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This paper ismotivated by some papers treating the fractional hybrid differential equations with nonlocal conditions and the system
of coupled hybrid fractional differential equations; an existence theorem for fractional hybrid differential equations involving
Caputo differential operators of order 1 < 𝛼 ≤ 2 is proved under mixed Lipschitz and Carathéodory conditions. The existence
and uniqueness result is elaborated for the system of coupled hybrid fractional differential equations.

1. Introduction

Our aim in this paper is to study the existence of solution
for the boundary value problems for hybrid differential equa-
tions with fractional order 1 < 𝛼 ≤ 2 and nonlocal condition
(BVPHDEFNL for short) of the form

𝑐

𝐷
𝛼

(
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) = 𝑔 (𝑡, 𝑥 (𝑡))

a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] , 1 < 𝛼 ≤ 2,

𝑥 (0)

𝑓 (0, 𝑥 (0))
= L (𝑥) ,

𝑥 (𝑇)

𝑓 (𝑇, 𝑥 (𝑇))
= 𝑥
𝑇

,

(1)

where 𝑐𝐷𝛼 is the Caputo fractional derivative.
𝑓 ∈ 𝐶(𝐽 × R,R \ {0}), 𝑔 ∈ C(𝐽 × R,R), L : 𝐶(𝐽,R) →

R is a continuous function and 𝑥
𝑇

∈ R. And exploitation
of results obtained to study the existence of solutions for

a system of coupled hybrid fractional differential equations
is as follows:

𝑐

𝐷
𝛼

(
𝑥 (𝑡)

𝑓
1

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) = 𝑔

1
(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

a.e. 𝑡 ∈ [0, 1] , 1 < 𝛼 ≤ 2,

𝑐

𝐷
𝛽

(
𝑦 (𝑡)

𝑓
2

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) = 𝑔

2
(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

a.e. 𝑡 ∈ [0, 1] , 1 < 𝛽 ≤ 2,

𝑥 (0)

𝑓
1

(0, 𝑥 (0) , 𝑦 (0))
= L
1

(𝑥, 𝑦) ; 𝑥 (1) = 0,

𝑦 (0)

𝑓
2

(0, 𝑥 (0) , 𝑦 (0))
= L
2

(𝑥, 𝑦) ; 𝑦 (1) = 0,

(2)

where 𝑐𝐷𝛼 is the Caputo fractional derivative.
𝑓
𝑖

∈ 𝐶([0, 1]×R×R,R\{0}), 𝑔
𝑖

∈ 𝐶([0, 1]×R×R,R), and
L
𝑖

: 𝐶([0, 1],R)×𝐶([0, 1],R) → R are continuous functions
(𝑖 = 1, 2).
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Fractional differential equations are a generalization of
ordinary differential equations and integration to arbitrary
noninteger orders.The origin of fractional calculus goes back
toNewton and Leibniz in the seventeenth century. It is widely
and efficiently used to describe many phenomena arising in
engineering, physics, economy, and science.There are several
concepts of fractional derivatives, some classical, such as Rie-
mann-Liouville or Caputo definitions. For noteworthy papers
dealing with the integral operator and the arbitrary fractional
order differential operator, see [1–7].

The quadratic perturbations of nonlinear differential
equations have attracted much attention. We call such frac-
tional hybrid differential equations. There have been many
works on the theory of hybrid differential equations, and we
refer the readers to the articles [8–12].

Dhage and Lakshmikantham [11] discussed the following
first order hybrid differential equation

𝑑

𝑑𝑡
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (𝑡
0
) = 𝑥
0

∈ R,

(3)

where 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}) and 𝑔 ∈ C(𝐽 × R,R). They
established the existence, uniqueness results, and some
fundamental differential inequalities for hybrid differential
equations initiating the study of theory of such systems and
proved, utilizing the theory of inequalities, the existence of
extremal solutions and comparison results.

Zhao et al. [13] have discussed the following fractional
hybrid differential equations involving Riemann-Liouville
differential operators:

𝐷
𝑞

[
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (0) = 0,

(4)

where 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}) and 𝑔 ∈ C(𝐽 × R,R).
The authors of [13] established the existence theorem for
fractional hybrid differential equation and some fundamental
differential inequalities.They also established the existence of
extremal solutions.

Hilal and Kajouni [14] have studied boundary fractional
hybrid differential equations involving Caputo differential
operators of order 0 < 𝛼 < 1 as follows:

𝐷
𝛼

(
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) = 𝑔 (𝑡, 𝑥 (𝑡))

a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑎
𝑥 (0)

𝑓 (0, 𝑥 (0))
+ 𝑏

𝑥 (𝑇)

𝑓 (𝑇, 𝑥 (𝑇))
= 𝑐,

(5)

where 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}), 𝑔 ∈ C(𝐽 × R,R) and 𝑎, 𝑏, and
𝑐 are real constants with 𝑎 + 𝑏 ̸= 0. They proved the existence
result for boundary fractional hybrid differential equations
under mixed Lipschitz and Carathéodory conditions. Some
fundamental fractional differential inequalities are also estab-
lished which are utilized to prove the existence of extremal

solutions. Necessary tools are considered and the comparison
principle is proved which will be useful for further study of
qualitative behavior of solutions.

The nonlocal condition is a condition attached to the
main equation; it replaces the classic nonlocal condition in
order to model physical phenomena of the fashion nearest
from reality. The nonlocal condition involves the function

L (𝑥) =

𝑝

∑

𝑖=1

𝑐
𝑖
𝑥 (𝑡
𝑖
) , (6)

where 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 𝑝, are given constants and 0 < 𝑡

1
< 𝑡
2

<

⋅ ⋅ ⋅ < 𝑡
𝑝
.

Let us observe that Cauchy problems with nonlocal
conditions were initiated by Byszewski and Lakshmikantham
[2] and, since then, such problems have also attracted several
authors including A. Aizicovici, K. Ezzinbi, Z. Fan, J. Liu, J.
Liang, Y. Lin, T.-J. Xiao, G. N’Guérékata, E. Hernàndez, and
H. Lee (see [2, 15]).

