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We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a
stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as
a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are
discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The
occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork) near each of the equilibrium points is studied.
Finally, numerical simulations are given to support the analytic results.

1. Introduction

The development of the qualitative analysis of ordinary
differential equations is deriving to study many problems
in mathematical biology. The modeling for the population
dynamics of a prey-predator system is one of the important
and interesting goals in mathematical biology, which has
received wide attention by several authors [1–6]. In the
natural world many kinds of prey and predator species
have a life history that is composed of at least two stages:
immature andmature, and each stage has different behavioral
properties. So, some works of stage structure prey-predator
models have been provided in a good number of papers in the
literatures [7–12]. Zhang et al. in [9] and Cui and Takeuchi
in [11] proposed two mathematical models of prey stage
structure; in these models the predator species consumes
exclusively the immature prey. Indeed, there are many factors
that impact the dynamics of prey-predator interactions such
as disease, harvesting, prey refuge, delay, and many other
factors. Several prey species have gone to extinction, and
this extinction must be caused by external effects such as
overutilization, overpredation, and environmental factors
(pollution, famine). Prey may avoid becoming attacked by

predators either by protecting themselves or by living in
a refuge where it will be out of sight of predators. Some
theoretical and empirical studies have shown and tested
the effects of prey refuges and making an opinion that the
refuges used by prey have a stabilizing influence on prey-
predator interactions; also prey extinction can be prevented
by the addition of refuges; for instance, we can refer to
[13–23]. Therefore, it is important and worthwhile to study
the effects of a refuge on the prey population with prey
stage structure. Consequently, in this paper, we proposed and
analyzed the prey-predator model involving a stage structure
in prey population together with a preys refuge property as a
defensive property against the predation.

2. Mathematical Model

In this section a prey-predator model with a refuge-stage
structure prey population is proposed for study. Let 𝑥(𝑇)
represent the population size of the immature prey at time𝑇; 𝑦(𝑇) represents the population size of the mature prey at
time𝑇, while 𝑧(𝑇) denotes the population size of the predator
species at time𝑇.Therefore in order to describe the dynamics
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of this model mathematically the following hypotheses are
adopted:

(1) The immature prey grows exponentially depending
completely on its parents with growth rate 𝑟 > 0.
There is an intraspecific competition between their
individuals with intraspecific competition rate 𝛿1 > 0.
The immature prey individual becomes mature with
grownup rate 𝛽 > 0 and faces natural death with a
rate 𝑑1 > 0.

(2) There is an intraspecific competition between the
individuals of mature prey population with intraspe-
cific competition rate 𝛿2 > 0. Further the mature prey
species faces natural death rate too with a rate 𝑑2 > 0.

(3) The environment provides partial protection of prey
species against the predation with a refuge rate 0 <𝑚 < 1; therefore there is 1−𝑚 of prey species available
for predation.

(4) There is an intraspecific competition between the
individuals of predator population with intraspecific
competition rate 𝛿3 > 0. Further the predator species
faces natural death rate too with a rate 𝑑3 > 0.

The predator consumes the prey in both the compartments
according to the mass action law represented by Lotka–
Volterra type of functional response with conversion rates0 < 𝑒1 < 1 and 0 < 𝑒2 < 1 for immature and mature
prey, respectively. Consequently, the dynamics of this model
can be represented mathematically with the following set of
differential equations.�̇� = 𝑟𝑦 − 𝛿1𝑥2 − 𝑑1𝑥 − 𝛽𝑥 − 𝛾1 (1 − 𝑚) 𝑥𝑧�̇� = 𝛽𝑥 − 𝛿2𝑦2 − 𝑑2𝑦 − 𝛾2 (1 − 𝑚) 𝑦𝑧�̇� = 𝑒1𝛾1 (1 − 𝑚) 𝑥𝑧 + 𝑒2𝛾2 (1 − 𝑚) 𝑦𝑧 − 𝛿3𝑧2 − 𝑑3𝑧

(1)

with initial conditions, 𝑥(0) > 0, 𝑦(0) > 0, and 𝑧(0) > 0.
In order to simplify the analysis of system (1) the number

of parameters in system (1) is reduced using the following
dimensionless variables in system (1):

𝑦1 = 𝑒1𝛾1 (1 − 𝑚)𝑑2 𝑥,
𝑦2 = 𝑒2𝛾2 (1 − 𝑚)𝑑2 𝑦,
𝑦3 = 𝛿3𝑑2 𝑧,𝑡 = 𝑑2𝑇.

(2)

Accordingly, the dimensionless form of system (1) can be
written as �̇�1 = 𝑎1𝑦2 − 𝑎2𝑦21 − 𝑎3𝑦1 − 𝑎4𝑦1𝑦3�̇�2 = 𝑏1𝑦1 − 𝑏2𝑦22 − 𝑦2 − 𝑏3𝑦2𝑦3�̇�3 = 𝑦1𝑦3 + 𝑦2𝑦3 − 𝑦23 − 𝑏4𝑦3,

(3)

where the dimensionless parameters are given by

𝑎1 = 𝑒1𝛾1𝑟𝑒2𝛾2𝑑2 ,
𝑎2 = 𝛿1𝑒1𝛾1 (1 − 𝑚) ,
𝑎3 = 𝑑1 + 𝛽𝑑2 ,
𝑎4 = 𝛾1 (1 − 𝑚)𝛿3 ,
𝑏1 = 𝑒2𝛾2𝛽𝑒1𝛾1𝑑2 ,
𝑏2 = 𝛿2𝑒2𝛾2 (1 − 𝑚) ,
𝑏3 = 𝛾2 (1 − 𝑚)𝛿3 ,
𝑏4 = 𝑑3𝑑2 .

