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The variational homotopy perturbation method VHPM is used for solving 𝑛-dimensional Burgers’ system. Some examples are
examined to validate that the method reduced the calculation size, treating the difficulty of nonlinear term and the accuracy.

1. Introduction

The variational iteration method VIM and the homotopy
perturbation method HPM were proposed by He in [1–
6]. Many researchers used these methods in a variety of
scientific fields of partial differential equations PDEs includ-
ing Burgers’ equation which arises in many of physically
important phenomena [7–9]. It was shown that the methods
are stronger than other techniques such as the Adomian
decomposition method [10–18]. In our work 𝑛-dimensional
Burgers’ equation is solved by the variational homotopy
perturbation method VHPM which is combination of VIM
and HPM. The VHPM was proposed in [19–21]. Vector
Burgers’ system is given by [22]

𝑈
𝑡
+ (𝑈 ⋅ ∇)𝑈 = 𝜇Δ𝑈, (1)

where 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
are the velocity components and 𝜇 is the

kinematic viscosity. 𝑡 is time and Δ and ∇ are

Δ =

𝜕
2

𝑥
2

1

+

𝜕
2

𝑥
2

2

+ ⋅ ⋅ ⋅ +

𝜕
2

𝑥
2

𝑛

,

∇ =

𝜕

𝑥
1

+

𝜕

𝑥
2

+ ⋅ ⋅ ⋅ +

𝜕

𝑥
𝑛

.

(2)

Equation (1) can be written as

𝜕𝑢
𝑖

𝜕𝑡

+

𝑛

∑

𝑗=1

𝑢
𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

= 𝜇Δ𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (3)

2. Variational Iteration Method

According to the variational iterationmethod [2, 3, 10–14] we
can write the correction functional for (3) as

𝑢
𝑛+1

= 𝑢
𝑛
+ ∫

𝑡

0

𝜆
𝑖
(𝜉)

[

[

𝜕𝑢
𝑖

𝜕𝜉

+

𝑛

∑

𝑗=1

𝑢
𝑗

𝜕𝑢
𝑖

𝜕𝑥
𝑗

− 𝜇Δ𝑢
𝑖
]

]

𝑑𝜉, (4)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑢 = 𝑢(𝑥
𝑖
, 𝜉), 𝜆 is a general Lagrangian

multiplier which can be found via variational theory, and 𝑢
𝑖

are restricted variation which means 𝛿𝑢
𝑖
= 0. The solution is

given by

𝑢
𝑖
(𝑥
𝑗
, 𝑡) = lim

𝑛→∞
𝑢
(𝑖,𝑛)

(𝑥
𝑗
, 𝑡) , 𝑗 = 1, 2, . . . , 𝑛. (5)

3. Homotopy Perturbation Method

ApplyingHPMaccording to [4–6, 15–17] for (3), we construct
the following homotopy:

(1 − 𝑝) [

𝜕𝑢
(𝑖,𝑘)

𝜕𝑡

−

𝜕𝑢
(𝑖,0)

𝜕𝑡

]

+ 𝑝
[

[

𝑛

∑

𝑗=1

𝑢
(𝑗,𝑘)

𝜕𝑢
(𝑖,𝑘)

𝜕𝑥
𝑗

− 𝜇Δ𝑢
(𝑖,𝑘)

]

]

= 0

(6)

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2016, Article ID 4146323, 6 pages
http://dx.doi.org/10.1155/2016/4146323

http://dx.doi.org/10.1155/2016/4146323


2 Journal of Applied Mathematics

or
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𝜕𝑡

−
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]

= 0,

(7)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑝 ∈ [0, 1] is an embed-
ding parameter, while 𝑢

(1,0)
= 𝑓
1
(𝑥
𝑗
, 0), 𝑢

(2,0)
= 𝑓
2
(𝑥
𝑗
, 0),

. . . , 𝑢
(𝑛,0)

= 𝑓
𝑛
(𝑥
𝑗
, 0) are initial approximations of (3).