2. Preliminaries

In this section, we introduce notations, definitions, and pre-
liminary facts which are used throughout this paper.

By 𝑋 = 𝐶(𝐽,R) we denote the Banach space of all
continuous functions from 𝐽 = [0, 𝑇] into R with the norm

󵄩󵄩󵄩󵄩
𝑦

󵄩󵄩󵄩󵄩
= sup {

󵄨󵄨󵄨󵄨
𝑦 (𝑡)

󵄨󵄨󵄨󵄨
, 𝑡 ∈ 𝐽} . (7)

And letC(𝐽 ×R,R) denote the class of functions 𝑔 : 𝐽 ×R →

R such that

(i) the map 𝑡 󳨃→ 𝑔(𝑡, 𝑥) is measurable for each 𝑥 ∈ R,
(ii) the map 𝑥 󳨃→ 𝑔(𝑡, 𝑥) is continuous for each 𝑡 ∈ 𝐽.

The class C(𝐽 × R,R) is called the Carathéodory class of
functions on 𝐽 × R which are Lebesgue integrable when
bounded by a Lebesgue integrable function on 𝐽.

By 𝐿
1

(𝐽;R) we denote the space of Lebesgue integrable
real-valued functions on 𝐽 equipped with the norm ‖ ⋅ ‖

𝐿
1

defined by

‖𝑥‖
𝐿
1 = ∫

𝑇

0

|𝑥 (𝑠)| 𝑑𝑠. (8)

Definition 1. The fractional integral of the function ℎ ∈

𝐿
1

([𝑎, 𝑏],R
+

) of order 𝛼 ∈ R
+
is defined by

𝐼
𝛼

𝑎
ℎ (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠, (9)

where Γ is the gamma function.

Definition 2. For a function ℎ given on the interval [𝑎, 𝑏], the
Caputo fractional order derivative of ℎ is defined by

𝑐

𝐷
𝛼

𝑎
+ℎ (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

ℎ
(𝑛)

(𝑠) 𝑑𝑠, (10)

where 𝑛 = [𝛼] + 1 and [𝛼] denotes the integer part of 𝛼.
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Lemma 3 (see [16]). Let 𝛼 > 0. Then the fractional differential
equation

𝑐

𝐷
𝛼

ℎ (𝑡) = 0 (11)

has solutions

ℎ (𝑡) = 𝑐
0

+ 𝑐
1
𝑡 + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1

,

𝑐
𝑖

∈ R, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑛 = [𝛼] + 1.

(12)

Lemma 4 (see [16]). Let 𝛼 > 0. Then

𝐼
𝛼

𝐷
𝛼

ℎ (𝑡) = ℎ (𝑡) + 𝑐
0

+ 𝑐
1
𝑡 + ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1

, (13)

for some 𝑐
𝑖

∈ R, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑛 = [𝛼] + 1.

Definition 5. By a solution of the BVPHDEFNL (1) we mean
a function 𝑥 ∈ 𝐶(𝐽,R) such that

(i) 𝑑
2

𝑢/𝑑𝑡
2

∈ 𝐿
1

(𝐽,R), where 𝑢 : 𝑡 󳨃→ 𝑥/𝑓(𝑡, 𝑥) for each
𝑥 ∈ R,

(ii) 𝑥 satisfies the equations in (1).

3. Existence Result

In this section, we prove the existence results for the bound-
ary value problems for hybrid differential equations with
fractional order (1) on the closed and bounded interval 𝐽 =

[0, 𝑇] under mixed Lipschitz and Carathéodory conditions
on the nonlinearities involved in it.

We defined the multiplication in 𝑋 by

(𝑥𝑦) (𝑡) = 𝑥 (𝑡) 𝑦 (𝑡) , for 𝑥, 𝑦 ∈ 𝑋. (14)

Clearly,𝑋 = 𝐶(𝐽;R) is a Banach algebra with respect to above
norm and multiplication in it.

We prove the existence of solution for the BVPHDEFNL
(1) by a fixed point theorem in Banach algebra due to Dhage
[10].

Lemma 6 (see [10]). Let 𝑆 be a nonempty, closed convex, and
bounded subset of the Banach algebra 𝑋 and let 𝐴 : 𝑋 → 𝑋

and 𝐵 : 𝑋 → 𝑋 be two operators such that

(a) 𝐴 is Lipschitzian with a Lipschitz constant 𝛼,
(b) 𝐵 is completely continuous,
(c) 𝑥 = 𝐴𝑥𝐵𝑦 ⇒ 𝑥 ∈ 𝑆 for all 𝑦 ∈ 𝑆,
(d) 𝛼𝑀 < 1, where 𝑀 = ‖𝐵(𝑆)‖ = sup{‖𝐵(𝑥)‖ : 𝑥 ∈ 𝑆}.

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution in 𝑆.

Wemake the following assumptions:

(H
0
): the function 𝑥 󳨃→ 𝑥/𝑓(𝑡, 𝑥) is increasing in R almost
everywhere for 𝑡 ∈ 𝐽.

(H
1
): there exists a constant 𝐿 > 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , (15)

for all 𝑡 ∈ 𝐽 and 𝑥, 𝑦 ∈ R.

(H
2
): there exists a function ℎ ∈ 𝐿

1

(𝐽,R) such that
󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨 ≤ ℎ (𝑡) a.e. 𝑡 ∈ 𝐽, (16)

for all 𝑥 ∈ R.
(H
3
): there exists a constant 𝑀 > 0 such that |L(𝑦)| ≤ 𝑀,
for each 𝑦 ∈ 𝐶(𝐽;R).

As a consequence of Lemmas 3 and 4 we have the following
result which is useful in what follows.

