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We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time
derivative.The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is
proved.The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM). Numerical simulations
are presented to validate themethod and to show the effect of changing the fractional derivative parameters on the solution behavior.

1. Introduction

Fractional derivatives have been utilized for describing
numerous models in different branches of applied science.
Anomalous diffusion is one process that has been successfully
modeled by fractional derivatives. This type of diffusion
is characterized by the nonlinear dependence of the mean
square displacement 𝑥(𝑡) of a diffusing particle over time 𝑡:
𝑥
2
(𝑡) ∝ 𝑘

𝛼
𝑡
𝛼, and it can be interpreted as the Lévy stable

densities. On the other hand, in the case of classical diffusion,
linear dependence 𝑥2(𝑡) ∝ 𝑘𝑡 occurs and it follows Gaussian
statistics and Fick’s second law for running processes at time
𝑡 [1].

Anomalous diffusion is described by fractional partial
differential equations (FPDEs) by replacing classical deriva-
tives with derivatives of fractional order. A type of anoma-
lous diffusion that received great attention is the fractional
diffusion equation with spatial Riesz and Riesz-Feller frac-
tional derivatives [2, 3]. These fractional derivative operators
are used to model phenomena as anomalous diffusion [1],
discrete random walk models [3, 4], and continuous random
walk models [5] in the form of FPDEs.

General solutions are obtained for some classes of linear
FPDEs, using integral transforms. For example, in [6], a
general solution is given for a time fractional diffusion-wave
equation defined in a bounded space domain. The fractional

time derivative is described in the Caputo sense. The finite
sine Laplace transform technique is used to obtain the solu-
tion. In [7], analytic techniques are introduced to solve cer-
tain types of multiterm time-space Caputo-Riesz fractional
advection-diffusion equations on a finite domain using the
equivalent relationship between the Laplacian operator and
the Riesz fractional derivative. In [8], a fundamental solution
is investigated for the space-time fractional diffusion-wave
equation, which is obtained from the standard diffusion
equation by replacing the second-order space derivative with
a Riesz-Feller derivative and the first-order time derivative
with a Caputo derivative. The paper [9] presents a solution
of a unified reaction-diffusion equation with the Riemann-
Liouville fractional derivative as the time derivative and
Riesz-Feller derivative as the space derivative in terms of
𝐻-function. In [10], a closed form solution in terms of
Mittag-Leffler function is obtained for a space-time fractional
telegraph equation with Riesz-Feller derivative as the space
derivative. In [11], a solution of a space-time fractional advec-
tion-dispersion equation is derived in terms of the Green
functions.

The proposed abovementioned methods work in case of
linear FPDEs. However, for the nonlinear case, the numerical
methods and the semianalytic approaches have the advan-
tage. Several numerical techniques are introduced in the liter-
ature, and we state some of the known methods here. In [12],
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thematrix transformmethodwith themethod of lines is used
to obtain the numerical solution of a fractional partial dif-
ferential equation with Riesz space fractional derivatives on
a finite domain. An explicit finite-difference approximation
is used to solve the variable-order nonlinear space fractional
diffusion equation [13]. Crank-Nicolson method for the frac-
tional diffusion equation with the Riesz fractional derivative
is used in [14], while the improved matrix transform method
with Pade approximation is used in [15]. Yet, semianalytic
solutions for this type of problems include only the series
solution by the variational iteration method approach (see
[16, 17]) and by the homotopy analysis method (HAM) (see,
e.g., [2, 18]). In [19], the homotopy analysis method with the
Fourier transform is used to obtain and analytically approx-
imate solutions of Riesz fractional diffusion equation and
Riesz fractional advection-dispersion equation.

As seen in the literature review, only few articles dealt
with applying iterative techniques to these types of FPDEs
due to the difficulty of repeated application of Riesz or Riesz-
Feller fractional derivatives to the solution components. In
this work, we consider the space-time fractional diffusion
equation of the following form:

𝐶
𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) = 𝑘 (𝑢) 𝑅

𝛼,𝜃

𝑥
𝑢 (𝑥, 𝑡) + 𝑔 (𝑢) ,

−∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

(1)

where 𝐶𝐷
𝛽

𝑡
denotes the Caputo fractional derivative (in time)

of order 𝛽 and𝑅𝛼,𝜃
𝑥

denotes the Riesz-Feller fractional deriva-
tive (in space) of order 𝛼 and skewness 𝜃. Parameters 𝛼, 𝜃,
and 𝛽 are real numbers restricted to

0 < 𝛼 ≤ 2, 𝛼 ̸= 1,

|𝜃| ≤ min (𝛼, 2 − 𝛼) ,

0 < 𝛽 ≤ 1,

(2)

and the two functions 𝑘 and 𝑔 are continuous functions in
𝑢. We aim to establish the continuation of the solution of (1)
to the exact solution of the corresponding equation in Riesz
fractional derivative as the skewness parameter approaches
zero. This objective is carried out theoretically then via
approximate series solution obtained iteratively by applying
the OHAM.

This paper is organized as follows. In Section 2, basic
definitions of fractional derivative operators involved are
presented. Proof of solution continuation is presented in
Section 3.TheOHAM is illustrated in Section 4.The results of
numerical experiments are presented in Section 5. Section 6
contains the conclusion of this work.