Assume the solution of (3) has the form
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(𝑥
𝑗
, 𝑡) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (8)

Now, substituting 𝑢
𝑖
from (8) in (7) and comparing coeffi-

cients of terms with identical powers of 𝑝 we get

𝑝
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.

.

(9)

The solution of (7) is

𝑢
𝑖
(𝑥
𝑗
, 𝑡) = 𝑢

(𝑖,0)
+ 𝑢
(𝑖,1)

+ 𝑢
(𝑖,2)

+ ⋅ ⋅ ⋅ . (10)

4. Variational Homotopy Perturbation Method

Consider (3) according to [19–21]. In HPM, assume that the
solution of (3) has the form

𝑢
𝑖
=

∞

∑

ℓ=0

𝑝
ℓ
𝑢
(𝑖,ℓ)

(𝑥
𝑗
, 𝑡) = V

𝑖
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛,

𝑢
𝑗
=

∞

∑

ℓ=0

𝑝
ℓ
𝑢
(𝑗,ℓ)

(𝑥
𝑗
, 𝑡) = V

𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(11)

From (11), (3) can be written as

𝜕V
𝑖

𝜕𝑡

+

𝑛

∑

𝑗=1

V
𝑗

𝜕V
𝑖
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= 𝜇ΔV
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (12)

In VIM, from the correction functional for (12) we can write

V
𝑖+1

= V
0
+ 𝑝∫
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𝑑𝜉, (13)

where 𝑖 = 1, 2, . . . , 𝑛, V = V(𝑥
𝑖
, 𝜉); from (11) in (13) and by

comparing the coefficients of like powers of 𝑝, we get

𝑝
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𝑗
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𝑗
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𝑝
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0
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𝑗
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𝑝
3
: 𝑢
(𝑖,3)

(𝑥
𝑗
, 𝑡) = ∫

𝑡

0

𝜆
𝑖
(𝜉)

⋅ [−𝑢
(𝑗,2)

(𝑥
𝑗
, 𝜉)

𝜕𝑢
(𝑖,2)

(𝑥
𝑗
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𝑗

+ 𝜇Δ𝑢
(𝑖,2)

(𝑥
𝑗
, 𝜉)] 𝑑𝜉,

.

.

.

(14)

The approximations solution is given by

𝑢
𝑖
(𝑥
𝑗
, 𝑡) = 𝑢

(𝑖,0)
+ 𝑢
(𝑖,1)

+ 𝑢
(𝑖,2)

+ ⋅ ⋅ ⋅ . (15)

To demonstrate the efficiency of the methods we have solved
some examples by VHPM as (1 + 1)-dimensional, (1 + 2)-
dimensional, (1 + 3)-dimensional, and 2-dimensional. Then
we can generalize it for (𝑛+1)-dimensional or 𝑛-dimensional.

5. Application

Example 1. Consider (1 + 1)-dimensional Burgers’ equation
[17]

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

=

𝜕
2
𝑢

𝜕𝑥
2

(16)

with the initial condition

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) = 2𝑥. (17)
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The correction functional for (16) is

𝑈
𝑛+1

= 𝑈
𝑛
+ 𝑝∫

𝑡

0

𝜆 (𝜉) [

𝜕𝑈

𝜕𝑡

+ �̃�
𝑛
(𝑥, 𝜉)

𝜕�̃�
𝑛
(𝑥, 𝜉)

𝜕𝑥

−

𝜕
2
�̃�
𝑛
(𝑥, 𝜉)

𝜕𝑥
2

]𝑑𝜉.

(18)

The general Lagrangian multiplier 𝜆 can be found as follows:

𝜆

= 0,

1 + 𝜆 (𝜉)



𝜉=𝑡

= 0.

(19)

Then, 𝜆 = −1.
Equation (11) can be written as

𝑈 =

∞

∑

ℓ=0

𝑝
ℓ
𝑢
ℓ
(𝑥, 𝑡) . (20)

Applying VHPM, we have

𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ = 2𝑥 − 𝑝∫

𝑡

0

[(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2

+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[−

𝜕
2

𝜕𝑥
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)] 𝑑𝜉.