Lemma 7. Assume that hypothesis (𝐻
0
) holds. Then for any

ℎ ∈ 𝐿
1

(𝐽;R), the function 𝑥 ∈ 𝐶(𝐽;R) is a solution of the
BVPHDEFNL:
𝑐

𝐷
𝛼

(
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) = ℎ (𝑡)

𝑎.𝑒. 𝑡 ∈ 𝐽 = [0, 𝑇] , 1 < 𝛼 ≤ 2,

𝑥 (0)

𝑓 (0, 𝑥 (0))
= L (𝑥) ,

𝑥 (𝑇)

𝑓 (𝑇, 𝑥 (𝑇))
= 𝑥
𝑇

(17)

if and only if 𝑥 satisfies the hybrid integral equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) [
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠 − (
𝑡

𝑇
− 1)L (𝑥)

+
𝑡

𝑇
𝑥
𝑇

] .

(18)

Proof. Assume that 𝑥 is a solution of the problem (18). Apply-
ing the Caputo fractional operator of the order 𝛼, we obtain
the first equation in (17). Again, substituting 𝑡 = 0 and 𝑡 = 𝑇

in (18) we will have the second equation in (17).
Conversely, 𝑐𝐷𝛼(𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡))) = ℎ(𝑡), so we get

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
+ 𝑐
0

+ 𝑐
1
𝑡 = 𝐼
𝛼

ℎ (𝑡) . (19)

Then 𝑥(0)/𝑓(0, 𝑥(0)) + 𝑐
0

= 0 and 𝑐
0

= −L(𝑥), and even

𝑥 (𝑇)

𝑓 (𝑇, 𝑥 (𝑇))
+ 𝑐
0

+ 𝑐
1
𝑇 = ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠. (20)

Thus,

𝑐
1

=
1

𝑇
(L (𝑥) − 𝑥

𝑇
+

1

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠) (21)

implies that

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
=

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

ℎ (𝑠) 𝑑𝑠

− (
𝑡

𝑇
− 1)L (𝑥) +

𝑡

𝑇
𝑥
𝑇

.

(22)
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Theorem 8. Assume hypotheses (𝐻
0
)–(𝐻
3
). Further, if

𝐿 (
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) < 1, (23)

then the hybrid fractional order differential equation (1) has a
solution defined on 𝐽.

Proof. We defined a subset 𝑆 of 𝑋 by

𝑆 = {𝑥 ∈
𝑋

‖𝑥‖
≤ 𝑁} , (24)

where 𝑁 = 𝐹
0
((2𝑇
𝛼

/Γ(𝛼 + 1))‖ℎ‖
𝐿
1 + 𝑀 + |𝑥

𝑇
|)/(1 −

𝐿((2𝑇
𝛼

/Γ(𝛼 + 1))‖ℎ‖
𝐿
1 + 𝑀 + |𝑥

𝑇
|)) and 𝐹

0
= sup

𝑡∈𝐽
|𝑓(𝑡, 0)|.

It is clear that 𝑆 satisfies hypothesis of Lemma 6. By an
application of Lemma 7, (1) is equivalent to the nonlinear
hybrid integral equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) [
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− (
𝑡

𝑇
− 1)L (𝑥) +

𝑡

𝑇
𝑥
𝑇

] .

(25)

Define two operators 𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 → 𝑋 by

𝐴𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽,

𝐵𝑥 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− (
𝑡

𝑇
− 1)L (𝑥) +

𝑡

𝑇
𝑥
𝑇

.

(26)

Then the hybrid integral equation (25) is transformed into the
operator equation as

𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝐵𝑥 (𝑡) , 𝑡 ∈ 𝐽. (27)

We will show that the operators 𝐴 and 𝐵 satisfy all the condi-
tions of Lemma 6.

Claim 1. Let 𝑥, 𝑦 ∈ 𝑋. Then by hypothesis (H
1
),

󵄨󵄨󵄨󵄨𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

≤ 𝐿
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

(28)

for all 𝑡 ∈ 𝐽. Taking supremum over 𝑡, we obtain

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (29)

for all 𝑥, 𝑦 ∈ 𝑋.

Claim 2 (we show that 𝐵 is continuous in 𝑆). Let (𝑥
𝑛
) be a

sequence in 𝑆 converging to a point 𝑥 ∈ 𝑆. Then by Lebesgue
dominated convergence theorem,

lim
𝑛→∞

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 lim
𝑛→∞

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠,

lim
𝑛→∞

𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠

=
𝑏

Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1 lim
𝑛→∞

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠.

(30)

And sinceL is a continuous function
lim
𝑛→∞

L (𝑥
𝑛
) = L (𝑥) , (31)

then

lim
𝑛→∞

𝐵𝑥
𝑛

(𝑡) = lim
𝑛→∞

[
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠

− (
𝑡

𝑇
− 1)L (𝑥

𝑛
) +

𝑡

𝑇
𝑥
𝑇

] = lim
𝑛→∞

1

Γ (𝛼)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠 − lim
𝑛→∞

𝑡

𝑇Γ (𝛼)

⋅ ∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥
𝑛

(𝑠)) 𝑑𝑠 − lim
𝑛→∞

(
𝑡

𝑇
− 1)

⋅ L (𝑥
𝑛
) +

𝑡

𝑇
𝑥
𝑇

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 − (
𝑡

𝑇
− 1)

⋅ L (𝑥) +
𝑡

𝑇
𝑥
𝑇

= 𝐵𝑥 (𝑡) ,

(32)

for all 𝑡 ∈ 𝐽. This shows that 𝐵 is a continuous operator on 𝑆.

Claim 3 (𝐵 is compact operator on 𝑆). First, we show that𝐵(𝑆)

is a uniformly bounded set in 𝑋.
Let 𝑥 ∈ 𝑆. Then by hypothesis (H

2
), for all 𝑡 ∈ 𝐽,

|𝐵𝑥 (𝑡)| ≤
1

Γ (𝛼)
∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
(𝑡 − 𝑠)

𝛼−1

𝑔 (𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
(𝑇 − 𝑠)

𝛼−1

𝑔 (𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ |L (𝑥)| +
󵄨󵄨󵄨󵄨𝑥𝑇

󵄨󵄨󵄨󵄨

≤
𝑇
𝛼

𝛼Γ (𝛼)
‖ℎ‖
𝐿
1 +

𝑇
𝛼

𝛼Γ (𝛼)
‖ℎ‖
𝐿
1 + |L (𝑥)|

+
󵄨󵄨󵄨󵄨𝑥𝑇

󵄨󵄨󵄨󵄨 ≤
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨 .

