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It is attempted to provide the stability and convergence analysis of the reproducing kernel space method for solving the Duffing
equation with with boundary integral conditions. We will prove that the reproducing space method is stable. Moreover, after
introducing the method, it is shown that it has convergence order two.

1. Introduction

Reproducing kernel space method is a very powerful method
for solving linear and nonlinear equation such as initial or
boundary differential equation and integral equations [1–
3]. This technique has been used not only for well-posed
problems [4–6], but also for ill-posed problems [7]. In other
words, the flexibility of choosing some tools in dealing with
the given equation can be considered as the main reason
for designing the solution method. Based on these features,
one can use reproducing kernel space method efficiently to
approximate the solution in any accuracy. In addition, it
should be noted that, in fact, the applications of reproducing
kernel Hilbert space method in the numerical analysis field
are not new and on the other side possessing some of thewell-
known advantages; for example [8–10],

(i) it is accurate, with needless effort to achieve the
results,

(ii) it is possible to pick any point in the interval of
integration and as well the approximate solutions and
their derivatives will be applicable,

(iii) the method does not require discretization of the
variables, and it is not affected by computation round
off errors and one is not faced with necessity of large
computer memory and time,

(iv) it is of global nature in terms of the solutions obtained
as well as its ability to solve other mathematical,
physical, and engineering problems.

Duffing equation springs from modeling some different
branches of sciences and engineerings such as chemical
engineering, thermoelasticity, periodic orbit extraction, non-
linear mechanical oscillators, and prediction of diseases [11–
13]. To solve this equation, some variants of it have been
investigated in recent years. One of them is due to Du and
Cui, who applied an efficient method based on reproducing
kernel space method (RKSM) [14]. Indeed, this technique is
of great importance in solving linear and nonlinear equations
[1]. Du and Cui used RKSM for solving the forced Duffing
equation with boundary conditions [14] given by

𝑢


(𝑥) + 𝜎𝑢


(𝑥) = 𝑓 (𝑥, 𝑢 (𝑥)) , 0 < 𝑥 < 1, 𝜎 ̸= 0,

𝑢 (0) − 𝜇
1
𝑢


(0) = ∫
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0

ℎ
1
(𝑥) 𝑢 (𝑥) 𝑑𝑥,

𝑢 (1) + 𝜇
2
𝑢


(1) = ∫

1

0

ℎ
2
(𝑥) 𝑢 (𝑥) 𝑑𝑥,

(1)

where𝑓 : [0, 1]×𝑅 → 𝑅, ℎ
𝑖
: 𝑅 → 𝑅, 𝑖 = 1, 2, are continuous

functions and 𝜇
𝑖
, 𝑖 = 1, 2, are nonnegative constants.

To approximate the solution of the forced Duffing equa-
tion (1), however, based on our best knowledge, accuracy and
stability have not been studied yet. In thiswork, it is attempted

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2016, Article ID 3520815, 5 pages
http://dx.doi.org/10.1155/2016/3520815

http://dx.doi.org/10.1155/2016/3520815


2 International Journal of Differential Equations

to study these issues. The rest of this paper is organised as
follows.

Section 2 concerns reviewing some preliminaries. In
Section 3, accuracy, convergence order, and stability are
established. We confine ourselves to reporting the numerical
implementation since they have been carried out in [14].

2. Preliminaries

In this section, we recall some basics which have been taken
from [1]. We start with recalling the definition of 𝑊𝑚

2
[0, 1]

where𝑚 is a positive integer. This space is the core of RKSM.

Definition 1. One has

𝑊
𝑚

2
[0, 1] = {𝑢 (𝑥) | 𝑢

(𝑚−1)

(𝑥)

is an absolutely continuous real function,

𝑢
(𝑚)

(𝑥) ∈ 𝐿
2

[0, 1]} .

(2)

The inner product and norm in𝑊𝑚
2
[0, 1] are defined, respec-

tively, by

⟨𝑢, V⟩
𝑊
𝑚

2

=

𝑚−1

∑

𝑘=0

𝑢
(𝑘)

(0) V(𝑘) (0)

+ ∫

1

0

𝑢
(𝑚)

(𝑥) V(𝑚) (𝑥) 𝑑𝑥,

‖𝑢‖
𝑊
𝑚

2

= √⟨𝑢, V⟩
𝑊
𝑚

2

,

(3)

where 𝑢, V ∈ 𝑊𝑚
2
[0, 1].

Also we need the following.