(21)

Comparing the coefficient of like powers of 𝑝, we get

𝑝
0
: 𝑢
0
= 2𝑥,

𝑝
1
: 𝑢
1
= −∫

𝑡

0

[𝑢
0

𝜕𝑢
0

𝜕𝑥

−

𝜕
2

𝜕𝑥
2
𝑢
0
]𝑑𝜉 = −4𝑥𝑡,

𝑝
2
: 𝑢
2
= −∫

𝑡

0

[𝑢
1

𝜕𝑢
1

𝜕𝑥

−

𝜕
2

𝜕𝑥
2
𝑢
1
]𝑑𝜉 = 8𝑥𝑡

2
,

𝑝
3
: 𝑢
3
= −∫

𝑡

0

[𝑢
2

𝜕𝑢
2

𝜕𝑥

−

𝜕
2

𝜕𝑥
2
𝑢
2
]𝑑𝜉 = −16𝑥𝑡

2
,

.

.

.

(22)

The approximations solution is given by

𝑢 (𝑥, 𝑡) = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ . (23)

Exact solution is (𝑢∗ = 2𝑥/(1 + 2𝑡)).
The results are in Table 1.

Example 2. Consider (1 + 2)-dimensional Burgers’ equation
[17]

𝜕𝑢

𝜕𝑡

= 𝑢

𝜕𝑢

𝜕𝑥

+

𝜕
2
𝑢

𝜕𝑥
2
+

𝜕
2
𝑢

𝜕𝑦
2

(24)

with the initial condition

𝑢 (𝑥, 𝑦, 0) = 𝑢
0
(𝑥, 𝑦) = 𝑥 + 𝑦. (25)

Table 1: Comparison of VHPM solutions with exact solution at 𝑡 =
0.01 (Example 1).

𝑥 𝑢
∗
(𝑥, 𝑦, 𝑡) 𝑢 (𝑥, 𝑦, 𝑡)





𝑢
∗
− 𝑢






0.1 0.1960784314 0.1960784314 0
0.2 0.3921568628 0.3921568627 1 × 10

−10

0.3 0.5882352942 0.5882352941 1 × 10
−10

0.4 0.7843137254 0.7843137254 0
0.5 0.9803921568 0.9803921568 0
0.6 1.176470588 1.176470588 0
0.7 1.372549020 1.372549020 0
0.8 1.568627451 1.568627451 0
0.9 1.764705882 1.764705882 0

As above, we have

𝑈
𝑛+1

= 𝑢
0
− 𝑝∫

𝑡

0

[−𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑥

−

𝜕
2
𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑥
2

−

𝜕
2
𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑦
2

]𝑑𝜉,

𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ = 𝑥 + 𝑦 − 𝑝∫

𝑡

0

[− (𝑢
0
+ 𝑝𝑢
1

+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[−

𝜕
2

𝜕𝑥
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅) −

𝜕
2

𝜕𝑦
2
(𝑢
0

+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)] 𝑑𝜉.

(26)

Comparing the coefficient of like powers of 𝑝, we get

𝑝
0
: 𝑢
0
= 𝑥 + 𝑦,

𝑝
1
: 𝑢
1
= (𝑥 + 𝑦) 𝑡,

𝑝
2
: 𝑢
2
= (𝑥 + 𝑦) 𝑡

2
,

𝑝
3
: 𝑢
3
= (𝑥 + 𝑦) 𝑡

3
,

.

.

.

(27)

The approximations solution is given by

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ . (28)

Exact solution is (𝑢∗ = (𝑥 + 𝑦)/(1 − 𝑡)).
The results are in Table 2.