2. Fractional Derivatives and Integrals

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥
𝑝
𝑓
1
(𝑥), where 𝑓

1
(𝑥) ∈ 𝐶(0,∞), and it is said to be

in the space 𝐶𝑚
𝜇
if 𝑓𝑚 ∈ 𝐶

𝜇
,𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function𝑓(𝑥) ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)

∫

𝑥

0

(𝑥 − 𝜏)
𝛼−1
𝑓 (𝜏) 𝑑𝜏,

𝛼 > 0, 𝑥 > 0,

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

The operator 𝐽𝛼 satisfies the following properties. For 𝑓 ∈
𝐶
𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 > −1,

(1) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥),

(2) 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥),

(3) 𝐽𝛼𝑥𝛾 = (Γ(𝛾 + 1)/Γ(𝛾 + 𝛼 + 1))𝑥𝛼+𝛾.

Definition 3. The fractional derivative in Caputo sense of
𝑓(𝑥) ∈ 𝐶

𝑚

−1
,𝑚 ∈ N, 𝑥 > 0, is defined as

𝐶
𝐷

𝛽

𝑥
𝑓 (𝑥) =

{
{
{

{
{
{

{

𝐽
𝑚−𝛽 𝑑

𝑚

𝑑𝑥
𝑚
𝑓 (𝑥) , 𝑚 − 1 < 𝛽 < 𝑚,

𝑑
𝑚

𝑑𝑥
𝑚
𝑓 (𝑥) , 𝛽 = 𝑚.

(4)

Some basic properties of Caputo fractional derivative are
listed in the following lemma.

Lemma 4. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 ≥ −1,

then,

𝐷
𝛼
(𝑐) = 0, (𝑐 is a constant)

𝐷
𝛼
𝑥
𝛾
=

{
{

{
{

{

Γ (𝛾 + 1)

Γ (𝛾 − 𝛼 + 1)

𝑥
𝛼+𝛾
, 𝛾 > 𝛼 − 1,

0, 𝛾 ≤ 𝛼 − 1,

𝐷
𝛼
𝐽
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼
𝐷
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)
(0)

𝑥
𝑘

𝑘!

, 𝑥 > 0.

(5)

Definition 5. The Riesz-Feller partial fractional derivative
𝑅
𝛼,𝜃

𝑥
is defined as [3]

𝑅
𝛼,𝜃

𝑥
𝑢 (𝑥) = − [𝑐

+
𝐷
𝛼

+
𝑢 (𝑥) + 𝑐

−
𝐷
𝛼

−
𝑢 (𝑥)] ,

0 < 𝛼 < 2, 𝛼 ̸= 1,

(6)

where𝐷𝛼
±
𝑢(𝑥) are the Weyl fractional derivatives defined as

𝐷
𝛼

±
𝑢 (𝑥) =

{
{
{

{
{
{

{

±

𝑑

𝑑𝑥

𝑊
1−𝛼

±
𝑢 (𝑥) , 0 < 𝛼 < 1

𝑑
2

𝑑𝑥
2
𝑊
2−𝛼

±
𝑢 (𝑥) , 1 < 𝛼 < 2,

(7)
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and𝑊𝛽
±
denote the Weyl fractional integrals of order 𝛽 > 0,

given by

𝑊
𝛽

+
𝑢 (𝑥) =

1

Γ (𝛽)

∫

𝑥

−∞

(𝑥 − 𝑧)
𝛽−1
𝑢 (𝑧) 𝑑𝑧,

𝑊
𝛽

−
𝑢 (𝑥) =

1

Γ (𝛽)

∫

∞

𝑥

(𝑧 − 𝑥)
𝛽−1
𝑢 (𝑧) 𝑑𝑧.

(8)

The coefficients 𝑐
+
and 𝑐
−
have the following forms:

𝑐
±
=

sin ((𝛼 ∓ 𝜃) 𝜋/2)
sin (𝛼𝜋)

, (9)

where |𝜃| ≤ min (𝛼, 2 − 𝛼). When 𝛼 = 0, the Weyl fractional
derivative degenerates into the identity operator:

𝐷
0

±
𝑢 (𝑥) = 𝐼𝑢 (𝑥) = 𝑢 (𝑥) . (10)

For continuity, we get

𝐷
1

±
𝑢 (𝑥) = ±

𝑑

𝑑𝑥

𝑢 (𝑥) ,

𝐷
2

±
𝑢 (𝑥) =

𝑑
2

𝑑𝑥
2
𝑢 (𝑥) .

(11)

Evidently, in the case of 𝛼 = 2 and 𝜃 = 0, we define

𝑅
𝛼,0

𝑥
𝑢 (𝑥) =

𝑑
2

𝑑𝑥
2
𝑢 (𝑥) . (12)

For the case of 𝛼 = 1 and 𝜃 = 0, we have

𝑅
1,0

𝑥
𝑢 (𝑥) =

𝑑

𝑑𝑥

𝐻𝑢 (𝑥) =

𝑑

𝑑𝑥

1

𝜋

∫

∞

−∞

𝑢 (𝑧)

𝑧 − 𝑥

𝑑𝑧, (13)

where 𝐻 is the Hilbert transform and the integral is under-
stood in the Cauchy principal value sense. For the cases 𝛼 = 1
and 𝜃 = ±1, we obtain the first derivative:

𝑅
1,±1

𝑥
𝑢 (𝑥) = ±

𝑑

𝑑𝑥

𝑢 (𝑥) . (14)

The special case 𝜃 = 0 is known as Riesz fractional derivative.