(33)

Thus, ‖𝐵𝑥‖ ≤ (2𝑇
𝛼

/Γ(𝛼 + 1))‖ℎ‖
𝐿
1 + 𝑀 + |𝑥

𝑇
|, for all 𝑥 ∈ 𝑆.
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This shows that 𝐵 is uniformly bounded on 𝑆.
Next, we show that 𝐵(𝑆) is an equicontinuous set on 𝑋.

We set 𝑝(𝑡) = ∫
𝑡

0

ℎ(𝑠)𝑑𝑠.
Let 𝑡
1
, 𝑡
2

∈ 𝐽. Then for any 𝑥 ∈ 𝑆,

󵄨󵄨󵄨󵄨𝐵𝑥 (𝑡
1
) − 𝐵𝑥 (𝑡

2
)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡
1

0

(𝑡
1

− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
1

Γ (𝛼)
∫

𝑡
2

0

(𝑡
2

− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− (𝑡
1

− 𝑡
2
)

1

𝑇Γ (𝛼)
∫

𝑇

0

󵄨󵄨󵄨󵄨󵄨
(𝑇 − 𝑠)

𝛼−1

𝑔 (𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

−
1

𝑇
(𝑡
1

− 𝑡
2
)L (𝑥) +

1

𝑇
(𝑡
1

− 𝑡
2
) 𝑥
𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑇
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

𝑡
1

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
𝑇
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑡1 − 𝑡
2

󵄨󵄨󵄨󵄨

⋅ ∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠 +

𝑀 +
󵄨󵄨󵄨󵄨𝑥𝑇

󵄨󵄨󵄨󵄨

𝑇

󵄨󵄨󵄨󵄨𝑡1 − 𝑡
2

󵄨󵄨󵄨󵄨

≤
𝑇
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑝 (𝑡
1
) − 𝑝 (𝑡

2
)
󵄨󵄨󵄨󵄨 + (

𝑇
𝛼−1

Γ (𝛼)
+

𝑀 +
󵄨󵄨󵄨󵄨𝑥𝑇

󵄨󵄨󵄨󵄨

𝑇
)

⋅
󵄨󵄨󵄨󵄨𝑡1 − 𝑡

2

󵄨󵄨󵄨󵄨 .

(34)

Since 𝑝 is continuous on compact 𝐽, it is uniformly con-
tinuous. Hence,

󵄨󵄨󵄨󵄨𝑡1 − 𝑡
2

󵄨󵄨󵄨󵄨 < 𝜂 󳨐⇒
󵄨󵄨󵄨󵄨𝐵𝑥 (𝑡

1
) − 𝐵𝑥 (𝑡

2
)
󵄨󵄨󵄨󵄨 < 𝜀,

∀𝜀 > 0, ∃𝜂 > 0

(35)

for all 𝑡
1
, 𝑡
2

∈ 𝐽 and for all 𝑥 ∈ 𝑋.

This shows that 𝐵(𝑆) is an equicontinuous set in 𝑋.
Then by Arzelá-Ascoli theorem, 𝐵 is a continuous and

compact operator on 𝑆.

Claim 4 (hypothesis (c) of Lemma 6 is satisfied). Let 𝑥 ∈ 𝑋

and 𝑦 ∈ 𝑆 be arbitrary such that 𝑥 = 𝐴𝑥𝐵𝑦. Then,

|𝑥 (𝑡)| = |𝐴𝑥 (𝑡)|
󵄨󵄨󵄨󵄨𝐵𝑦 (𝑡)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡))

󵄨󵄨󵄨󵄨

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−
𝑡

𝑇Γ (𝛼)
∫

𝑇

0

(𝑇 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

− (
𝑡

𝑇
− 1)L (𝑥) +

𝑡

𝑇
𝑥
𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨]

⋅ (
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ≤ (𝐿 |𝑥 (𝑡)| + 𝐹

0
)

⋅ (
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ,

(36)

and so,

|𝑥 (𝑡)| − 𝐿 (
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) |𝑥 (𝑡)|

≤ 𝐹
0

(
2𝑇
𝛼

(𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) ,

(37)

which implies

|𝑥 (𝑡)| ≤
𝐹
0

((2𝑇
𝛼

/Γ (𝛼 + 1)) ‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

1 − 𝐿 ((2𝑇
𝛼

/Γ (𝛼 + 1)) ‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

. (38)

Taking supremum over 𝑡,

‖𝑥‖ ≤
𝐹
0

((2𝑇
𝛼

/Γ (𝛼 + 1)) ‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

1 − 𝐿 ((2𝑇
𝛼

/Γ (𝛼 + 1)) ‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨)

= 𝑁.

(39)

Then 𝑥 ∈ 𝑆, and hypothesis (c) of Lemma 6 is satisfied.
Finally, we have

𝑀 = ‖𝐵 (𝑆)‖ = sup {‖𝐵𝑥‖ : 𝑥 ∈ 𝑆}

≤
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨 .

(40)

So,

𝛼𝑀 ≤ 𝐿 (
2𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖
𝐿
1 + 𝑀 +

󵄨󵄨󵄨󵄨𝑥𝑇
󵄨󵄨󵄨󵄨) < 1. (41)

Thus, all the conditions of Lemma 6 are satisfied and hence
the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution in 𝑆. As
a result, BVPHDEFNL (1) has a solution defined on 𝐽. This
completes the proof.

