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We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory
potential of the form (r(t) g, (x(¢), XN+ p() g, (x(2), X)) + q(t) f(x(z(t))) = e(t), on a time scale T. We will use a unified
approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our
results are more general and extend the oscillation criteria of Erbe et al. (2010). Also our results unify the oscillation of the forced
second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we

give some examples to illustrate our results.

1. Introduction

The theory of time scales, which has recently received a lot
of attention, was originally introduced by Hilger in his Ph.D.
thesis [1], in order to unify, extend, and generalize ideas
from discrete calculus, quantum calculus, and continuous
calculus to arbitrary time scale calculus. Many authors have
expounded on various aspects of this new theory; see [2-4]. A
time scale T is a nonempty closed subset of the real numbers.
If the time scale equals the real numbers or integer numbers,
the obtained results represent the classical theories of the
differential and difference equations. Many other interesting
time scales exist and give rise to many applications. The new
theory of the so-called “dynamic equation” not only unifies
the theories of differential equations and difference equations,
but also extends these classical cases to the so-called g-
difference equations (when T = g™ = {q' : t € N, for g > 1}

or T = g* = g% U {0}) which have important applications in
quantum theory (see [5]). Also it can be applied on different
types of time scales like T = hZ, T = N} and the space of the
harmonic numbers T = T,,.

In recent years, there have been many research activities
concerning the oscillation of solutions of various forced

second-order dynamic equations on time scales; we refer the
reader to the articles [6-13] and the references cited therein.

In this paper, we are concerned with the interval oscilla-
tion of the second-order nonlinear dynamic equation:

(r® g, (x@®),%*®))"
+p® g (x@®),x* )" O +q1) f(x(x@®) D

=e(t),
on a time scale T, subject to the following conditions:

(H,) Tisan unbounded above time scale, and ¢, € T with
t, > 0. We define the time scale interval [t,, c0) by
[ty, 00)1 = [ty 00) NT.

(H,) r(t) € CH([ty 00)y, R*) such that

At
LO m = OQ. (2)

(Hs) p(t), q(t), and e(t) are rd-continuous functions.

(Hy) f € C(R,R) is assumed to satisfy uf(u) > 0, for
u#0and f(u)/u > Llul"! for some L > 0 andy > 1.
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(Hs) g1 € C(R*R), g, € Cy(R%R), and vg, (1) >
0, for all v # 0, and there exist positive constants
a5, &, &y such that

1) g, (w,v)v = a, g7 (W, v), (u,v) € R?,
(2) g,(u, vIuy > oczgf(u, v) for all (u,v) € R?,
(3) g,(u,v) = azv forall (u,v) € R2.

(Hg) 7:T — Twithr(t) < tandlim, , 7(t) = oo.

By a solution of (1), we mean that a nontrivial real valued
function x satisfies (1) for t € T. A solution x of (1) is said
to be oscillatory if it has arbitrarily a large number of zeros;
that is, there exists a sequence of zeros {t,,} such that x(¢,,) = 0
andlim,,_,t, = co. Otherwise, x is said to be nonoscillatory.
Equation (1) is said to be oscillatory if all of its solutions are
oscillatory. In this work, we study the solutions of (1) which
are not identically vanishing eventually.

In order to prove our results, we use the following Hardy
et al. inequality [14].

Lemma 1 (Hardy et al. inequality [14]). If X and Y are
nonnegative, then
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a sequence of subintervals of the interval [t;, 00)y. Also, we
do not require that p(t), q(t), and e(t) be of definite sign.

Theorem 2. Assume that (H,)-(Hg) hold, and suppose that for
any T € [t,, 00)y there exist points T < s; < t;inT fori=1,2
such that p(t) > 0 and q(t) > 0 fort € [t(s)), ;)7 UlT(s,), t5)7
and

<0, telr(s),t)ys
e(t){ (4)

>0, te[r(sy).ty);-

Further assume that there exist a C., function u such that for
i=1,2u(t) # 0, o0n [s;,t;]y u(s;) = u(t;) = 0 and a positive
delta differentiable function p(t) € Crld([to,oo)T, R™) such
that

mM=fwmme

pr () r* (t)

1.1 11 AW () 97 (06 (1) [ p () + oy (1)) l(u © e
X4y =XYYL S 3 P '
PR 175 ) i
A
o o (t)
2. Main Results +ul (O)u () + (W () f;?(t) At =0,
In the following theorems, we apply Riccati techniques to
establish some sufficient conditions for oscillation of (1) on  where fort € [s;,t;)y andi = 1,2
Qi (t) =y (Y _ 1)(1_1/)/)/ (Lq (t))l/y 61 (t) PO‘ (t) |€ (t)l(}’*l)/y ,
(1) () a(t) -1
J L (1——1 >J L, L J 25 <o, ©)
6 (1) = w(s) 1 (8) o105 ) Jrisy T(s) g Jags) 7 (s)

1;

Then every solution of (1) is oscillatory.