3. Optimal Homotopy Analysis
Method (OHAM)

In this section, we begin by illustrating the basic steps of the
classical homotopy analysis method (HAM). Consider the
following nonlinear equation:

𝑁[𝑢 (𝑥, 𝑡)] = 0, (15)

where 𝑁 is a nonlinear operator, 𝑢(𝑥, 𝑡) is the unknown
function, and 𝑥 and 𝑡 denote spatial and temporal inde-
pendent variables, respectively. Liao [20] generalized the
traditional homotopymethod to construct the so-called zero-
order deformation equation given by

(1 − 𝑝) 𝐿 [𝜙 (𝑥, 𝑡; 𝑝) − 𝑢
0
(𝑥, 𝑡)]

= 𝑝ℏ𝐻 (𝑥, 𝑡)𝑁 [𝜙 (𝑥, 𝑡; 𝑝)] ,

(16)

where 𝑝 ∈ [0, 1] is an embedding parameter, ℏ is a nonzero
auxiliary parameter, 𝐻(𝑥, 𝑡) is an auxiliary function, 𝐿 is an
auxiliary linear operator, 𝑢

0
(𝑥, 𝑡) is an initial guess of 𝑢(𝑥, 𝑡),

and𝜙(𝑥, 𝑡; 𝑝) is an unknown function.Obviously, when𝑝 = 0
and𝑝 = 1, we have𝜙(𝑥, 𝑡; 0) = 𝑢

0
(𝑥, 𝑡) and𝜙(𝑥, 𝑡; 1) = 𝑢(𝑥, 𝑡),

respectively. Thus, as 𝑝 increases from 0 to 1, the solution
𝜙(𝑥, 𝑡; 𝑝) varies from the initial guess 𝑢

0
(𝑥, 𝑡) to the required

solution 𝑢(𝑥, 𝑡). By expanding 𝜙(𝑥, 𝑡; 𝑝) in Taylor series with
respect to 𝑝, we have

𝜙 (𝑥, 𝑡; 𝑝) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) 𝑝

𝑚
, (17)

where

𝑢
𝑚
(𝑥, 𝑡) =

1

𝑚!

𝜕
𝑚
𝜙 (𝑥, 𝑡; 𝑝)

𝜕𝑝
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑝=0

. (18)

If the auxiliary linear operator, the initial guess, and the aux-
iliary parameter ℏ and the auxiliary function are so properly
chosen, then, as proved by Liao [20], series (17) converges at
𝑝 = 1 and one has

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) , (19)

which, as proven by Liao [20], must be one of the solutions
of the original nonlinear equation. Using definition (18), the
governing equation of the HAM can be deduced from the
zero-order deformation equation (16) as follows. Define the
vector

𝑢⃗
𝑛
= {𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡) , . . . , 𝑢

𝑛
(𝑥, 𝑡)} . (20)

From (16), the so-called 𝑚th-order deformation equation is
given by

𝐿 [𝑢
𝑚
(𝑥, 𝑡) − 𝜒

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)]

= ℏ𝐻 (𝑥, 𝑡)R
𝑚
[𝑢⃗
𝑚−1
(𝑥, 𝑡)] ,

(21)

where

R
𝑚
[𝑢⃗
𝑚−1
] =

1

(𝑚 − 1)!

𝜕
𝑚−1
𝑁[𝜙 (𝑥, 𝑡; 𝑝)]

𝜕𝑝
𝑚−1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑝=0

,

𝜒
𝑚
=

{

{

{

0, 𝑚 ≤ 1,

1, 𝑚 > 1.

(22)

Applying the inverse operator 𝐿−1 to both sides of (21),
𝑢
𝑚
(𝑥, 𝑡) can be calculated by symbolic computations soft-

ware.TheHAMhas been successfully applied to solve various
classes of equations and applied problems [21–25].

In the classical HAM, choosing the value of parameter ℏ
depends on inspecting the graph of the quantity of interest:
the solution or one of its derivatives. Yet, when 𝐻(𝑥, 𝑡) is
fixed, it is obvious that 𝑢

𝑚
(𝑥, 𝑡) contains only one control

parameter ℏ. Thus, by constructing a formula for the residual
error, the OHAM solution is obtained by choosing the value
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for parameter ℏ that minimizes the error. Here, the averaged
residual error defined for ordinary differential equations in
[26] is generalized to the case of two variable partial differen-
tial equations in the following form:

𝐸
𝑚
(ℏ) =

1

𝑀𝐾

𝑀

∑

𝑖=0

𝐾

∑

𝑗=0

[𝑁(

𝑚

∑

𝑛=0

𝑢
𝑛
(

𝑖

𝑀

,

𝑗

𝐾

))]

2

, (23)

which is a nonlinear algebraic equation of one unknown: the
convergence-control parameter ℏ. Thus, the optimal value of
ℏ is determined by the minimum of the averaged residual
error 𝐸

𝑚
to ensure the fast convergence of the homotopy

series.

4. Continuation of the Solution

In this section, we define Riesz-Feller fractional derivative
on unbounded domain in Caputo sense. This definition is
considered as a generalization of the definition given in [27]
for Riesz fractional derivative on bounded domains.