4. An Example

In this section we give an example to illustrate the usefulness
of our main results. Let us consider the following fractional
boundary value problem:

𝑐

𝐷
𝛼

(

(2 + ln (𝑡 + 1)) (𝑥 (𝑡) + 𝑥
2

(𝑡))

𝑒
1−𝑡

)

=
𝑒
−𝑥
2
(𝑡)

𝑥
2

(𝑡) + 𝑡
2

+ 1
a.e. 𝑡 ∈ 𝐽 = [0, 1] , 1 < 𝛼 ≤ 2,

𝑥 (0)

𝑓 (0, 𝑥 (0))
=

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥 (𝑡
𝑖
) ;

𝑥 (1)

𝑓 (1, 𝑥 (1))
= 1,

(42)
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where 0 < 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑛

< 1, 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are given

positive constants.
And ∑

𝑛

𝑖=1
𝑐
𝑖

< (1 − 𝜋)/2𝑀, where 𝑀 = max
1≤𝑖≤𝑛

L(𝑡
𝑖
).

We set

𝑓 (𝑡, 𝑥) =
𝑒
𝑡−1

(2 + ln (1 + 𝑡)) (1 + 𝑥)
,

(𝑡, 𝑥) ∈ [0, 1] × [0, +∞) ,

𝑔 (𝑡, 𝑥) =
𝑒
−𝑥
2

𝑥
2

+ 𝑡
2

+ 1
,

L (𝑥 (𝑡)) =

𝑛

∑

𝑖=1

𝑐
𝑖
𝑥 (𝑡
𝑖
) .

(43)

Let 𝑥, 𝑦 ∈ [0, +∞) and 𝑡 ∈ 𝐽. We have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 =

𝑒
𝑡−1

2 + ln (1 + 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + 𝑥
−

1

1 + 𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥 − 𝑦

(1 + 𝑥) (1 + 𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 .

(44)

Hence, condition (H
1
) holds with 𝐿 = 1/2. Also we have

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨 =

𝑒
−𝑥
2

𝑥
2

+ 𝑡
2

+ 1

≤ ℎ (𝑡) ,

(45)

where ℎ(𝑡) = 1/(1 + 𝑡
2

). We have

∫

1

0

ℎ (𝑡) 𝑑𝑡 = ∫

1

0

1

1 + 𝑡
2

=
𝜋

4
. (46)

Then condition (H
2
) holds.

Furthermore, since L ∈ 𝐶(𝐽,R), then we set 𝑀 =

max
1≤𝑖≤𝑛

L(𝑡
𝑖
) and we have

󵄨󵄨󵄨󵄨L (𝑡
𝑖
)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑐
𝑖
L (𝑡
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀

𝑛

∑

𝑖=1

𝑐
𝑖
. (47)

We will check that condition (23) is satisfied with 𝑇 = 1.
Since ∑

𝑛

𝑖=1
𝑐
𝑖

< (1 − 𝜋)/2𝑀, then 𝜋 + 2𝑀 ∑
𝑛

𝑖=1
𝑐
𝑖

< 1.
Thus,

𝜋

Γ (𝛼 + 1)
+ 2𝑀

𝑛

∑

𝑖=1

𝑐
𝑖

< 1, (48)

which is satisfied for each 𝛼 ∈ (1, 2]. Then by Theorem 8
problem (42) has a solution on [0, 1].

5. System of Coupled Hybrid Fractional
Differential Equations

The aim of this section is to obtain the existence results, by
means of Banach’s fixed point theorem, for the problem of

coupled hybrid fractional differential equations for (1). Con-
sider

𝑐

𝐷
𝛼

(
𝑥 (𝑡)

𝑓
1

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) = 𝑔

1
(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

a.e. 𝑡 ∈ [0, 1] , 1 < 𝛼 ≤ 2,

𝑐

𝐷
𝛽

(
𝑦 (𝑡)

𝑓
2

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
) = 𝑔

2
(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

a.e. 𝑡 ∈ [0, 1] , 1 < 𝛽 ≤ 2,

𝑥 (0)

𝑓
1

(0, 𝑥 (0) , 𝑦 (0))
= L
1

(𝑥, 𝑦) , 𝑥 (1) = 0,

𝑦 (0)

𝑓
2

(0, 𝑥 (0) , 𝑦 (0))
= L
2

(𝑥, 𝑦) , 𝑦 (1) = 0,

(49)

where 𝑐𝐷𝛼 is the Caputo fractional derivative.
𝑓
𝑖

∈ 𝐶(𝐽 × R × R,R \ {0}), 𝑔
𝑖

∈ 𝐶([0, 1] × R × R,R), and
L
𝑖

: 𝐶([0, 1],R)×𝐶([0, 1],R) → R are continuous functions
(𝑖 = 1, 2).

Main Results. Let Ω = {𝜔(𝑡) \ 𝜔(𝑡) ∈ 𝐶
1

([0, 1])} denote a
Banach space equipped with the norm ‖𝜔‖ = sup{|𝜔(𝑡)|, 𝑡 ∈

[0, 1]}, where Ω = K × R. Notice that the product space
(K×R, ‖(𝑥, 𝑦)‖) with the norm ‖(𝑥, 𝑦)‖ = ‖𝑥‖+‖𝑦‖, (𝑥, 𝑦) ∈

K × R is also a Banach space.
In view of Lemma 7, we define an operator Φ : K×R →

K × R by

Φ (𝑥, 𝑦) (𝑡) = (Φ
1

(𝑥, 𝑦) (𝑡) , Φ
2

(𝑥, 𝑦) (𝑡)) , (50)

where

Φ
1

(𝑥, 𝑦) (𝑡) = 𝑓
1

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

⋅ [
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔
1

(𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

−
𝑡

Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

𝑔
1

(𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

− (𝑡 − 1)L
1

(𝑥, 𝑦)] ,

Φ
2

(𝑥, 𝑦) (𝑡) = 𝑓
2

(𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))

⋅ [
1

Γ (𝛽)
∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑔
2

(𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

−
𝑡

Γ (𝛽)
∫

1

0

(1 − 𝑠)
𝛽−1

𝑔
2

(𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

− (𝑡 − 1)L
2

(𝑥, 𝑦)] .