Proof. Assume that (1) is nonoscillatory on [t,, c0)y. Then
there is a solution x of (1) and a point T' € [¢,, c0)y such that
x(¢) and x(z(t)) are of the same sign on [T, co)y. Consider

() =0 ().

the cases x(t) and x(z(¢)) that are positive on [T, c0);. We
use Riccati substitution:

r(t) g, (x(£),x" (1))
x (1) ’

Then, from (1) and using (Hs), we have

7)

w(t)=p(t)

. A(t)r(t)gl(x(t),xA(t)) - @) (r@®) g, (x®, x> ®)) = r® g, (x @), x> ®) x> ()
w=p x(®) TP X0 x @)
A
_p®
P i)
o) W (x®,x M) ) fxE®) | e __ranl(x<0’xA<0)xA<ﬂ:

x (1)

x7(t)

x7 (t) x (t) x° (t)



International Journal of Differential Equations 3
G IIN BYOT (x0.x®) g fEEO) e ar®g(x®),x"®)
-~ p(®) P x (£) x° (t) x7 (t) x7 () x (£) x° (t)
A 2 A (o4
Pt (1) . g(x0.x"0) fa@@) P we
< >0 w(t)—p° (t) [ayp (£) + ayr ()] OF 0 p’ ) q (1) s s o
A o (o
p- (1) p’(t) x (f) 2 o fx(@®)  p’B)e()
< o0 w(t) - (0 [o,p () + ayr ()] 200 (t)w t)—p° (t)q @) pars e 0
(8)
Since t; > s; > T such that p(t) > 0, gq(t) > 0 for which implies that
t € [1(s)),t;)y and e(t) < O fort € [1(sy),t;)y, then, from R
(1), we have X (1) (rgy (%, x%)) (z (1)) rm B )
(r ® g, (x (), x (t)))A x(r(t) ozx (7 (1)) w0 1(s)
N A On the other hand, for t € [s;,t;)y, we have
= p®) g, (x®).x* ) x* ©) - q (1) f (x ¢ (1)) O “
ve() <0, X(@(0) > x(r@) - x(r(5) = | 9 as
fort € [1(s;),t;)y. Hence (r(t)gl(x(t),xA(t))) is nonincreas- “® 1 (5) x (s)
ing for t € [7(s;), t;)y. We claim that x2(t) > 0 on [si,t)7. If = J TAS
not, then there is t > s, such that ) 16)
T(t A
rt) g, (x(©),x*®) <r(s)) g (x(sl),xA (sl)) =c w0 > o, J 0 r(s) gy (x(s),x (S))As
o (s) r(s)
. ’ N W0 Ag
using (H;), we have > (rgl (x,x )) (r(t) J;(s ) m
A ca !
(= Ttl)’ D Which implies that
integrating from s, to t, we get (1’91 (x, xA)) (r(0) 1 (J,T(t) £>—1
() < x(s)) + oy J fAs x@®) o\ r)) (17)
5 1(s (12)
for t € (s, t))ys
as t — 00, for t € [s),t));, . .
which implies that x(¢) is eventually negative. This is a using (15) and (17), we get
contradiction. Hence x2(t) > 0 on [sy, ;). - a(t) A
Therefore, for 7(t) < t < o(t), we lha\lfewT X (®) < 1 J‘i((tt)) (Asfr (s))
x(T(t) < x(t). w (r(®) 4% [, (Bs/r ()
Now, we use the fact that r(¢) g, (x(¢), X2(1)) is nonincreasing ] ) I”(t) (As/r (s)) ] (18)
fort € [7(sy),t,)y and (Hs). Then, for t € [s;,t,), we have <1- + i) = ,
o) Gz 00 TT((:)) (As/r (s)) 0, (8)
X (1) = x(1()) = J X (s) As 1
(t) for t € (s, 1))y
- Ja(t) L’CA(S) As Therefore,
ww  1(s) x(z ()
(14) x7(t) < AOR for t € (s, t))y- (19)