Definition 6. TheRiesz-Feller fractional derivative in Caputo
sense is defined by

𝐶
𝑅

𝛼,𝜃

𝑡
𝑓 (𝑡) = − [(𝑐

+
)
𝐶
𝐷

𝛼

+
+ (𝑐
−
)
𝐶
𝐷

𝛼

−
] ,

0 < 𝛼 < 2, 𝛼 ̸= 1,

(24)

where 𝐶𝐷
𝛼

+
and 𝐶𝐷

𝛼

−
are Weyl fractional derivatives defined

in Caputo sense for 𝛼 ∈ (0, 2), 𝛼 ̸= 1, as

𝐶
𝐷

𝛼

±
𝑓 (𝑡) =

{
{
{

{
{
{

{

±𝑊
1−𝛼

±

𝑑

𝑑𝑡

𝑓 (𝑡) , 0 < 𝛼 < 1,

𝑊
2−𝛼

±

𝑑
2

𝑑𝑡
2
𝑓 (𝑡) , 1 < 𝛼 < 2,

(25)

and defined for 𝛼 = 0, 1, and 2 as

𝐶
𝐷

0

±
𝑓 (𝑡) = 𝑓 (𝑡) ,

𝐶
𝐷

1

±
𝑓 (𝑡) = ±

𝑑

𝑑𝑡

𝑓 (𝑡) ,

𝐶
𝐷

2

±
𝑓 (𝑡) =

𝑑
2

𝑑𝑡
2
𝑓 (𝑡) .

(26)

Lemma7. Let𝑓(𝑥) belong to the class of “good functions” [28].
Then, for 𝛼 ∈ (0, 2), 𝛼 ̸= 1,

𝐶
𝑅

𝛼,𝜃

𝑥
𝑓 (𝑥) = 𝑅

𝛼,𝜃

𝑥
𝑓 (𝑥) . (27)

Proof. Consider the case 𝛼 ∈ (0, 1). Riesz-Feller fractional
derivative can be written in the following form:

𝑅
𝛼,𝜃

𝑥
𝑓 (𝑥) =

−𝑑

𝑑𝑥

[∫

∞

0

𝑐
+
𝑓 (𝑥 − 𝜆) − 𝑐

−
𝑓 (𝑥 + 𝜆)

𝜆
𝛼

𝑑𝜆] , (28)

which can be written as

𝑅
𝛼,𝜃

𝑥
𝑓 (𝑥) = ∫

∞

0

𝑐
−
𝑓
󸀠
(𝑥 + 𝜆) − 𝑐

+
𝑓
󸀠
(𝑥 − 𝜆)

𝜆
𝛼

𝑑𝜆. (29)

For 𝐶𝑅
𝛼,𝜃

𝑥
, we have

𝐶
𝑅

𝛼,𝜃

𝑥
𝑓 (𝑥) = 𝑐

+
∫

𝑥

−∞

𝑓
󸀠
(𝑧)

(𝑥 − 𝑧)
𝛼
𝑑𝑧

− 𝑐
−
∫

∞

𝑥

𝑓
󸀠
(𝑦)

(𝑦 − 𝑥)
𝛼
𝑑𝑦,

(30)

which by substitution yields

𝐶
𝑅

𝛼,𝜃

𝑥
𝑓 (𝑥) = ∫

∞

0

𝑐
−
𝑓
󸀠
(𝑥 + 𝜆) − 𝑐

+
𝑓
󸀠
(𝑥 − 𝜆)

𝜆
𝛼

𝑑𝜆, (31)

which is the same as (29). A similar argument holds for the
case 𝛼 ∈ (1, 2).

As the equivalence between the Riemann and Caputo
definitions of Riesz-Feller fractional derivative is deduced, we
discuss the continuation of the solution obtained.

Theorem8. If𝑓(𝑥) is a function in𝐿1(−∞,∞), then the exact
solution 𝑢𝛼,𝜃

𝛽
of the space-time fractional diffusion equation (1)

is given by

𝑢
𝛼,𝜃

𝛽
(𝑥, 𝑡)

=

1

2𝜋

∬

∞

−∞

𝐸
𝛽
(− |𝜔|

𝛼
𝑡
𝛽
𝑒
−𝑖𝜃𝜋/2

) 𝑓 (V) 𝑒𝑖𝜔(𝑥−V)𝑑𝜔𝑑V,
(32)

where 𝐸
𝛽
(𝑧) is the one parameter Mittag-Leffler function

defined as [29]

𝐸
𝛽
(𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (1 + 𝑘𝛽)

, 𝛽 > 0. (33)

Theorem 9. Let 𝛼 ∈ (1, 2), 𝛽 ∈ (0, 1), |𝜃| ≤ min (𝛼, 2 − 𝛼),
and 𝑓(𝑥) be a function in 𝐿1(−∞,∞), and let 𝑢𝛼,𝜃

𝛽
be solution

(32) of the space-time fractional problem (1); then,

lim
𝜃→0

𝑢
𝛼,𝜃

𝛽
(𝑥, 𝑡) = 𝑢

𝛼

𝛽
(𝑥, 𝑡) , (34)

where 𝑢𝛼
𝛽
(𝑥, 𝑡) is the exact solution of Riesz fractional diffusion

equation:

𝐶
𝐷

𝛽

𝑡
𝑢 (𝑥, 𝑡) = 𝑅

𝛼

𝑥
𝑢 (𝑥, 𝑡) , − ∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑓 (𝑥) ,

(35)

with the same limits for parameters 𝛼 and 𝛽.

