the machine (operational or
failure modes).
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