IN

As

1 Jo(t) r(s) g, (x (s), x" (s))
o

3 Je(o) r(s)

IN
| =

A alt) As
(rar (6%)) (7 (1)) Lw o

1

3

To see that (19) holds for ¢ = s;, we note that if 7(s;) = a(s;),
then §,(s;) = 1 and clearly (19) holds. If 7(s;) < o(s;), then
0,(s;) = 0 and thus (19) holds for t = s,. Hence (19) holds for
te st



4
From (8), (13), and (19), we get
w® ()
p (t)
e i)
P’ (1) x (t) 2
" 20 [ayp () + a7 (1)) Ww (1)
o fx@@®)) p’t)e)
-p (Hq(t) 0 + pram
p (1)
o (0) w(f)
o (20)
P (t) x(t(t) -
_ p2 (t) [OCZP (t) +0611’(t)] WU) (t)
o f@@®) p’M)e)
—p (t)q () 0 pram
A
P (t)
(0 w(t)
t
28 [o,p (£) + a7 (1)] g; w? (t)
o flx@@®)) p’t)e)
-p )6, (t)q(t) X @) + O
Using (H,), we get
wt (1) < l;(i))w(t)
0! 9, (1) 0
P2 (1) [y p (8) + oy7 (t)] 2t ) (t) o
~Lp® ()8, (1) q () Ix (x ()"
NA00)
x(¢)
Or
Lp” (18, ()4 () |x (x (@) - © x(ﬁ)(‘;)(”
A
wh (t) + ((:))w(t) (22)
p’ () 0y (1) w?
~ 0 [op (8) + g7 ()] Y (t).
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Since x(t) > O forallt > T and e(t) < 0 on the interval
[7(s1), t)y> then from (22) we have for t € [7(s), )t

P’ M) el

Lo 08, 0 g @ (O + =7

Pt (1)
p(t)

(t) + w(t) (23)

A0 8, (1) 2
P2 (1) 0N

Now, we consider the following two cases: Case 1: y > 1; Case
2:y=1

[oyp (t) + ay7 (1)] = ).

Case 1(y > 1).SetA =9,8 =y/(y - 1), and
= yLp” (1) 8, () q (1) Ix (= )",

Y P D)@l
y-1 x7(t)

By Lemma 1, we get that

(24)

P’ (B le )]

Lo (08, 0 g @ (@) + =7 5

1 1 1/Ay,1/8
= — —_ >
X+Y>X"Y (25)

=y(r=10)""" (Lg @) 8, 1) p” O le T

= Ql (t))
fort € [7(sy), ;). From (23) and (25), we have

a0

O

Q (1)< ~w? (t)+

(26)

@

p(t)

Case 2(y =1). Wheny =1,

o, (1)

2
200 w” ().

[o,p () + o7 (1)]

P’ M) e

o v
OaOaOREON+=o0™ o)

> Lq ()6, (t) p° (t) = Q, (1),

this implies that (25) and (26) hold for y = 1.
Multiplying (26) by (u°(t))* and integrating from s, to t;,
we have

t

Jt (W’ ()" Q (1) At < - j 1

Sy

(u® (1))’ w? (1) At

2 P (t) L 2
+ L ( (t)) W w(t) At — J (u (t)) (28)
P’ ()8 (t) [y p (£) + g7 ()]

EIGEI0) v )t
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Using integration by parts, we get
h 2 2 t
[ @ @ramas-wowol
sy 1

+ r [u(®) +u® (6)] u® () w () At

1

(29)
+j (u ())“’ () w(t) At - j W 1))’

. P’ ()8, (t) [y p (£) + g7 ()]
PP ()2 (t)

w? (t) At.
Using the fact that u(s,) = u(t,) = 0, we obtain
J (u° (t)) Q, () At < J () +u® ()] u® () w(t) At

+Jt W (1)) ’; (()) ) At—Ll W (1))

. p7 ()8, (1) [ p () + oy (1)]
p* ()12 (t)

f
w? (t) At < J
S1

[u(t)

1 (O] u® (1) + (u° 1) B ®)

1 - 2
mI(MM—jW(m

S1

pr ) (t)

A, lu] = j (1)) [Ql ) -

<0,

which is a contradiction of (5). The case x(t) < 0, x(7(t)) <
0OonT € [t;,00)r is similar (in this case, we use e(t) > 0
on [7(s,), t,)y to get a similar contradiction). Therefore, any
solution of (1) is oscillatory. This completes the proof. O

If p(t) = 0and g;(u,v) = v (¢ = a3 = 1), then (1)
reduces to equation
(r)x® (t))A +q) f(x(T@®) =e(t). (32)

Using Theorem 2 and choosing p(t) = 1, we have the
following corollary.