Proof. Consider the set of functions:

𝜑
𝑛
(𝜔)

=

1

2𝜋

𝐸
𝛽
(− |𝜔|

𝛼
𝑡
𝛽
𝑒
−𝑖𝜋/2𝑛

)∫

∞

−∞

𝑓 (V) 𝑒𝑖𝜔(𝑥−V)𝑑V,

𝜔 ∈ (−∞,∞) , 𝑛 = 1, 2, . . .

(36)
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Then,

󵄨
󵄨
󵄨
󵄨
𝜑
𝑛
(𝜔)
󵄨
󵄨
󵄨
󵄨
≤

1

2𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝛽
(− |𝜔|

𝛼
𝑡
𝛽
𝑒
−𝑖𝜋/2𝑛

)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

∞

−∞

󵄨
󵄨
󵄨
󵄨
𝑓 (V)󵄨󵄨󵄨

󵄨
𝑑V, (37)

and as 𝑓(𝑥) ∈ 𝐿1(−∞,∞), then there exists𝑀 > 0 such that

󵄨
󵄨
󵄨
󵄨
𝜑
𝑛
(𝜔)
󵄨
󵄨
󵄨
󵄨
≤

𝑀

2𝜋

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝛽
(− |𝜔|

𝛼
𝑡
𝛽
𝑒
−𝑖𝜋/2𝑛

)

󵄨
󵄨
󵄨
󵄨
󵄨
. (38)

From [30, Theorem (1.6)], there exists𝐾
1
> 0 such that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐸
𝛽
(−𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝐾
1

1 + |𝑧|

. (39)

Then,

󵄨
󵄨
󵄨
󵄨
𝜑
𝑛
(𝜔)
󵄨
󵄨
󵄨
󵄨
≤

1

2𝜋

𝑀𝐾
1

1 +
󵄨
󵄨
󵄨
󵄨
|𝜔|
𝛼
𝑡
𝛽󵄨󵄨
󵄨
󵄨

,

𝜔 ∈ (−∞,∞) , 𝑛 = 1, 2, . . . .

(40)

By Lebesgue dominated convergence theorem and setting 𝜃 =
1/𝑛, we have

lim
𝜃→0

𝑢
𝛼,𝜃

𝛽
(𝑥, 𝑡) = lim

𝑛→∞
∫

∞

−∞

𝜑
𝑛
(𝜔) 𝑑𝜔

= ∫

∞

−∞

lim
𝑛→∞

𝜑
𝑛
(𝜔) 𝑑𝜔

=

1

2𝜋

∬

∞

−∞

𝐸
𝛽
(− |𝜔|

𝛼
𝑡
𝛽
) 𝑓 (V) 𝑒𝑖𝜔(𝑥−V)𝑑𝜔𝑑V

= 𝑢
𝛼

𝛽
(𝑥, 𝑡) ,

(41)

which is the exact solution of the Riesz fractional diffusion
equation (35).

Similar arguments hold to prove the continuation of the
solution when both parameters 𝛼 and 𝛽 tend to their integer
limits.

5. Numerical Simulation

In this section, we consider linear and nonlinear problems
to illustrate the efficiency of the OHAM to this type of
problems and to illustrate the continuation of the solution we
proved in Section 4. Yet, to apply the recursive technique of
OHAM to problem (1), a repeated evaluation of Riesz-Feller
fractional derivative to solution components is needed. This
is accomplished by using a property of Riesz-Feller fractional
derivative that is proved in the following lemma.

Lemma 10. Let 𝛼 ∈ (0, 2), 𝛼 ̸= 1, |𝜃| ≤ min (𝛼, 2 − 𝛼), and
𝜔 > 0. Then,

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) = −𝜔

𝛼
𝑒
𝑖(𝜔𝑥−𝜃(𝜋/2))

. (42)

Proof.

Case 𝛼 ∈ (0, 1). From the definition of Riesz-Feller fractional
derivative and by substitution, we can write

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) =

−𝑑

𝑑𝑥

[∫

∞

0

𝑐
+
𝑒
𝑖𝜔(𝑥−𝜏)

− 𝑐
−
𝑒
𝑖𝜔(𝑥+𝜏)

Γ (1 − 𝛼) 𝜏
𝛼

𝑑𝜏] , (43)

which reduces to

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
)

=

−𝑖𝜔

Γ (1 − 𝛼)

𝑒
𝑖𝜔𝑥
(𝑐
+

Γ (1 − 𝛼)

(𝑖𝜔)
1−𝛼

− 𝑐
−

Γ (1 − 𝛼)

(−𝑖𝜔)
1−𝛼
) ,

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) = −𝜔

𝛼
𝑒
𝑖𝜔𝑥
(𝑐
+
𝑖
𝛼
− 𝑐
−
(−𝑖)
𝛼
) .

(44)

Substituting for 𝑐
+
and 𝑐
−
, we have

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) = −𝜔

𝛼
𝑒
𝑖𝜔𝑥

⋅

sin ((𝛼 − 𝜃) 𝜋/2) 𝑒𝑖𝜋𝛼/2 + sin ((𝛼 + 𝜃) 𝜋/2) 𝑒−𝑖𝜋𝛼/2

sin (𝛼𝜋)
.