Example 3. Consider (1 + 3)-dimensional Burgers’ equation
[17]

𝜕𝑢

𝜕𝑡

= 𝑢

𝜕𝑢

𝜕𝑥

+

𝜕
2
𝑢

𝜕𝑥
2
+

𝜕
2
𝑢

𝜕𝑦
2
+

𝜕
2
𝑢

𝜕𝑧
2

(29)
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Table 2: Comparison of VHPM solutions with exact solution at 𝑥 =

0.1 and 𝑦 = 0.1 (Example 2).

𝑡 𝑢
∗
(𝑥, 𝑦, 𝑡) 𝑢(𝑥, 𝑦, 𝑡) |𝑢

∗
− 𝑢|

0.01 0.2020202020 0.2020202020 0
0.02 0.2040816327 0.2040816326 1 × 10

−10

0.03 0.2061855670 0.2061855669 1 × 10
−10

0.04 0.2083333333 0.2083333325 8 × 10
−10

0.05 0.2105263158 0.2105263125 3.3 × 10
−9

0.06 0.2127659574 0.2127659475 9.9 × 10
−9

0.07 0.2150537634 0.2150537381 2.53 × 10
−8

0.08 0.2173913043 0.2173912474 5.69 × 10
−8

0.09 0.2197802198 0.2197801030 1.168 × 10
−7

0.10 0.2222222222 0.2222220000 2.222 × 10
−7

with the initial condition

𝑢 (𝑥, 𝑦, 𝑧, 0) = 𝑢
0
(𝑥, 𝑦, 𝑧) = 𝑥 + 𝑦 + 𝑧. (30)

We have

𝑈
𝑛+1

= 𝑢
0
− 𝑝∫

𝑡

0

[−𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑥

−

𝜕
2
𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑥
2

−

𝜕
2
𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑦
2

−

𝜕
2
𝑈
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑧
2

]𝑑𝜉,

𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ = 𝑥 + 𝑦 + 𝑧 − 𝑝∫

𝑡

0

[− (𝑢
0

+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2

+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[−

𝜕
2

𝜕𝑥
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅) −

𝜕
2

𝜕𝑦
2
(𝑢
0

+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅) −

𝜕
2

𝜕𝑧
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2

+ ⋅ ⋅ ⋅)] 𝑑𝜉.

(31)

Comparing the coefficient of like powers of 𝑝, we get

𝑝
0
: 𝑢
0
= 𝑥 + 𝑦 + 𝑧,

𝑝
1
: 𝑢
1
= (𝑥 + 𝑦 + 𝑧) 𝑡,

𝑝
2
: 𝑢
2
= (𝑥 + 𝑦 + 𝑧) 𝑡

2
,

𝑝
3
: 𝑢
3
= (𝑥 + 𝑦 + 𝑧) 𝑡

3
,

.

.

.

(32)

Table 3: Comparison of VHPM solutions with exact solution at 𝑥 =

0.1, 𝑦 = 0.1, and 𝑧 = 0.1 (Example 3).

𝑡 𝑢
∗
(𝑥, 𝑦, 𝑡) 𝑢(𝑥, 𝑦, 𝑡) |𝑢

∗
− 𝑢|

0.01 0.3030303030 0.3030303030 0
0.02 0.3061224490 0.3061224490 0
0.03 0.3092783505 0.3092783503 2 × 10

−10

0.04 0.3125000000 0.3124999987 1.3 × 10
−9

0.05 0.3157894737 0.3157894688 4.9 × 10
−9

0.06 0.3191489362 0.3191489213 1.49 × 10
−8

0.07 0.3225806452 0.3225806072 3.80 × 10
−8

0.08 0.3260869565 0.3260868710 8.55 × 10
−8

0.09 0.3296703297 0.3296701545 1.752 × 10
−7

0.10 0.3333333333 0.3333330000 3.333 × 10
−7

The approximations solution is given by

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ . (33)

Exact solution is (𝑢∗ = (𝑥 + 𝑦 + 𝑧)/(1 − 𝑡)).
The results are in Table 3.

