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The vec operator transforms a matrix to a column vector by stacking each column on top of the next. It is useful to write the vec
of a block-structured matrix in terms of the vec operator applied to each of its component blocks. We derive a simple formula for
doing so, which applies regardless of whether the blocks are of the same or of different sizes.

1. Introduction

The vec operator, applied to a 𝑟 × 𝑐 matrix X, produces
a 𝑟𝑐 × 1 column vector, denoted vec(X) by stacking each
column of X on top of the following column [1]. Here, we
consider the result of applying the vec operator to block-
structured matrices, including the case in which the blocks
differ in size. Such amatrix is called unbalanced [2]. Previous
studies of the vec operator and Kronecker product applied
to block-structured matrices [2, 3] have not addressed this
problem.

In many applications, block-structured matrices arise
because the blocks represent different states or processes. In
general, these blocks will be of different sizes andmay depend
ondifferent parameters. If the vec operator is applied to such a
matrix, it may be helpful to write the result in terms of the vec
of each of the component blocks.This calculation arises, inter
alia, in applications of matrix calculus [4] in demography
and ecology, including nonlinear matrix population models
[5] and finite-state Markov chains [6, 7]. In such models (we
give an example below), the outcome is often a vector-valued
function of the same matrix, and the matrix has an inherent
block structure.

Our goal is to write the vec of the unbalanced block-
structured matrix as a linear combination of the vec operator
applied to each of the component blocks. Although the
solution is simple, it is widely useful, so we present it here.

2. Results

If the matrix X contains 𝑛 blocks, we write it as the sum
of 𝑛 matrices, each containing one of the blocks surrounded
by zero matrices, as in

X = ( A B
C ) (1)

= ( A 0
0 ) + ( 0 B

0 ) + ( 0 0
C ) , (2)

where A, B, and C and the corresponding zeromatrices may
be of different (but compatible) sizes. The vec of X is the sum
of the vec operator applied to each of the component matrices
in (2). A generic member of this set of component matrices
can be written as in the following result.

Theorem 1. Let X be an 𝑟 × 𝑐 block-structured matrix, with
the dimensions of the blocks indicated as subscripts, written

X𝑟×𝑐 = ( 0𝑟1×𝑐1 0𝑟1×𝑐2 0𝑟1×𝑐3
0𝑟2×𝑐1 A𝑟2×𝑐2 0𝑟2×𝑐3
0𝑟3×𝑐1 0𝑟3×𝑐2 0𝑟3×𝑐3

), (3)

where 𝑟 = 𝑟1 + 𝑟2 + 𝑟3 and 𝑐 = 𝑐1 + 𝑐2 + 𝑐3 and 𝑟1, 𝑟3, 𝑐1, 𝑐3,
or any combination, may be zero. Then

vec (X) = (Q⊤ ⊗ P) vecA, (4)
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where

P = (0𝑟1×𝑟2
I𝑟2×𝑟2
0𝑟3×𝑟2

),
Q = (0𝑐2×𝑐1 I𝑐2×𝑐2 0𝑐2×𝑐3) . (5)

Proof. To convert A to X requires the addition of 𝑟1 rows of
zeros above, 𝑟3 rows of zeros below, 𝑐1 columns of zeros to
the left, and 𝑐3 columns of zeros to the right of A. This is
accomplished by multiplying A on the left by P and on the
right by Q, so that

X = PAQ. (6)

Applying the vec operator to (6), using a well known result of
Roth [8], yields (4).

Remark 2. We said it was simple.

3. Applications

Here are several examples of interest, to demonstrate the
formulation of the block-structured matrices and the result
of applying the vec operator.

(1) The transition matrix for a finite-state absorbing
Markov chain with 𝜏 transient states and 𝛼 absorbing states
can be written as a block-structured matrix. Numbering the
states so that the transient states precede the absorbing states
yields a canonical form for the (column-stochastic) transition
matrix (e.g., [9]),

P = ( U𝜏×𝜏 0𝜏×𝛼
M𝛼×𝜏 I𝛼×𝛼

) . (7)

The matrix U describes transitions among the transient
states and M describes transitions from transient states to
absorbing states. Suppose that 𝜉 is a vector-valued (𝑠 × 1)
differentiable function of P and that U and M are differ-
entiable functions of a vector (𝑝 × 1) 𝜃 of parameters. In
demographic and ecological applications, U might describe
transitions and survival among life cycle stages of some
organism, and M might describe transitions to different
causes of death (e.g., [7, 10]).