Corollary 3. Assume that (H,)-(H,) and (Hg) hold, and
suppose that for any T € [t,, 00)y there exist points T < s; < t;
in T for i = 1,2 such that q(t) > 0 fort € [1(s;),t;)y U
[7(s,), ty)y and

<0, telr(s),t)gs
e(t) (33)
t{ € [r(s2)ty); »

4w ()" p7 (1) &y (1) [op () + ey 7 ()]

p° ()8, (t) [eyp (1) + a7 ()]
. EXOIE0 w” (t) At
a| [ ®)) p7 (1) 8, (1) [oyp () + ayr (1)]
< - L { \j pz ) r2 () [w (1]
11 P (1) o
T 2w () \j 07 ()8, (1) [ayp (1) + o7 (1)] [u(®) +u” ®)]
2
A
u® () + (u® (1)) /;)T(tt)) } At
h prr () It
" Ll 4 (ue (1)) p° () 8, (1) [y p () + g7 (1)] [« ®
A
1 (O] u® (6) + (u” (1) E ®f
p(t)
h Pl () (1) ‘
< t
L 4 (u (t))* p° (t)(S ) [oyp () + g7 ()] [#®
+u” (O] u (6 + (u° (t))2 P (t) At.
(30)
This implies that
A 2
o A o 2 P (t)
(u@) +u” @) u” ) + (17 (1)) o) ] t (30

Further assume that there exist a C., function u such that for
i=1,2u(t) # 0,on[s;,t;]y uls;) = u(t;) = 0and a positive
delta differentiable function p(t) € C};([ty, 00)y, R") such that

B [u] = j W’ () [Qi(t)

~ r(t)
4o (1))* 5 (t)
>0,

[+ ®)u® ]| At (34)

where fort € [s;,t;)y andi= 1,2,

Q; (1)

=y (-1 (g )" 6,0 p° ®) le @1,



9, ()

7(t) As o(t) As 1
(Jr(si) @) (L<s,~> @) , () <a(D),
b )=o)
(35)

Then every solution of (32) is oscillatory.

Proof. Assume that (32) is nonoscillatory on [t,, c0)y. Then
there is a solution x of (32) and a T' € [t,, 00)¢ such that x(t)
and x(7(t)) have the same sign on [T, c0)y. Consider that the
cases x(t) and x(z(t)) are positive on [T, 00)y. As in the proof
of Theorem 2, for y > 1 and t € [7(s;), t;)y, inequality (26)
holds for all eventually positive solutions of (32), where p(t) =
0, 9,(u,v) =v (a; = a3 = 1), and p(t) = 1. Thus, we get

B 8, (1)

2
0 w’ (t). (36)

Q, () < —w" (t)

Multiplying (36) by (1°(t))* and integrating from s, to t;, we
have

| @@y amar
<- J (0 (6) W () At (37)

t, (19 (+))2
~ J W OF 8O 2 ar

o r(t)

Using integration by parts, we get
ty
J (W (1))’ Q, (t) At
S1

< - Bw )|
f (38)
+ J [t (®) +u” ()] u® () w () At

t (1 (4))?
_J' (u’ (1) 6, (t)wz (t) At.
5 r(t)

Using the fact that u(s;) = u(t,) = 0, we obtain

I 1 (u” (t))2 Q, () At < I 1 [t (t) +u° (8)] u® (¢)

t (19 (1))
cw (t) At — J %wz (t) At
(W) VO, ()
= Ll < \/T(t) w(t)
\r (t)

2
o NT\E o A
o (t)m[u(t)+u )] u (t)) At
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+L T ore @ Lo O O] A

- L 4(u° ()26, (1) () +u” ) u" 0] At.