Definition 2. 0𝑊3
2
[0, 1] = {𝑢(𝑥) | 𝑢


(𝑥) is an absolutely

continuous real function; 𝑢3(𝑥) ∈ 𝐿2[0, 1], 𝑢(0) − 𝜇
1
𝑢

(0) =

∫

1

0
ℎ
1
(𝑥)𝑢(𝑥)𝑑𝑥, 𝑢(1) + 𝜇

2
𝑢

(1) = ∫

1

0
ℎ
2
(𝑥)𝑢(𝑥)𝑑𝑥}.

The inner product and norm in 0𝑊3
2
[0, 1] are defined as

mentioned above for any 𝑢, V ∈ 0𝑊3
2
[0, 1].

Definition 3 (reproducing kernel space, reproducing kernel).
The function space 𝑊𝑚

2
[0, 1] is called a reproducing kernel

space if

𝑢 (𝑥) = ⟨𝑢 (𝑦) , 𝑅
𝑦
(𝑥)⟩
𝑊
𝑚

2

, ∀𝑢, 𝑅
𝑦
∈ 𝑊
𝑚

2
[0, 1] . (4)

Moreover, 𝑅(𝑥, 𝑦), or 𝑅
𝑦
(𝑥), is called the reproducing kernel.

Theorem 4 (see [15]). The reproducing kernel 𝑅
𝑦
(𝑥) in

𝑊
𝑚

2
[0, 1] is conjugate symmetric; that is, 𝑅

𝑦
(𝑥) = 𝑅

𝑥
(𝑦). It

is also unique. Moreover, 𝑅
𝑥
(𝑥) ≥ 0, for each 𝑥 ∈ [0, 1], and

𝑅
𝑥
(𝑥) = 0 if and only if𝑊𝑚

2
[0, 1] = {0}.

It has been proven that the reproducing kernel space
𝑊
𝑚

2
[0, 1] is a complete space. Furthermore, for instance, the

reproducing kernel of 𝑊1
2
[0, 1] and 𝑊

3

2
[0, 1] is given [1],

respectively, by

𝑅
𝑦
(𝑥) =

{

{

{

1 + 𝑥, 𝑥 ≤ 𝑦,

1 + 𝑦, 𝑥 > 𝑦,

𝑅
𝑦
(𝑥)

=

{
{
{
{

{
{
{
{

{

1 +

𝑥
5

120

+

1

12

𝑥
2
𝑦
2
(3 + 𝑥) = 𝑥𝑦(1 −

𝑥
4

24

) , 𝑥 ≤ 𝑦,

1 +

𝑦
5

120

+

1

12

𝑥
2
𝑦
2
(3 + 𝑦) = 𝑥𝑦(1 −

𝑦
4

24

) , 𝑥 > 𝑦.

(5)

3. Accuracy and Convergence Analysis

Here,we study the convergence order of theRKSMfor solving
(1). We will prove that this technique has convergence order
two. Let 𝐿𝑢 = 𝑢


+ 𝜎𝑢
, where 𝐿 :

0
𝑊
3

2
[0, 1] → 𝑊

1

2
[0, 1];

then, (1) can be written as follows:

𝐿𝑢 = 𝑓 (𝑥, 𝑢 (𝑥)) , 0 < 𝑥 < 1, (6)

where𝑢(𝑥) ∈ 0𝑊3
2
[0, 1] and𝑓(𝑥, 𝑢(𝑥)) ∈ 𝑊1

2
[0, 1].Therefore,

𝐿 is a linear and bounded operator on interval [0, 1].
To apply the RKSM, first of all, an orthogonal system

of functions is constructed. Let 𝜑
𝑖
(𝑥) = 𝑅

𝑥
𝑖

(𝑥), and then
𝜓
𝑖
(𝑥) = 𝐿

∗
𝜑
𝑖
(𝑥), where 𝐿∗ is the conjugate operator of 𝐿.

Consequently, because of the properties of the reproducing
kernel, we have the following.

Lemma 5. One has ⟨𝑢(𝑥), 𝜓
𝑘
(𝑥)⟩0
𝑊
3

2

= 𝐿𝑢(𝑥
𝑘
), 𝑘 =

1, 2, 3, . . ..

Proof. Consider

⟨𝑢 (𝑥) , 𝜓
𝑘
(𝑥)⟩0
𝑊
3

2

= ⟨𝑢 (𝑥) , 𝐿
∗
𝜑
𝑘
(𝑥)⟩0
𝑊
3

2

= ⟨𝐿𝑢 (𝑥) , 𝜑
𝑘
(𝑥)⟩
𝑊
1

2

= ⟨𝐿𝑢 (𝑥) , 𝑅
𝑥
𝑘

(𝑥)⟩
𝑊
1

2

= 𝐿𝑢 (𝑥
𝑘
) ,

𝑘 = 1, 2, 3, . . . .