(51)
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In the sequel, we need the following assumptions:

(H󸀠
1
): the functions 𝑓

𝑖
are continuous and bounded; that is,

there exist positive numbers 𝐿
𝑖
such that |𝑓

𝑖
(𝑡, 𝑢, V)| ≤

𝐿
𝑖
for all (𝑡, 𝑢, V) ∈ [0, 1] × R × R (𝑖 = 1, 2).

(H󸀠
2
): there exist real constants 𝜌

0
, 𝛿
0

> 0 and 𝜌
𝑖
, 𝛿
𝑖

≥ 0 (𝑖 =

1, 2) such that |𝑔
1
(𝑡, 𝑥, 𝑦)| ≤ 𝜌

0
+ 𝜌
1
|𝑥| + 𝜌

2
|𝑦| and

|𝑔
2
(𝑡, 𝑥, 𝑦)| ≤ 𝛿

0
+ 𝛿
1
|𝑥| + 𝛿

2
|𝑦| for all 𝑥, 𝑦 ∈ R (𝑖 =

1, 2).

(H󸀠
3
): there exist real constants 𝑀

1
, 𝑀
2

> 0 |L
1
(𝑥, 𝑦)| ≤

𝑀
1
and |L

2
(𝑥, 𝑦)| ≤ 𝑀

2
for each 𝑥, 𝑦 ∈ 𝐶([0, 1]).

(H󸀠
4
): there exist real constants 𝛾

1
, 𝛾, 𝛾
󸀠

1
, 𝛾
󸀠

2
such that

|L
1
(𝑥
1
, 𝑦
1
) − L

1
(𝑥
2
, 𝑦
2
)| ≤ 𝛾

1
|𝑥
1

− 𝑥
2
| + 𝛾
2
|𝑦
1

− 𝑦
2
|

and |L
2
(𝑥
1
, 𝑦
1
)−L
2
(𝑥
2
, 𝑦
2
)| ≤ 𝛾

󸀠

1
|𝑥
1
−𝑥
2
|+𝛾
󸀠

2
|𝑦
1
−𝑦
2
|.

For brevity, let us set

𝜇
1

=
2𝐿
1

Γ (𝛼 + 1)
,

𝜇
2

=
2𝐿
2

Γ (𝛽 + 1)
,

(52)

𝜇
0

= min {1 − (𝜇
1
𝜌
1

+ 𝜇
2
𝛿
1
) , 1 − (𝜇

1
𝜌
2

+ 𝜇
2
𝛿
2
)} . (53)

Now we present our result for the existence and uniqueness
of solutions for problem (49).This result is based on Banach’s
contraction mapping principle.

Theorem 9. Suppose that conditions (𝐻
󸀠

1
), (𝐻
󸀠

3
), and (𝐻

󸀠

4
)

hold and that 𝑔
1
, 𝑔
2

: [0, 1] × R2 → R are continuous func-
tions. In addition, there exist positive constants 𝜂

𝑖
, 𝜉
𝑖
, 𝑖 = 1, 2,

such that

󵄨󵄨󵄨󵄨𝑔1 (𝑡, 𝑥
1
, 𝑦
1
) − 𝑔
1

(𝑡, 𝑥
2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

= 𝜂
1

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 + 𝜂
2

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑔2 (𝑡, 𝑥
1
, 𝑦
1
) − 𝑔
2

(𝑡, 𝑥
2
, 𝑦
2
)
󵄨󵄨󵄨󵄨

= 𝜉
1

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 + 𝜉
2

󵄨󵄨󵄨󵄨𝑦1 − 𝑦
2

󵄨󵄨󵄨󵄨 ,

∀𝑡 ∈ [0, 1] , 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2

∈ R.

(54)

If 𝜇
1
(𝜂
1

+ 𝜂
2
) + 𝜇
2
(𝜉
1

+ 𝜉
2
) + 𝐿
1
(𝛾
1

+ 𝛾
2
) + 𝐿
2
(𝛾
󸀠

1
+ 𝛾
󸀠

2
) < 1, then

problem (49) has a unique solution.

Proof. Let us set sup
𝑡∈[0,1]

𝑔
1
(𝑡, 0, 0) = 𝜅

1
< ∞ and

sup
𝑡∈[0,1]

𝑔
2
(𝑡, 0, 0) = 𝜅

2
< ∞ and define a closed ball: 𝐵

𝑟
=

{(𝑥, 𝑦) ∈ K × R : ‖(𝑥, 𝑦)‖ ≤ 𝑟}, where

𝑟 ≥
𝜇
1
𝜅
1

+ 𝜇
2
𝜅
2

+ 𝑀
1
𝐿
1

+ 𝑀
2
𝐿
2

1 − 𝜇
1

(𝜂
1

+ 𝜂
2
) − 𝜇
2

(𝜉
1

+ 𝜉
2
)

. (55)

Claim 5 (we show that Φ𝐵
𝑟

⊂ 𝐵
𝑟
). Let (𝑥, 𝑦) ∈ 𝐵

𝑟
. We have

󵄨󵄨󵄨󵄨Φ1 (𝑥, 𝑦) (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

1
[ sup
𝑡∈[0,1]

{
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

⋅
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠 +
1

Γ (𝛼)
∫

1

0

(1 − 𝑠)
𝛼−1

⋅
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠} +
󵄨󵄨󵄨󵄨L1 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨]

= 𝑀
1

[ sup
𝑡∈[0,1]

{
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

⋅ (
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑔

1
(𝑠, 0, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 0, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑠

+
1

Γ (𝛼)
∫

1

0

(𝑡 − 𝑠)
𝛼−1

⋅ (
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) − 𝑔

1
(𝑠, 0, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 0, 0)

󵄨󵄨󵄨󵄨) 𝑑𝑠}

+
󵄨󵄨󵄨󵄨L1 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨] ≤ 𝑀
1

[
2

Γ (𝛼 + 1)
(𝜂
1

‖𝑥‖ + 𝜂
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 + 𝜅
1
)

+ 𝐿
1
] ≤ 𝑀

1
[

2

Γ (𝛼 + 1)
((𝜂
1

+ 𝜂
2
) 𝑟 + 𝜅

1
) + 𝐿
1
]

≤ 𝜇
1

[(𝜂
1

+ 𝜂
2
) 𝑟 + 𝜅

1
] + 𝑀

1
𝐿
1
.