(39)
This implies that
B, [u] = j L @) [Ql ®)
r(t) (40)

oy .
4o (1)" 6, (1) [ +u” O)u* ]| At

<0

which is a contradiction of (34). The case x(t) < 0, x(7(t)) <
OonT € [t;,00)y is similar (in this case, we use e(t) > 0 on
[7(s,), ;)7 to reach a similar contradiction). Therefore, any
solution of (32) is oscillatory. This completes the proof.  [J

Now, we assume that
g u,v)v=g Wmv), Y(uv) e R*. (41)

Then, (1) reduces to

(r g (x.x*®)) + p) g, (x 1), x> ) o)

+q@) f(x(t () =e(t).
Therefore, we have the following theorem.
Theorem 4. Assume that (H,)-(Hy) hold, and suppose that
for any T € [t,,00)y there exist points T < s; < t; in T for

i = 1,2 such that p(t) > 0 and q(t) > 0 fort € [t(s)),t;)7 U
[7(s,), t,) and

{S 0, telr(s).t)
e(t) (43)

>0, te[r(sy).ty)y-

Further assume that there exist a C; function u such that for
i=1,2u(t) £ 0,0n [s;,t;]y, u(s;) = u(t;) = 0 and a positive
delta differentiable function p(t) € Cid([to, 00), RY) such that

D;[u] = J_i (”0)2 [Qi

~ pir [p_A _P%p s [u+u’] uA]z A (44)
dp’s; L p pr (uo)?

>0,
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where fort € [s;,t;)y andi=1,2:

Q® =y(y-1)"""(1qg®)" 5, 7 ®) e )",

Then every solution of (42) is oscillatory.

Proof. Assume that (42) is nonoscillatory on [¢,, 00)y. Then
there is a solution x of (42) and a T' € [t;, 00)y such that
x(t) and x(7(t)) have the same sign on [T, 00)y. Consider that
the cases x(t) and x(z(t)) are positive on [T, c0)y. Let w(t) be

7
™ As 1 ™ As 17O As \ (45)
6; (t) = (L(s» m) (<1 B @> L(s,a 1) e L(sn @) SRR
1, T(t)=0(t).
From (25) and (49), we have for t € [7(s), ;)1
A (]
A po () p” ()6, () p(t)
Q) <-w" () + [ o pOr® w(t)
(50)
Cop” ()0 (t)
soren U

defined by (7). Then

R 0)

A _ o
W) =L w0 o
[ p0a(x®.x"®) 40 fxG®)
x° (t) x° (1) (46)

ey r®g (x@®,x*®)x*®
X7 (t) x () x ()

Using (13) and (19) and applying (H,) and (H;), we get

PR P 08 (1) p )
p(t) p@)r(t)

—Lp° ()8, (1) q () Ix (x ()" (47)

e ap (18,1 »
o pore U

w® (t) = [ w (t)

Or
P De)
x? (t)
RO MOLEOVIO
p(t) p)r(t)
o p’ ()0, (1) ,
oo VY

Since x(t) > O forallt > T and e(t) < 0 on the interval
[7(s1), t;)y, then from (48) we have for t € [7(s;),t;)y

P° (@) le )]
X7 (t)
PR P8 M) p )

p(t) p(t)r(t)

0‘1PU (t) 61 (t) 2
o YO

Lp” ()8, (1) q (1) [x (x (1)

<-wh )+

w(t) (48)

P’ )8, (g @) |x (T @) +

<-—wt @)+

w(t) (49)

Multiplying (50) by (4 (t))* and integrating from s, to ¢, we
have

jtl (” (®)’Q () At < j (u” (£)" w® () At

A a
“an2 | Pm @ p ()8, ) p ()
' L (" @) [ p(t) p(t)r(t) G

2a,p” ()8, ()

cw(t) At - r (u’ (1)) w” () At.

: p* ()7 (1)
Using integration by parts, we get

r W (1)’ Q (At < —u* (B w (t)|:

+ Jtl [u(®) +u® )] u® () w (t) At

1

G LT P08,
+L " ®) [p(t) p(Or () ©2)

ty 2
~w (t) At — J ()

ap” ()8, (6) >

From the fact that u(s;) = u(¢,) = 0, we obtain

[t (t) +u° (£)] u® ()

J (W () Q, (1) At < j

1

~w (t) At + r (u” (t))2

$1

[ 0

p(t)