(7)

If {𝑥
𝑘
}
∞

𝑘=1
is dense on [0, 1], then {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is a complete

system of 0𝑊3
2
[0, 1] and 𝜓

𝑖
(𝑥) = 𝐿𝑅

𝑥
(𝑦)|
𝑦=𝑥
𝑖

[1]. Applying
the well-known Gram-Schmidt process, an orthonormal
system, for example, {𝜓

𝑘
(𝑥)}
∞

𝑘=1
in 0𝑊3

2
[0, 1], is generated

from {𝜓
𝑘
(𝑥)}
∞

𝑘=1
by

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (8)

where 𝛽
𝑖𝑘
are the orthogonalization coefficients, 𝛽

𝑖𝑗
> 0, 𝑖 =

1, 2, 3, . . ..
According to [14], we have the following solutionmethod.
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Theorem 6 (see [14]). If {𝑥
𝑘
}
∞

𝑘=1
is dense on [0, 1], and 𝑢(𝑥) ∈

0
𝑊
3

2
[0, 1] is the solution of (1), then

𝑢 (𝑥) =

∞

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) , (9)

where 𝐴
𝑖
= ∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝑓(𝑥
𝑘
, 𝑢(𝑥
𝑘
)), 𝑖 = 1, 2, 3, . . ..

It is worth nothing that when 𝑓 is nonlinear, this method
can not be used directly in action. Therefore, an iterative
modified version of it has been introduced as follows.

Theorem 7 (see [14]). If {𝑥
𝑘
}
∞

𝑘=1
is dense on [0, 1], 𝑢

0
(𝑥) ∈

0
𝑊
3

2
[0, 1] is given, and 𝑢(𝑥) ∈ 0𝑊3

2
[0, 1] is the solution of (1),

then

𝑢 (𝑥) =

∞

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) , 𝑢

0
∈
0
𝑊
3

2
[0, 1] , (10)

where 𝐵
𝑖
= ∑
𝑖

𝑘=1
𝛽
𝑖𝑘
𝑓(𝑥
𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
)), 𝑖 = 1, 2, 3, . . ..

To obtain the approximate solution 𝑢
𝑛
(𝑥), a proper

truncated series of 𝑢(𝑥) is used by

𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) ,

or 𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝐵
𝑖
𝜓
𝑖
(𝑥) ,

(11)

where 𝐴
𝑖
or 𝐵
𝑖
are given as before.

The main contribution of [14] says that, under the given
conditions (see Theorems 3.1 and 3.2 in [14]), the approx-
imate solution 𝑢

𝑛
(𝑥) converges to the exact solution 𝑢(𝑥).

Nevertheless, applying the numerical results by Du and Cui
in [14], they converge quadratically. Surprisingly, this fact has
been neither stated nor proved already. So, we state and prove
it formally here. First, we need the following lemma.

Lemma 8. Let the conditions of the Theorem 6 be held.
Moreover, suppose that 𝑓 is independent of 𝑢. Then,

𝐿𝑢
𝑛
(𝑥
𝑘
) = 𝑓 (𝑥

𝑘
) , 𝑘 = 1, 2, 3, . . . , 𝑛. (12)

Proof. Because of the properties of reproducing kernel defi-
nition and assumptions, we have

𝐿𝑢
𝑛
(𝑥
𝑘
) = ⟨𝐿𝑢

𝑛
(𝑥) , 𝑅

𝑥
𝑘

(𝑥)⟩
𝑊
1

2

= ⟨𝐿𝑢
𝑛
(𝑥) , 𝜑

𝑘
(𝑥)⟩
𝑊
1

2

= ⟨𝑢
𝑛
(𝑥) , 𝐿

∗
𝜑
𝑘
(𝑥)⟩0
𝑊
3

2

= ⟨𝑢
𝑛
(𝑥) , 𝜓

𝑘
(𝑥)⟩0
𝑊
3

2

= ⟨

𝑛

∑

𝑖=1

𝐴
𝑖
𝜓
𝑖
(𝑥) , 𝜓

𝑘
(𝑥)⟩

0
𝑊
3

2

=

𝑛

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
(𝑥) , 𝜓

𝑘
(𝑥)⟩0
𝑊
3

2

.