(56)

Hence,
󵄩󵄩󵄩󵄩Φ
1

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜇
1

[(𝜂
1

+ 𝜂
2
) 𝑟 + 𝜅

1
] + 𝑀

1
𝐿
1
,

󵄩󵄩󵄩󵄩Φ
2

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜇
2

[(𝜉
1

+ 𝜉
2
) 𝑟 + 𝜅

2
] + 𝑀

2
𝐿
2
.

(57)

From (57), it follows that ‖Φ(𝑥, 𝑦)‖ ≤ 𝑟.
Next, for (𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
) ∈ K×R and for any 𝑡 ∈ [0, 1],

we have
󵄨󵄨󵄨󵄨Φ1 (𝑥

2
, 𝑦
2
) (𝑡) − Φ

1
(𝑥
1
, 𝑦
1
) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐿
1

[∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥
2

(𝑠) , 𝑦
2

(𝑠))

− 𝑔
1

(𝑠, 𝑥
1

(𝑠) , 𝑦
1

(𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥
2

(𝑠) , 𝑦
2

(𝑠))

− 𝑔
1

(𝑠, 𝑥
1

(𝑠) , 𝑦
1

(𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠 +

󵄨󵄨󵄨󵄨L1 (𝑥
2
, 𝑦
2
)

− L
1

(𝑥
1
, 𝑦
1
)
󵄨󵄨󵄨󵄨] ≤ 𝐿

1
[

2

Γ (𝛼 + 1)
(𝜂
1

󵄨󵄨󵄨󵄨𝑥2 (𝑡)

− 𝑥
1

(𝑡)
󵄨󵄨󵄨󵄨 + 𝜂
2

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
1

(𝑡)
󵄨󵄨󵄨󵄨) + 𝛾
1

󵄨󵄨󵄨󵄨𝑥2 (𝑡) − 𝑥
1

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝛾
2

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
1

(𝑡)
󵄨󵄨󵄨󵄨] ≤ 𝜇

1
(𝜂
1

󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 + 𝜂
2

󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩) + 𝐿
1

(𝛾
1

󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 + 𝛾
2

󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩)

≤ [𝜇
1

(𝜂
1

+ 𝜂
2
) + 𝐿
1

(𝛾
1

+ 𝛾
2
)] (

󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩)

(58)
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which yields

󵄩󵄩󵄩󵄩Φ
1

(𝑥
2
, 𝑦
2
) − Φ
1

(𝑥
1
, 𝑦
1
)
󵄩󵄩󵄩󵄩

≤ [𝜇
1

(𝜂
1

+ 𝜂
2
) + 𝐿
1

(𝛾
1

+ 𝛾
2
)]

⋅ (
󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩) .

(59)

Working in a similar manner, one can find that

󵄩󵄩󵄩󵄩Φ
2

(𝑥
2
, 𝑦
2
) − Φ
2

(𝑥
1
, 𝑦
1
)
󵄩󵄩󵄩󵄩

≤ [𝜇
2

(𝜉
1

+ 𝜉
2
) + 𝐿
2

(𝛾
󸀠

1
+ 𝛾
󸀠

2
)]

⋅ (
󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩) .

(60)

We deduce that

󵄩󵄩󵄩󵄩Φ (𝑥
2
, 𝑦
2
) − Φ (𝑥

1
, 𝑦
1
)
󵄩󵄩󵄩󵄩 ≤ [𝜇

1
(𝜂
1

+ 𝜂
2
)

+ 𝜇
2

(𝜉
1

+ 𝜉
2
) + 𝐿
1

(𝛾
1

+ 𝛾
2
) + 𝐿
2

(𝛾
󸀠

1
+ 𝛾
󸀠

2
)]

⋅ (
󵄩󵄩󵄩󵄩𝑥
2

− 𝑥
1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦
2

− 𝑦
1

󵄩󵄩󵄩󵄩) .

(61)

In view of condition 𝜇
1
(𝜂
1

+ 𝜂
2
) + 𝜇
2
(𝜉
1

+ 𝜉
2
) + 𝐿
1
(𝛾
1

+ 𝛾
2
) +

𝐿
2
(𝛾
󸀠

1
+ 𝛾
󸀠

2
) < 1, it follows that Φ is a contraction. So Φ has

a unique fixed point. This implies that problem (49) has a
unique solution on [0, 1]. This completes the proof.

In our second result, we discuss the existence of solutions
for problem (49) by means of Leray-Schauder alternative.

Lemma 10 (see [17]). Let F : J → J be a completely
continuous operator (i.e., a map that is restricted to any
bounded set in 𝐺 is compact). Let P(F) = {𝑥 ∈ J : 𝑥 =

𝜆F𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 0 < 𝜆 < 1}. Then either the set P(F) is
unbounded orF has at least one fixed point.

Theorem 11. Assume that conditions (𝐻
󸀠

1
)–(𝐻
󸀠

3
) hold. Fur-

thermore, it is assumed that 𝜇
1
𝜌
1

+ 𝜇
2
𝛿
1

< 1 and 𝜇
1
𝜌
2

+ 𝜇
2
𝛿
2

<

1, where 𝜇
1
and 𝜇

2
are given by (52). Then the boundary value

problem (49) has at least one solution.