P8 Mp®)
p(t)r(t)

ap” (1), (1)
. Ww (f) At < J

Sy

w(t) At — Jtl u (1))

t

(w (1)
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. [(,:A ®) _p 18, (1) p(t)
pt) pt)r ()
[u@) +u” )] u® (t)) o’ (08, (1)
ey )Y o
-w? (t)] At
3 J PO (1) (1) [pA (t)
s At ()6, (8) [ p(D)
MOINGYIO)
p(t)r(t)
o A 2
. [u(t)+u (t)lu (t)] A
(u (t)
(53)
This implies that

Dyl = | W)’ [Ql

pr [pA p”5lp+[u+u"]“A]2]At oy
dqgp?s | p pr (o)’

<0
which is a contradiction with (44). The case x(t) < O,

x(t(t)) < 0onT € [ty, 00) is similar (in this case, we use
e(t) = 0 on [7(s,),t,)y and D, < 0). O

w; (1) = p° (£) [y (y=1)""7 (Lqg )" 5, 1) le 1TV — (@) r (1))" +

po- (L) (0-5s)

1)

Jf As . 1
s 7(s) oo

Then every solution of (1) is oscillatory.

Proof. Assume that (1) is nonoscillatory on [t,, co);. Then
there is a solution x of (1) and a T' € [¢,, co)y such that x(t)
and x(7(t)) have the same sign on [T, o). Consider the case
where x(t) and x(z(t)) are positive on [T, 00)}. Define the
function w(t) by the generalized Riccati substitution:

r(t) g, (x(£),x" (1))

Ay A
w (1) = p* (1) )

+a(t)r(t)]+p"(t)[

International Journal of Differential Equations

In the following, we assume that r(¢) is an rd-continuous
function (i.e., r(t) € C:d([to,oo)r, R)) and employ the
generalized Riccati technique to establish new oscillation
criteria for (1).

Theorem 5. Assume that (H,) and (H;)-(Hg) hold, and
suppose that for any T € [t, 00)y there exist points T < s; < t;
in T fori = 1,2 such that p(t) = 0 and q(t) > 0 for
t € [t(s;),t))7 U [1(s,), t,)7 and

<0, te[r(s),t)y>
e(t){ (55)

>0, te[r(sy).ty);-
Further assume that there is a function a(t) such that a(t)r(t)
is a delta differentiable, a positive delta differentiable, function

p(t) and there exist a C., function u such that fori = 1,2,
u(t) # 0, on [s; t;]y, u(s;) = u(t;) =0,

E;[u] = Li (“0)2 [V’i

2.2 A o
pr Pt 2p°Baoyp +ayr]

_ - 56
4p°B; [oyp + 7] <[ P pr 36
[u+u’]u? >2

) Jarso,

(u?)
where fort € [s;,t;)yandi=1,2
@) [oyp (t) + oyr (1)] 20
Bi (1) ’
o® As \ 7 (57)

m) , t<ao(t),
t=o0(t).

A

for t € [s),t));.

Then, from (1) and using (Hs), we have

A

A
r(t) gy (x (), x* (1)) Mmr(t)]

x (t)
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A r A A
-£ ((tt))wa) Lo O @@ r ) +p7 (O _r(t) 5 (ig;x ©)
A A A A A
Pt ) [r®) g (x©. %> ®)]" - r©) g, (x @), 2 ®) % ()
0 w(t) +p7 (1) (@) r (1) + p7 (t) TS
O @t | LOAEOL OO g0 feeo) o ]
p(®) 4 ) X (1) * (8) X (1)
P O r () g (x(®),x* (1) x" (1)
- x (t) x° (t)
A ) . g (x),x*®) 7 (t)e(t
= ’;((tt))w(t) 7 O@OrO) =" Oleap®) +ar®] = Ec(t) () )2 x(")(‘;)( |
P Bq®) fx(T®)
X (t)
A A 2
a0 . A . @) [9(x®.x" )] p@ew
=0 w(t)+p” () (at)r ) —p° () [oyp () + o7 (t)] = [ e t 0
P Mg f(x(T®)
x° (1) '
(59)
Using (19), we get x@®) [ 9 (x t),x" (t)) ?
X9 (1) x(t)
wh (1) < P (i))w(mp () @) ©) - p° (0) (61)
Since x(t) > O forallt > T and e(t) < 0 on the interval
A 2 [7(s;),t,)y, then from (61) we have for ¢ € [1(s)), 1)y
Jonp )+ e (0] & (t) [gl (x(t).x (t))] e
X7 (1) x(t) Lp" (08, a0 e (r O + — 5=
e P Hql) fx@®) _p* 1) A
+ - < A ) o A
X (t) 8 (1) x (T (1) p(t)  (60) s—w O+ TTwp OO 1)
4 o (62)
‘w(®) +p” (1) (@@®)r ()" - p° () 0 [oup )+ ayr (0]
A 2 2
[aap ® + e (] 22 [91 (x(®),x (t))] 0 [9(:0.5 0)
x7 (t) x(t) x° (£) x (t)
+ P’ (‘? e(t) L® (8, (1) () Ix (x s From (25) and (62), we have
0 y(r=D)" 7 (Lg®)" 0 (06, (1) 1e ("
Therefore,
- e <0 () + p:((tt))w(t) + 7 (D) (@) r (1)
(o2 6 - _ 7 NN
Lp (£) 6, (1) q (t) |x (z ()] e )