(13)

Using this relation with orthonormality and definition of
{𝜓
𝑗
}, we have

𝐴
𝑛
=

𝑛

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
, 𝜓
𝑗
⟩
0
𝑊
3

2

=

𝑛

∑

𝑖=1

𝐴
𝑖
⟨𝜓
𝑖
,

𝑛

∑

𝑗=1

𝛽
𝑛𝑗
𝜓
𝑗
⟩

0
𝑊
3

2

=

𝑛

∑

𝑗=1

𝛽
𝑛𝑗
𝐿𝑢
𝑛
(𝑥
𝑗
) .

(14)

On the other hand, based on the definition of 𝐴
𝑛
in Theo-

rem 6 and the assumption that𝑓 is independent of 𝑢, we have
𝐴
𝑛
= ∑
𝑛

𝑗=1
𝛽
𝑛𝑗
𝑓(𝑥
𝑗
). It is now sufficient to equate right-hand

sides of these two relations for definition of𝐴
𝑛
, when 𝑛 varies.

Then, the proof is complete.

In what follows, we provide a priori and a posteriori error
estimations.

Theorem 9. Suppose that 𝑢
𝑛
(𝑥) and 𝑢(𝑥) are the approximate

and the exact solution of (1), generated by RKSM inTheorem 6,
𝑟
𝑛
(𝑥) = 𝐿𝑢(𝑥) − 𝐿𝑢

𝑛
(𝑥), and 𝑒

𝑛
(𝑥) = 𝑢(𝑥) − 𝑢

𝑛
(𝑥). If 0 = 𝑥

1
<

𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 1, ℎ

𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 − 1, and

ℎ = max ℎ
𝑖
, then





𝑟
𝑛




∞

= 𝑂 (ℎ
2
) ,





𝑒
𝑛




∞

= 𝑂 (ℎ
2
) ,

(15)

where ‖𝑒
𝑛
‖
∞
= max

𝑥∈[0,1]
|𝑒
𝑛
(𝑥)|.

Proof. By Lemma 10, we have 𝑟
𝑛
(𝑥
𝑗
) = 0, 𝑗 = 1, 2, . . . , 𝑛. If

𝑝
1
(𝑥) interpolates 𝑟

𝑛
(𝑥) at nodes 𝑥

𝑘
and 𝑥

𝑘+1
, then 𝑝

1
(𝑥) = 0.

Therefore,

𝑟
𝑛
(𝑥) = 𝑟

𝑛
(𝑥) − 𝑝

1
(𝑥)

=

(𝑥 − 𝑥
𝑘
) (𝑥 − 𝑥

𝑘+1
)

2

𝑓

(𝜂
𝑘
) ,

(16)

where 𝜂
𝑘
is between 𝑥

𝑘
and 𝑥

𝑘+1
. Thus, we have |𝑟

𝑛
(𝑥)| ≤

𝑀ℎ
2, for some constant 𝑀 and ℎ = max{ℎ

𝑘
, ℎ
𝑘+1

}. This
completes the first assertion. Furthermore, since 𝐿 is a
bounded linear operator, it is invertible, and, therefore,
𝑒
𝑛
(𝑥) = 𝐿

−1
𝑟
𝑛
(𝑥) and the second estimation follows.

Very similar to the above argument, we have the follow-
ing.

Lemma 10. Let the conditions of Theorem 7 be held. Then,

𝐿𝑢
𝑛
(𝑥
𝑘
) = 𝑓 (𝑥

𝑘
, 𝑢
𝑘−1

(𝑥
𝑘
)) , 𝑘 = 1, 2, 3, . . . , 𝑛. (17)

Similar to Theorem 9, we can conclude the following.

Theorem 11. Suppose that 𝑢
𝑛
(𝑥) and 𝑢(𝑥) are the approximate

and the exact solution of (1), generated by RKSM inTheorem 7,
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𝑟
𝑛
(𝑥) = 𝐿𝑢(𝑥) − 𝐿𝑢

𝑛
(𝑥), and 𝑒

𝑛
(𝑥) = 𝑢(𝑥) − 𝑢

𝑛
(𝑥). If 0 = 𝑥

1
<

𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 1, ℎ

𝑖
= 𝑥
𝑖+1

− 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 − 1, and

ℎ = max ℎ
𝑖
, then





𝑟
𝑛




∞

= 𝑂 (ℎ
2
) ,





𝑒
𝑛




∞

= 𝑂 (ℎ
2
) ,

(18)

where ‖𝑒
𝑛
‖
∞
= max

𝑥∈[0,1]
|𝑒
𝑛
(𝑥)|.