(45)

Utilizing Euler form and trigonometric identities, we have

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) = −𝜔

𝛼
𝑒
𝑖(𝜔𝑥−𝜃(𝜋/2))

. (46)

Case 𝛼 ∈ (1, 2). Consider

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
) =

−𝑑
2

𝑑𝑥
2
∫

∞

0

𝑐
+
𝑒
𝑖𝜔(𝑥−𝜏)

− 𝑐
−
𝑒
𝑖𝜔(𝑥+𝜏)

Γ (2 − 𝛼) 𝜏
𝛼−1

𝑑𝜏, (47)

which reduces to

𝑅
𝛼,𝜃

𝑥
(𝑒
𝑖𝜔𝑥
)

=

𝜔
2

Γ (2 − 𝛼)

𝑒
𝑖𝜔𝑥
(𝑐
+

Γ (2 − 𝛼)

(𝑖𝜔)
2−𝛼

− 𝑐
−

Γ (2 − 𝛼)

(−𝑖𝜔)
2−𝛼
) .

(48)

Carrying out the same procedure, the lemma follows.

Example 11. Consider problem (1) with 𝑘(𝑢) = 1, 𝑔(𝑢) = 𝑎𝑢,
and 𝑓(𝑥) = 𝜖 sin (𝜋𝑥/𝐿):

𝐶
𝐷

𝛽

𝑡
𝑢 (𝑥, 𝑡) = 𝑅

𝛼,𝜃

𝑥
𝑢 (𝑥, 𝑡) + 𝑎𝑢,

−∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝜖 sin(𝜋𝑥
𝐿

) ,

(49)

where 𝑎, 𝜖, and 𝑏 are real constants.

To solve this problem bymeans of OHAM, let us consider
the linear operator

𝐿 [𝜙 (𝑥, 𝑡; 𝑝)] =
𝐶
𝐷

𝛽

𝑡
𝜙 (𝑥, 𝑡; 𝑝) (50)

and the operator

𝑁[𝜙 (𝑥, 𝑡; 𝑝)] =
𝐶
𝐷

𝛽

𝑡
𝜙 − 𝑅
𝛼,𝜃

𝑥
𝜙 − 𝑎𝜙. (51)

Then, one can write the𝑚th-order deformation equation,
with𝐻(𝑥, 𝑡) = 1, for this problem as

𝐿 [𝑢
𝑚
(𝑥, 𝑡) − 𝜒

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)] = ℏR

𝑚
[𝑢
𝑚−1
(𝑥, 𝑡)] , (52)
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where

R
𝑚
[𝑢
𝑚−1
] =
𝐶
𝐷

𝛽

𝑡
𝑢
𝑚−1
− 𝑅
𝛼,𝜃

𝑥
𝑢
𝑚−1
− 𝑎𝑢
𝑚−1
. (53)

Apply the inverse operator 𝐿−1 = 𝐽𝜇
𝑡
to both sides of (52);

we obtain

𝑢
𝑚
(𝑥, 𝑡) = 𝜒

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)

+ (𝑢
𝑚
(𝑥, 0) − 𝜒

𝑚
𝑢
𝑚−1
(𝑥, 0))

+ ℏ𝐽
𝛽

𝑡
[R
𝑚
[𝑢
𝑚−1
(𝑥, 𝑡)]] ,

(54)

where

𝑢
0
(𝑥, 𝑡) = 𝑢 (𝑥, 0) = 𝜖 sin(𝜋𝑥

𝐿

) ,

𝑢
𝑚
(𝑥, 0) = 0, 𝑚 > 1.

(55)

Referring to (53) and (54) with conditions (55), we get

𝑢
1
(𝑥, 𝑡) =

ℎ𝑡
𝛽
𝜖

Γ [1 + 𝛽]

(−𝑎 sin(𝜋𝑥
𝐿

) + (

𝜋

𝐿

)

𝛼

sin(𝜋𝑥
𝐿

−

𝜋𝜃

2

)) ,

𝑢
2
=

ℎ (1 + ℎ) 𝑡
𝛽
𝜖

Γ (1 + 2𝛽)

(−𝑎 sin(𝜋𝑥
𝐿

) + (

𝜋

𝐿

)

𝛼

sin(𝜋𝑥
𝐿

−

𝜋𝜃

2

)) +

ℎ
2
𝑡
2𝛽
𝜖

Γ (1 + 2𝛽)

((𝑎
2 sin(𝜋𝑥

𝐿

) + (

𝜋

𝐿

)

𝛼

⋅ ((

𝜋

𝐿

)

𝛼

sin(𝜋𝑥
𝐿

− 𝜋𝜃)

− 2𝑎 sin(𝜋𝑥
𝐿

−

𝜋𝜃

2

)))) .

(56)

The series solution is given by 𝑢 = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ .

Figure 1 shows the effect of the skewness parameter 𝜃 on
the behavior of the solution. The plot represents the sum
of the first five terms (𝑢

0
to 𝑢
4
) in the OHAM series when

𝑎 = 1.0, 𝜖 = 1.0, 𝐿 = 3.0, 𝑡 = 0.2, and 0 < 𝑥 < 𝜋

and the fractional parameters 𝛽 = 1.0, 𝛼 = 1.5, and 𝜃 =
0, 0.5, −0.5. At these different values of 𝜃 = 0, 0.5, and −0.5,
the optimal convergence-control parameter ℏ is calculated
as ℏ = −0.995787, −1.049435, and −1.056491, and the
corresponding residual error is obtained as 𝐸 = 2.969688 ∗
10
−7
, 4.243949 ∗ 10

−6, and 4.453205 ∗ 10−6, respectively.
The solution (the first five terms in the OHAM series)

behavior as the parameters 𝜃, 𝛼, and 𝛽 change at a fixed
time 𝑡 = 5.0 and in the interval 0 ≤ 𝑥 ≤ 𝜋 is shown
in Figures 1–3. The amplitude of the solution decreases 𝛼
and/or 𝛽 increases. As 𝛼 reaches 2 and/or 𝛽 increases up to
unity, the series solution approximately coincides with the
exact solution of the corresponding integer order equation
𝑢 = 𝑒
−(𝜋
2
/𝐿
2
−𝑎)𝑡 sin (𝜋𝑥/𝐿), represented by the solid line in the

graph (refer to Figures 2 and 3), and this numerical result sup-
ports the continuation of the solution. The series displayed

𝜃 = 0.0

𝜃 = 0.25

𝜃 = −0.25

1.0 1.5 2.0 2.5 3.00.5
x−2
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4
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5
,1
(x

,0
.2
)

Figure 1: The behavior of the four terms of OHAM solution of (49)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋, and the fractional parameters 𝛼 = 1.5 and
𝛽 = 1 and the skewness 𝜃 = 0, 0.25, −0.25.

Exact
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Figure 2:The behavior of the four terms of OHAM solution of (49)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋, and the fractional parameters 𝜃 = 0, 𝛽 = 1,
and 𝛼 = 1.8, 1.95, compared with the exact solution.

2

4

6

8

u
2.
0,
𝛽
(x

,5
.0
)

1.0 1.5 2.0 2.5 3.00.5
x

𝛽 = 0.5

𝛽 = 0.7 Exact
𝛽 = 0.9

Figure 3:The behavior of the four terms of OHAM solution of (49)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋, and the fractional parameters 𝜃 = 0, 𝛼 = 2.0,
and 𝛽 = 0.5, 0.7, 0.9, compared with the exact solution.
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Table 1: The estimated optimal convergence parameter ℏ and the
corresponding residual error 𝐸

𝑚
at different fractional parameters

used in Example 11.

𝛼, 𝜃, 𝛽 Optimal ℏ Residual error (𝐸
4
)

𝛼 = 1.5, 𝛽 = 1.0
𝜃 = 0.0 −0.990381137 4.6032𝐸 − 10

𝜃 = 0.25 −1.001711905 2.5426𝐸 − 5

𝜃 = −0.25 −1.0023206958 2.54262𝐸 − 6

𝛽 = 1.0, 𝜃 = 0
𝛼 = 1.8 −0.9339901124 2.2375𝐸 − 7

𝛼 = 1.9 −0.9303835167 3.4254𝐸 − 7

𝛼 = 1.95 −0.9285827510 4.2025𝐸 − 7

𝛼 = 2.0, 𝜃 = 0
𝛽 = 0.5 −0.9099205063 9.7340𝐸 − 9

𝛽 = 0.7 −0.9151677201 7.4716𝐸 − 8

𝛽 = 0.9 −0.9225579219 3.0301𝐸 − 8

in plots is the partial sum of the first five terms: 𝑛 = 5

(summing 𝑢
0
to 𝑢
4
). The optimal convergence parameter ℏ

in each case is obtained by minimizing the residual error 𝐸
𝑚

displayed in (23) in the intervals 0 ≤ 𝑥 ≤ 𝜋 and 0 ≤ 𝑡 ≤ 6.0,
and the obtained results are shown in Table 1.

Example 12. Consider the nonlinear fractional problem (1)
with 𝑘(𝑢) = 𝑢, 𝑔(𝑢) = 4𝑢2 − 𝑢, and 𝑓(𝑥) = sin (2𝑥):

𝐶
𝐷

𝛽

𝑡
𝑢 (𝑥, 𝑡) = 𝑢𝑅

𝛼,𝜃

𝑥
𝑢 (𝑥, 𝑡) + 4𝑢

2
− 𝑢,

−∞ < 𝑥 < ∞, 𝑡 > 0,

𝑢 (𝑥, 0) = sin (2𝑥) .

(57)

Here, we choose the auxiliary linear operator as

𝐿 [𝜙] =

𝜕

𝜕𝑡

(𝜙) , (58)

and the nonlinear operator𝑁 is chosen as

𝑁[𝜙] =
𝐶
𝐷

𝛽

𝑡
𝜙 − 𝜙𝑅

𝛼,𝜃

𝑥
(𝜙) − 4𝜙

2
+ 𝜙. (59)

Then, 𝑚th-order deformation equation for this problem is
given by

𝜕

𝜕𝑡

[𝑢
𝑚
(𝑥, 𝑡) − 𝜒

𝑚
𝑢
𝑚−1
(𝑥, 𝑡)]

= ℏ𝐻 (𝑥, 𝑡)R
𝑚
[𝑢⃗
𝑚−1
(𝑥, 𝑡)] ,

(60)

whereR
𝑚
[𝑢⃗
𝑚−1
(𝑥, 𝑡)] is given by

R
𝑚
[𝑢⃗
𝑚−1
(𝑥, 𝑡)] =

𝐶
𝐷

𝛽

𝑡
(𝑢
𝑚−1
) −

𝑚−1

∑

𝑘=0

𝑢
𝑘
𝑅
𝛼,𝜃

𝑥
(𝑢
𝑚−1−𝑘

)

− 4

𝑚−1

∑

𝑘=0

𝑢
𝑘
𝑢
𝑚−1−𝑘

+ 𝑢
𝑚−1
.