<-—wt @)+

= p7 (1) [op () + ;7 (1)]

=p7 () [oyp () + g7 (2)]

A
p-(t) o A
O OEOr©) < [ g (x (1), 2 <t))]2

x° (t) x (t)
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From the definition of w(t), we see that

9 (x (), x* @) 2_[ w(t)
x (1) RYIOHG

_ [ w (1)
p@)r(t)

2
—a(t)
(64)

2o, 2w®a)
] O e

As in the proof of (19) in Theorem 2, we have

B () x7 () < x(t) fort e [s;,t);. (65)

Using (64) and (65) in (63), we get

Y (Y - 1)(1—Y)/Y (Lq (t))l/Y pU (t) 81 (t) |e (t)|(]/—1)/y

A
< —w® () + ’;T(f))w &) +p° () (@ () r ()
P @) By () [ap () + v (1)]
i 7 (07 (0) v o

-7 (t) B, (t) [ayp (t) + a7 (8)] @® ()

. 207 (t) By (D a(t) [oyp () + o7 (1))
p)r(t)

w(t).

Hence,

p” (t)

p(t)

. 207 (t) By (D a(t) [oyp () + o7 (t)]
p@®)r(t)

P (@) By (1) [ayp () + a7 (1)]
- 2O v,

vy () < —w" (1) +

w(®) (67)

Multiplying (67) by (1°())* and integrating from s, to t,, we
have

t

r W () y, (t) At < — J (W (1) w? (t) At

t
+ J W’ 1))

_ [ P () 207 () i () a®) [ap (1) + o7 (1)]

6
O PO () (68)

“w (F) At — rl (u° (t))2

PP B () [ayp (1) + oy (B)]

IGE0) v @)t

International Journal of Differential Equations

Using integration by parts, we get

I W @)y 0 A < = O w )]

S1

+ r [ () +u° (B)] u® (1) w () At

* J W )
1A o (69)
' [p (1), 27" OB O a® [oypt) +ar ©)]
p(t) p)r(t)
cw(t) At — Jtl (1))
P () By (1) [ayp () + o7 ()]
. OIE0, w” (t) At.
From the fact that u(s;) = u(t;) = 0, we obtain
I W)y, (1) At < J ) + (O] u® (t)
Oars [ (W (1)) ph )
w *L wON S
207 () By (D) a(b) [eyp () + oy (2)]
* PO () ] v A
t
_ J (° (1))
70
FOROMpOrarol s
pr(t)r2 (1)
3 J P27 (1) (u° ()’ ([pA (t)
" s 4p7 ) B ) [app () +or O]\ | p (1)
2p7 (t) By (t) a(t) [“zp (t) +ayr (t)] ]
+
p(t)r(t)
RCIORY (t)l u? (t) )2 A
(ul (1))
This implies that
Bl = [ @y [%
. pr’ < [P_A N 2p°Braayp + ayr] (71)
4p7B [eup +ayr] \ | p pr

. [u+u”]uA>2

) At<0

which is a contradiction with (56). The case x(t) < 0,
x(7(t)) < 0onT € [ty, 00)y is similar (in this case, we use
e(t) = 0 on [7(s,),t,)y and E, < 0). O
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Remark 6. From Theorem 5, we can establish different suf-
ficient conditions for the oscillation of (1) by using different
choices of p(t) and a(t).

3. Examples

In this section, we give some examples to illustrate our results.