Now, we deal with the stability of RKHS method for the
solution of 𝐿𝑢(𝑥) = 𝑓(𝑥, 𝑢(𝑥)), where the operator 𝐿 is given
in (6). For this purpose, suppose that the right-hand side has
𝜀 > 0 perturbation. We indicate variation of the approximate
solution is bounded by a constant multiple of 𝜀. In other
words, approximate solution depends continuously on the
right-hand side. We need the following.

Lemma 12 (see [15]). If 𝑢(𝑥) ∈
0
𝑊
3

2
[0, 1], then there is a

constant 𝑐 such that






𝑢
(𝑘)


∞

≤ 𝑐 ‖𝑢‖0
𝑊
3

2

, 0 ≤ 𝑘 ≤ 2. (19)

Theorem13. Consider the problem𝐿𝑢(𝑥) = 𝑓(𝑥, 𝑢(𝑥)), which
has a unique solution, and 𝐿 :

0
𝑊
3

2
[0, 1] → 𝑊

1

2
[0, 1] is

bounded linear. Then, the approximate solution obtained from
RKHS method (9) is stable.

Proof. Suppose that 𝑢
𝑛
(𝑥) is the approximate solution of the

abovementioned equation obtained fromRKHSmethod; that
is,

𝑢
𝑛
(𝑥) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
)) 𝜓
𝑖
(𝑥) , (20)

where 𝑥
𝑘
∈ [0, 1], 𝜓

𝑖
(𝑥), and 𝛽

𝑖𝑘
are orthonormal bases and

coefficient obtained from Gram-Schmidt orthogonalization
process. Moreover, suppose that V(𝑥) is the approximate
solution of 𝐿𝑢(𝑥) = 𝑓(𝑥, 𝑢(𝑥)) + 𝜀(𝑥), where 𝜀(𝑥) > 0 and
is bounded. We prove that there exists constant 𝛿 > 0 such
that ‖V

𝑛
− 𝑢
𝑛
‖
∞
< 𝛿. According to the definition of 𝑢

𝑛
(𝑥) and

V
𝑛
(𝑥), we have

V
𝑛
(𝑥) − 𝑢

𝑛
(𝑥)

=

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
(𝑓 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
)) + 𝜀 (𝑥

𝑘
)) 𝜓
𝑖
(𝑥)

−

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
)) 𝜓
𝑖
(𝑥)

=

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
𝜀 (𝑥
𝑘
) 𝜓
𝑖
(𝑥) .

(21)

On the other hand, 𝐿−1 exists and 𝐿
−1
𝜀(𝑥) ∈

0
𝑊
3

2
[0, 1].

Therefore,

𝐿
−1
𝜀 (𝑥) =

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
⟨𝐿
−1
𝜀 (𝑥) , 𝜓

𝑘
(𝑥)⟩

0
𝑊
3

2

𝜓
𝑖
(𝑥)

=

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
⟨𝜀 (𝑥) , (𝐿

−1
)

∗

𝜓
𝑘
(𝑥)⟩

0
𝑊
3

2

𝜓
𝑖
(𝑥)

=

𝑛

∑

𝑖=0

𝑖

∑

𝑘=0

𝛽
𝑖𝑘
𝜀 (𝑥
𝑘
) 𝜓
𝑖
(𝑥) .

(22)

Since the right-hand sides of relations (21) and (22) are equal,
then

V
𝑛
(𝑥) − 𝑢

𝑛
(𝑥) = 𝐿

−1
𝜀 (𝑥) . (23)

Since 𝐿−1 is continuous on [0, 1], it is bounded and we have





V
𝑛
(𝑥) − 𝑢

𝑛
(𝑥)




0𝑊
3

2

=






𝐿
−1


0𝑊
3

2

‖𝜀 (𝑥)‖0
𝑊
3

2

. (24)

Hence, with𝑀 = ‖𝐿
−1
‖0
𝑊
3

2

, we conclude that ‖V
𝑛
− 𝑢
𝑛
‖0
𝑊
3

2

≤

𝑀‖𝜀(𝑥)‖0
𝑊
3

2

. Based on Lemma 12, ‖V
𝑛
− 𝑢
𝑛
‖
∞

≤ 𝑐𝑀𝜀 and
therefore 𝛿 = 𝑐𝑀𝜀.

Similarly, we have the following theorem.

Theorem14. Consider the problem𝐿𝑢(𝑥) = 𝑓(𝑥, 𝑢(𝑥)), which
has a unique solution, and 𝐿 :

0
𝑊
3

2
[0, 1] → 𝑊

1

2
[0, 1] is

bounded and linear. Then, the approximate solution obtained
from RKHS method (10) is stable.
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