Following [4], the derivative of 𝜉 with respect to 𝜃 is
the 𝑠 × 𝑝 matrix 𝑑𝜉𝑑𝜃⊤ = 𝑑𝜉𝑑 vec ⊤P 𝑑 vecP𝑑𝜃⊤ . (8)

To obtain 𝑑 vecPwemust apply the vec operator to the block-
structured matrix 𝑑P. Applying the results (5) gives𝑑P = (I𝜏×𝜏

0𝛼×𝜏
)𝑑U (I𝜏×𝜏 0𝜏×𝛼)

+ (0𝜏×𝛼
I𝛼×𝛼

)𝑑M (I𝜏×𝜏 0𝜏×𝛼) (9)

(noting that 𝑑I and 𝑑0 are both zero). Applying the vec
operator and the chain rule gives𝑑 vecP𝑑𝜃⊤ = [(I𝜏×𝜏

0𝛼×𝜏
) ⊗ (I𝜏×𝜏

0𝛼×𝜏
)] 𝑑 vecU𝑑𝜃⊤+ [(I𝜏×𝜏

0𝛼×𝜏
) ⊗ (0𝜏×𝛼

I𝛼×𝛼
)] 𝑑 vecM𝑑𝜃⊤ . (10)

In applications, it is likely that parameters of interest are
defined in terms of their effects on U and M; (10) makes
it possible to incorporate that dependence easily into the
necessary derivative of the block-structured matrix P.

We note that the intensity matrix of a continuous-time
absorbing Markov chain also has a block structure (e.g., [9,
Chap. 8]); applications of matrix calculus to such models [6]
will benefit from the results presented here.

(2)The transition matrix of an absorbing Markov chain is
a special case of the canonical formof a reducible nonnegative
matrix [11]. If X is a reducible matrix, it can be written

X = (A11 0 ⋅ ⋅ ⋅ 0
A21 A22 ⋅ ⋅ ⋅ 0... ... d

...
A𝑠1 A𝑠2 ⋅ ⋅ ⋅ A𝑠𝑠

). (11)

Each of the diagonal blocks A𝑖𝑖 is square and irreducible
(or a 1 × 1 zero matrix). The division into diagonal
blocks corresponds to a division of the vector space upon
which X operates into invariant subspaces.

(3) A balanced block-structured matrix, in which all
blocks are the same size, is a special case of an unbalanced
matrix. Theorem 1 provides a simple result for the vec of such
a matrix. Consider the 𝑝𝑚 × 𝑞𝑛 matrix

X = (A11 ⋅ ⋅ ⋅ A1𝑞... ...
A𝑝1 ⋅ ⋅ ⋅ A𝑝𝑞

), (12)

where A𝑖𝑗 are each of dimension 𝑚 × 𝑛. This case is consid-
ered by [3].

From (5)-(6) we have

X = 𝑝∑
𝑖=1

𝑞∑
𝑗=1

P𝑖A𝑖𝑗Q𝑗, (13)

where

P𝑖 = (0(𝑖−1)𝑚×𝑚
I𝑚×𝑚

0(𝑝−𝑖)𝑚×𝑚

), 𝑖 = 1, . . . , 𝑝,
Q𝑗 = (0𝑛×(𝑗−1)𝑛 I𝑛×𝑛 0𝑛×(𝑞−𝑗)𝑛) , 𝑗 = 1, . . . , 𝑞. (14)

The vec of X is

vecX = 𝑝∑
𝑖=1

𝑞∑
𝑗=1

(Q⊤𝑗 ⊗ P𝑖) vecA𝑖𝑗. (15)
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4. Conclusions

The vec operator, by transforming a matrix into a vector,
is useful in many applications [1]. When the matrix is
block structured and the blocks represent various processes
involved in the application, it is convenient to be able to
express the vec of thematrix as a linear combination of the vec
operator applied to the component blocks. We have shown
how to do so and described a few examples, but these do not
exhaust the potential uses of the result.
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