Example 1. Let T = R and consider the following nonlinear
forced delay differential equation:

((sin’t+1) @ +sint) g, (x,x'))’
+ (sin’ + 1) (2 = sint) g, (x, x) ' (72)
+3costf (x (r (1)) = sint,
where
o1 (') = 2,

9 (x, x') = xx' (1 +x°+ x'z) ,

(0‘1 =, =a;=1), (73)
f(x)=x2+cosx),
T(t) =t,
(L=y=1).
Equation (72) is of the form (1) where
r(t) = (sinzt + 1) (2 +sint),
p(t) = (sinzt + 1) (2 —sint), 1)
q (t) = 3 cost,
e(t) =sint.

Applying Theorem 2 and for any T, we choose 7 sufficiently
large so that 2nm — 7 > T Let

s, =2nm —m,
t, =s, =2nm, (75)
t, = 2nmw + .
Note that p(t) > 0, q(t) > 0 on
[7(s1). 1) U[7(s,).12)
= [2nm — m, 2nm) U [2nm, 2nm + 1)
= [2nm — m,2nm + 1),

e(t)

<0,
=sint
>0,

(76)

te[r(s)),t,) = [2nm —m,2nm),

te[r(sy),t,) = [2nm, 2nm + 7).

1

If we take p(t) = 1 and u(t) = sint, then u(s;) = u(t;) = 0,
u(t) # Oon [s;,t;],i=1,2.
It is easy to verify that

t) 2nm
J u* (t) Q tdt=3 J sin’t cost dt = 0,

2nm—m

Jtl 72 () (2u (t) o' (t)) dt
o 42 (1) [p@) +7(1)] (77)

2
rnﬂ (sinzt + 1) (2 +sint)?

2sintcost) dt
4sin’t (4sin’t + 4) ( )

2nm—m

:0)

where &, (t) = 1. Hence A, [u] = 0; that is, (5) holds fori = 1.
Similarly, for s, and ¢,, we can show that (5) holds for i = 2.
Therefore, by Theorem 2, we get that (72) is oscillatory.

Remark 7. The results of [15] cannot be applied to (72) for
r(t) = (sin’t+1)(2+sint) # 1and p(t) = (sin’t+1)(2—sint) #
0. But, according to Theorem 2, when (T = R), this equation
is oscillatory.

Example 2. Let T = R and consider the following nonlinear
forced delay differential equation:

—2x" + xx* + %x (x + 1) sgn(x) (t) = sin Vi,
g (78)
t>1,
where
9 (x, x') =/,
92 (x, x') = xx',
(=0 =a;=1), (79)
f(x)=x(x+1)sgn(x),
T(t) =t,
(L=y=1).
Equation (78) is of the form (1) where
r(t) =-2,
p)=1,
m
t =
q(t) NG (80)
m >0,
e(t) = sin Vt.
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Applying Theorem 5 and for any T > 1, we choose n
sufficiently large so that (2n — 1)*7° > T. Let

s;=02n- 1)2 ,

t, =s, = (2n1)*, (81)
t,=(Q2n+ 1) .
Note that p(t) > 0, g(t) > 0 on
[r(s1),t1) U [r(s:),1)
= [@n-1 7%, @nn)*) U [@nn)®, 2n+ 1) 77),
e(t) (82)
in i <0, te(r(s).t)=[@n-1)"" @nmn)}),

>0, te[r(sy),.t,)= [(21’17‘[)2,(27’!+ 1) nz).

If we take p(t) = 1, a(t) = 1, and u(t) = sin V%, then u(s;) =
u(t;) =0, u(t) # Oon [s;,t;], i =1,2.
It is easy to verify that

ty

E, [u] :J

(”6)2 [1//1
P
B 4p7 B, oy p + 7]

2 2
[+ u’]u® (@nr) m . s
+ —(u")z At = J(Zn_l)znz <$ sin® Vt + 4 (83)

2nm

. cos? V't + 4 cos Vt sin \/?)dt: J
(

< [ﬁ + 2p°Brafeyp +ayr] ]
P pr

. 3
(2m sin”s
2n—-1)m

8
+ 85 cos’s + 8s cos s sin s) ds = gm +217 (4n—1)

21 >0,

where 8, (t) = f3,(¢) = 1. Hence (56) holds for i = 1. Similarly,
for s, and t,, we can show that (56) holds for i = 2. Therefore,
by Theorem 5, we get that (78) is oscillatory.

Remark 8. The results obtained in the above examples cannot
be obtained by the results in either [9] or [10].
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