Proof. We will show that the operator Φ : K × R → K × R
satisfies all the assumptions of Lemma 10. In the first step, we
prove that the operator Φ is completely continuous. Clearly,
it follows by the continuity of functions 𝑓

1
, 𝑓
2
, 𝑔
1
, and 𝑔

2
that

the operator Φ is continuous.
Let S ⊂ K × R be bounded. Then we can find positive

constants 𝑁
1
and 𝑁

2
such that

󵄨󵄨󵄨󵄨𝑔1 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝑁
1

󵄨󵄨󵄨󵄨𝑔2 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))
󵄨󵄨󵄨󵄨 ≤ 𝑁
2
,

∀ (𝑥, 𝑦) ∈ S.

(62)

Thus, for any 𝑥, 𝑦 ∈ S, we can get
󵄨󵄨󵄨󵄨Φ1 (𝑥, 𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐿
1

[∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ 𝑡 ∫

1

0

(1 − 𝑠)
𝛽−1

Γ (𝛽)

󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ (1 − 𝑡)L
1

(𝑥, 𝑦)] ≤ 𝐿
1
𝑁
1

2

Γ (𝛼 + 1)
+ 𝑀
1

(63)

which yields
󵄩󵄩󵄩󵄩Φ
1

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 = 𝑁

1
𝜇
1

+ 𝑀
1
. (64)

In a similar manner,
󵄩󵄩󵄩󵄩
Φ
2

(𝑥, 𝑦)
󵄩󵄩󵄩󵄩

= 𝑁
2
𝜇
2

+ 𝑀
2
. (65)

We deduce that the operator Φ is uniformly bounded.
Now we show that the operator Φ is equicontinuous.
We take 𝜏

1
, 𝜏
2

∈ [0, 1] with 𝜏
1

< 𝜏
2
and obtain

󵄨󵄨󵄨󵄨Φ1 (𝑥 (𝜏
2
) , 𝑦 (𝜏

2
)) − Φ

1
(𝑥 (𝜏
1
) , 𝑦 (𝜏

1
))

󵄨󵄨󵄨󵄨

≤ 𝐿
1
𝑁
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
2

0

(𝜏
2

− 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠 − ∫

𝜏
1

0

(𝜏
1

− 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐿
1
𝑁
1

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨 ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠 + 𝑀

1

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨

≤ 𝐿
1
𝑁
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
1

0

(𝜏
1

− 𝑠)
𝛼−1

− (𝜏
2

− 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠

− ∫

𝜏
2

𝜏
1

(𝜏
2

− 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐿
1
𝑁
1

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨

⋅ ∫

1

0

(1 − 𝑠)
𝛼−1

Γ (𝛼)
𝑑𝑠 + 𝑀

1

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨 󳨀→
𝜏
1
→𝜏
2

0,

󵄨󵄨󵄨󵄨Φ2 (𝑥 (𝜏
2
) , 𝑦 (𝜏

2
)) − Φ

2
(𝑥 (𝜏
1
) , 𝑦 (𝜏

1
))

󵄨󵄨󵄨󵄨

≤ 𝐿
2
𝑁
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
2

0

(𝜏
2

− 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠 − ∫

𝜏
1

0

(𝜏
1

− 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐿
2
𝑁
2

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨 ∫

1

0

(1 − 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠 + 𝑀

2

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨

≤ 𝐿
2
𝑁
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
1

0

(𝜏
1

− 𝑠)
𝛽−1

− (𝜏
2

− 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠

− ∫

𝜏
2

𝜏
1

(𝜏
2

− 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝐿
2
𝑁
2

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨

⋅ ∫

1

0

(1 − 𝑠)
𝛽−1

Γ (𝛽)
𝑑𝑠 + 𝑀

2

󵄨󵄨󵄨󵄨𝜏2 − 𝜏
1

󵄨󵄨󵄨󵄨 󳨀→
𝜏
1
→𝜏
2

0,

(66)
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which tend to 0 independently of (𝑥, 𝑦). This implies that
the operator Φ(𝑥, 𝑦) is equicontinuous. Thus, by the above
findings, the operator Φ(𝑥, 𝑦) is completely continuous.

In the next step, it will be established that the set P =

{(𝑥, 𝑦) ∈ K × R/(𝑥, 𝑦) = 𝜆Φ(𝑥, 𝑦), 0 ≤ 𝜆 ≤ 1} is bounded.
Let (𝑥, 𝑦) ∈ P. Then we have (𝑥, 𝑦) = 𝜆Φ(𝑥, 𝑦). Thus, for

any 𝑡 ∈ [0, 1], we can write

𝑥 (𝑡) = 𝜆Φ
1

(𝑥, 𝑦) (𝑡) ,

𝑦 (𝑡) = 𝜆Φ
2

(𝑥, 𝑦) (𝑡) .

(67)

Then,

|𝑥 (𝑡)| ≤
2𝐿
1

Γ (𝛼 + 1)
(𝜌
0

+ 𝜌
1

‖𝑥‖ + 𝜌
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) + 𝑀

1
,

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤

2𝐿
2

Γ (𝛽 + 1)
(𝛿
0

+ 𝛿
1

‖𝑥‖ + 𝛿
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) + 𝑀

2
,

(68)

which imply that

‖𝑥‖ ≤ 𝜇
1

(𝜌
0

+ 𝜌
1

‖𝑥‖ + 𝜌
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) + 𝑀

1
,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜇
2

(𝛿
0

+ 𝛿
1

‖𝑥‖ + 𝛿
2

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) + 𝑀

2
.

(69)

Thus,

‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 ≤ (𝜇
1
𝜌
0

+ 𝜇
2
𝛿
0

+ 𝑀
1

+ 𝑀
2
)

+ (𝜇
1
𝜌
1

+ 𝜇
2
𝛿
1
) ‖𝑥‖

+ (𝜇
1
𝜌
2

+ 𝜇
2
𝛿
2
)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ,

(70)

which, in view of (55), gives

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤

𝜇
1
𝜌
0

+ 𝜇
2
𝛿
0

+ 𝑀
1

+ 𝑀
2

𝜇
0

. (71)

This shows that the set is bounded. Hence, all the conditions
of Lemma 10 are satisfied and consequently the operator Φ

has at least one fixed point, which corresponds to a solution
of problem (49). This completes the proof.
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