(61)
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Figure 4:The behavior of the four terms of OHAM solution of (57)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋/2, and the fractional parameters 𝛼 = 1.5 and
𝛽 = 1 and the skewness 𝜃 = 0, 0.5, −0.5.

We choose 𝐻(𝑥, 𝑡) = 1 and 𝑢
0
= sin (2𝑥). Following the

same procedure in the previous example to obtain the series
solution terms,

𝑢
0
= sin (2𝑥) ,

𝑢
1
=

ℎ𝑡
𝛽

2Γ (1 + 𝛽)

(−4 + 4 cos (4𝑥) + 2𝛼 cos(𝜋𝜃
2

)

− 2
𝛼 cos(4𝑥 − 𝜋𝜃

2

) + 2 sin (2𝑥)) .

(62)

To find the next terms in the solution series, use the
following recursive formula which is valid for𝑚 > 1:

𝑢
𝑚
= (1 + ℏ) 𝑢

𝑚−1
+ ℏ𝐽
𝛽

𝑡
[−

𝑚−1

∑

𝑘=0

𝑢
𝑘
𝑅
𝛼,𝜃

𝑥
(𝑢
𝑚−1−𝑘

)

− 4

𝑚−1

∑

𝑘=0

𝑢
𝑘
𝑢
𝑚−1−𝑘

+ 𝑢
𝑚−1
]

(63)

and the solution is thus obtained as

𝑢 = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ 𝑢
3
+ ⋅ ⋅ ⋅ . (64)

Figures 4–6 show the solution (the first five terms in
the OHAM series) behavior as the parameters 𝜃, 𝛼, and 𝛽
change at a fixed time 𝑡 = 0.2 and in the interval 0 ≤ 𝑥 ≤
𝜋/2. As 𝛼 and/or 𝛽 increases, the amplitude of the solution
decreases. As 𝛼 tends to 2 and/or 𝛽 goes up to unity, the series
solution approximately coincides with the exact solution of
the corresponding integer order equation 𝑢 = 𝑒−𝑡 sin(2𝑥),
represented by the solid line in the graph (see Figures 5
and 6), and this confirms the continuation of the solution
numerically. The series displayed in plots is the partial sum
of the first five terms: 𝑛 = 5 (summing 𝑢

0
to 𝑢
4
). The optimal

convergence parameter ℏ in each case is obtained by mini-
mizing the residual error 𝐸

𝑚
displayed in (23) in the intervals
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Table 2: The estimated optimal convergence parameter ℏ and the
corresponding residual error 𝐸

𝑚
at different fractional parameters

used in Example 12.

𝛼, 𝜃, 𝛽 Optimal ℏ Residual error (𝐸
4
)

𝛼 = 1.5, 𝛽 = 1.0
𝜃 = 0.0 −0.831733694 2.3498𝐸 − 8

𝜃 = 0.5 −0.954364814 1.0016𝐸 − 5

𝜃 = −0.5 −0.637748947 7.4733𝐸 − 6

𝛽 = 1.0, 𝜃 = 0
𝛼 = 1.92 −0.589337116 2.3160𝐸 − 6

𝛼 = 1.95 −0.589337116 2.1595𝐸 − 6

𝛼 = 1.99 −0.639152091 7.6926𝐸 − 6

𝛼 = 2.0, 𝜃 = 0
𝛽 = 0.5 −0.858637427 2.9308𝐸 − 9

𝛽 = 0.7 −0.929790675 7.6259𝐸 − 12

𝛽 = 0.95 −0.973269800 2.7929𝐸 − 12

0.2

0.4

0.6

0.8

u
𝛼
,1
(x

,0
.2
)

1.0 1.50.5
x

𝛼 = 1.9

𝛼 = 1.95 Exact
𝛼 = 1.99

Figure 5: The behavior of the four terms of OHAM solution of (57)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋/2, and the fractional parameters 𝜃 = 0, 𝛽 = 1,
and 𝛼 = 1.5, 1.7, 1.9, compared with the exact solution.

0 ≤ 𝑥 ≤ 2 and 0 ≤ 𝑡 ≤ 0.4, and the obtained results are
tabulated in Table 2.

6. Conclusion

A definition of the fractional-order Riesz-Feller derivative
in the Caputo sense is proposed and its equivalence with
the classical definition is proved. Then, we proved the con-
tinuation of the solution of the fractional-order anomalous
diffusion equation with Riesz-Feller spatial derivative to the
corresponding Riesz problem.The iterative series solution for
the fractional equation is obtained using the OHAM. The
advantage of using this technique is the ability to estimate
an approximation to the residual error. The results obtained
illustrate graphically the continuation of the solution we
proved theoretically.
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Figure 6:The behavior of the four terms of OHAM solution of (57)
at 𝑡 = 0.2, 0 < 𝑥 < 𝜋/2, and the fractional parameters 𝜃 = 0, 𝛼 = 2.0,
and 𝛽 = 0.4, 0.8, 0.95, compared with the exact solution.
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