Example 4. Consider two-dimensional Burgers’ equations
[23]

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

=

1

𝑅

(

𝜕
2
𝑢

𝜕𝑥
2
+

𝜕
2
𝑢

𝜕𝑦
2
) ,

𝜕V
𝜕𝑡

+ 𝑢

𝜕V
𝜕𝑥

+ V
𝜕V
𝜕𝑦

=

1

𝑅

(

𝜕
2V

𝜕𝑥
2
+

𝜕
2V
𝜕𝑦
2
)

(34)

with the initial conditions:

𝑢
0
= 𝑢 (𝑥, 𝑦, 0) =

3

4

−

1

4 [1 + 𝑒
(𝑦−𝑥)𝑅/8

]

,

V
0
= V (𝑥, 𝑦, 0) =

3

4

+

1

4 [1 + 𝑒
(𝑦−𝑥)𝑅/8

]

.

(35)

The correction functional for (34) is

𝑈
𝑛+1

= 𝑈
𝑛
+ 𝑝∫

𝑡

0

𝜆
1
(𝜉) [

𝜕𝑈

𝜕𝑡

+ �̃�
𝑛
(𝑥,𝑦, 𝜉)

𝜕�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑥

+ �̃�
𝑛
(𝑥,𝑦, 𝜉)

𝜕�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑥

] 𝑑𝜉 + 𝑝∫

𝑡

0

𝜆
1
(𝜉)

⋅ [−

1

𝑅

(

𝜕
2
�̃�
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑥
2

+

𝜕
2
�̃�
𝑛
(𝑥, 𝑦, 𝜉)

𝜕𝑦
2

)]𝑑𝜉,
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Table 4: Comparison of VHPM solutions with exact solution at 𝑥 = 1, 𝑦 = 0, and 𝑅 = 100 (Example 4).

𝑡 𝑢
∗
(𝑥, 𝑦, 𝑡) 𝑢(𝑥, 𝑦, 𝑡) |𝑢

∗
− 𝑢| V∗(𝑥, 𝑦, 𝑡) V(𝑥, 𝑦, 𝑡) |V∗ − V|

0.01 0.5000009030 0.5000009571 5.41 × 10
−8 0.9999990970 0.9999990321 6.49 × 10

−8

0.02 0.5000008752 0.5000009862 1.110 × 10
−7 0.9999991248 0.9999990031 1.217 × 10

−7

0.03 0.5000008483 0.5000010153 1.670 × 10
−7 0.9999991517 0.9999989741 1.776 × 10

−7

0.04 0.5000008222 0.5000010445 2.223 × 10
−7 0.9999991778 0.9999989451 2.327 × 10

−7

0.05 0.5000007969 0.5000010736 2.767 × 10
−7 0.9999992031 0.9999989161 2.870 × 10

−7

0.06 0.5000007724 0.5000011027 3.303 × 10
−7 0.9999992276 0.9999988871 3.405 × 10

−7

0.07 0.5000007486 0.5000011318 3.832 × 10
−7 0.9999992514 0.9999988581 3.933 × 10

−7

0.08 0.5000007256 0.5000011609 4.353 × 10
−7 0.9999992744 0.9999988281 4.463 × 10

−7

0.09 0.5000007032 0.5000011900 4.868 × 10
−7 0.9999992968 0.9999987991 4.977 × 10

−7

0.10 0.5000006816 0.5000012191 5.375 × 10
−7 0.9999993184 0.9999987701 5.483 × 10

−7

𝑉
𝑛+1

= 𝑉
𝑛
+ 𝑝∫

𝑡

0

𝜆
2
(𝜉) [

𝜕𝑉

𝜕𝑡

+ �̃�
𝑛
(𝑥,𝑦, 𝜉)

𝜕�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑥

+ �̃�
𝑛
(𝑥,𝑦, 𝜉)

𝜕�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑥

] 𝑑𝜉 + 𝑝∫

𝑡

0

𝜆
2
(𝜉)

⋅ [−

1

𝑅

(

𝜕
2
�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑥
2

+

𝜕
2
�̃�
𝑛
(𝑥,𝑦, 𝜉)
𝜕𝑦
2

)]𝑑𝜉.

(36)

The general Lagrangian multipliers are 𝜆
1
= −1 = 𝜆

2
.

Equation (11) can be written as

𝑈 =

∞

∑

ℓ=0

𝑝
ℓ
𝑢
ℓ
(𝑥, 𝑦, 𝑡) ,

𝑉 =

∞

∑

ℓ=0

𝑝
ℓV
ℓ
(𝑥, 𝑦, 𝑡) .

(37)

By VHPM, we have

𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ = 𝑢

0
− 𝑝∫

𝑡

0

[− (𝑢
0
+ 𝑝𝑢
1

+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[(V
0
+ 𝑝V
1
+ 𝑝
2V
2

+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[

1

𝑅

(

𝜕
2

𝜕𝑥
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)

+

𝜕
2

𝜕𝑦
2
(𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅))] 𝑑𝜉,

V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ = V

0
− 𝑝∫

𝑡

0

[− (𝑢
0
+ 𝑝𝑢
1

+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[(V
0
+ 𝑝V
1
+ 𝑝
2V
2

+ ⋅ ⋅ ⋅)

𝜕

𝜕𝑥

(V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅ )] 𝑑𝜉

− 𝑝∫

𝑡

0

[

1

𝑅

(

𝜕
2

𝜕𝑥
2
(V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅)

+

𝜕
2

𝜕𝑦
2
(V
0
+ 𝑝V
1
+ 𝑝
2V
2
+ ⋅ ⋅ ⋅))] 𝑑𝜉.

(38)

Comparing the coefficient of like powers of 𝑝, we get

𝑝
0
:

{
{
{

{
{
{

{

𝑢
0
=

3

4

−

1

4 [1 + 𝑒
(𝑦−𝑥)𝑅/8

]

V
0
=

3

4

+

1

4 [1 + 𝑒
(𝑦−𝑥)𝑅/8

]

,

𝑝
1
:

{
{
{
{

{
{
{
{

{

𝑢
1
=

1

128

𝑅𝑒
−(1/8)(−𝑦+𝑥)𝑅

𝑡

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
2

V
1
=

−1

128

𝑅𝑒
−(1/8)(−𝑦+𝑥)𝑅

𝑡

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
2
,

𝑝
2
:

{
{
{
{

{
{
{
{

{

𝑢
2
=

−1

2048

𝑅
2
𝑒
−(1/4)(−𝑦+𝑥)𝑅

𝑡
2

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
4

V
2
=

1

2048

𝑅
2
𝑒
−(1/4)(−𝑦+𝑥)𝑅

𝑡
2

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
4
,

𝑝
3
:

{
{
{
{

{
{
{
{

{

𝑢
3
=

1

32768

𝑅
3
𝑒
−(3/8)(−𝑦+𝑥)𝑅

𝑡
3

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
6

V
3
=

−1

32768

𝑅
3
𝑒
−(3/8)(−𝑦+𝑥)𝑅

𝑡
3

[1 + 𝑒
−(1/8)(−𝑦+𝑥)𝑅

]
6
,

.

.

.

(39)
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The approximations solution is given by

𝑢 (𝑥, 𝑦, 𝑡) = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ ,

V (𝑥, 𝑦, 𝑡) = V
0
+ V
1
+ V
2
+ V
3
+ ⋅ ⋅ ⋅ .

(40)

Exact solution 𝑢
∗
= 3/4 − 1/4(1 + 𝑒

(4𝑦−4𝑥−𝑡)𝑅/32
); V∗ = 3/4 +

1/4(1 + 𝑒
(4𝑦−4𝑥−𝑡)𝑅/32

).
The results are in Table 4.

6. Conclusion

In this work, the approximate solutions of 𝑛-dimensional
Burgers’ equations are obtained by combination of two pow-
erful methods VIM and HPM in VHPM.The examples have
shown the efficiency and accuracy of the VHPM; it reduces
the size of computation without the restrictive assumption to
handle nonlinear terms and it gives the solutions rapidly.
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