(4)

According to the equations given in system (3), all the
interaction functions are continuous and have a continuous
partial derivatives.Therefore they are Lipschitzain and hence
the solution of system (3) exists and is unique. Moreover the
solution of system (3) is bounded as shown in the following
theorem.

Theorem 1. All the solutions of system (3) that initiate in the
positive octant are uniformly bounded.

Proof. Let 𝑊 = 𝑦1 + 𝑦2 + 𝑦3 be solutions of system (3) with
initial conditions, 𝑦1(0) > 0, 𝑦2(0) > 0, and 𝑦3(0) > 0. Then
by differentiation 𝑊 with respect to 𝑡 we get𝑑𝑊𝑑𝑡 ≤ 𝑎1𝑦2 (1 − 𝑦2𝑎1/𝑏2) + 𝑏1𝑦1 (1 − 𝑦1𝑏1/𝑎2) − 𝜎1𝑊

≤ 𝜎2 − 𝜎1𝑊; (5)

here 𝜎1 = min {1, 𝑎3, 𝑏4} and 𝜎2 = 𝑎21/4𝑏2 + 𝑏21 /4𝑎2. Now by
using comparison theorem, we get

0 < 𝑊 ≤ (𝑊0𝑒−𝜎1𝑡 + 𝜎2𝜎1 (1 − 𝑒−𝜎1𝑡)) . (6)

Thus for 𝑡 → ∞ we obtain 0 < 𝑊 ≤ 𝜎2/𝜎1. Hence, all
solutions of system (3) in 𝑅3+ are uniformly bounded and
therefore we have finished the proof.

3. Local Stability Analysis

It is observed that system (3) has at most three biologically
feasible equilibrium points; namely, 𝐸𝑖, 𝑖 = 0, 1, 2. The
existence conditions for each of these equilibrium points are
discussed below:
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(1) The trivial equilibrium points 𝐸0 = (0, 0, 0) exist
always.

(2) The predator free equilibrium point is denoted by𝐸1 = (�̃�1, �̃�2, 0), where�̃�1 = 1𝑏1 (𝑏2�̃�22 + �̃�2) (7)

while �̃�2 is a positive root of the following third-order
polynomial𝐴1𝑦32 + 𝐴2𝑦22 + 𝐴3𝑦2 + 𝐴4 = 0; (8)

here, 𝐴1 = 𝑎2𝑏22 /𝑏21 , 𝐴2 = 2𝑎2𝑏2/𝑏21 , 𝐴3 = (𝑎2 +𝑎3𝑏1𝑏2)/𝑏21 , and 𝐴4 = (𝑎3 − 𝑎1𝑏1)/𝑏1 exist uniquely in
the interior of 𝑦1𝑦2-plane if and only if the following
condition holds: 𝑎3 < 𝑎1𝑏1. (9)

(3) The interior (positive) equilibrium point is given by𝐸2 = (𝑦∗1 , 𝑦∗2 , 𝑦∗3 ), where𝑦∗1 = [(𝑏2 + 𝑏3) 𝑦∗2 + (1 − 𝑏3𝑏4)] 𝑦∗2𝑏1 − 𝑏3𝑦∗2 ,
𝑦∗3 = 𝑦∗1 + 𝑦∗2 − 𝑏4 (10)

while 𝑦∗2 is a positive root of the following third-order
polynomial:𝐵1𝑦32 + 𝐵2𝑦22 + 𝐵3𝑦2 + 𝐵4 = 0; (11)

here,𝐵1 = 𝑎2 (𝑏2 + 𝑏3)2 + 𝑎4𝑏2 (𝑏2 + 𝑏3) > 0,𝐵2 = [2𝑎2 (𝑏2 + 𝑏3) + 2𝑎4𝑏2 + 𝑎4𝑏3] (1 − 𝑏3𝑏4)− [𝑎3𝑏2𝑏3 + 𝑏23 (𝑎3 + 𝑎1)] ,
𝐵3 = 2𝑎1𝑏1𝑏3 + (𝑎2 + 𝑎4) (1 − 𝑏3𝑏4)2+ 𝑏1 (𝑎3 − 𝑎4𝑏4) (𝑏2 + 𝑏3)+ [𝑏1𝑎4 − 𝑏3 (𝑎3 − 𝑎4𝑏4)] (1 − 𝑏3𝑏4) ,𝐵4 = 𝑏1 [𝑎3 − 𝑎1𝑏1 − 𝑎3𝑏3𝑏4 − 𝑎4𝑏4 (1 − 𝑏3𝑏4)] .

(12)

Clearly, (11) has a unique positive root represented by𝑦∗2 if the following set of conditions hold:𝐵4 < 0 with (𝐵2 > 0 or 𝐵3 < 0) (13)

Therefore, 𝐸2 exists uniquely in int. 𝑅3+ if in addition
to condition (13) the following conditions are satis-
fied. 𝑦∗1 + 𝑦∗2 > 𝑏4𝑏3𝑏4 − 1𝑏2 + 𝑏3 < 𝑦∗2 < 𝑏1𝑏3

or 𝑏1𝑏3 < 𝑦∗2 < 𝑏3𝑏4 − 1𝑏2 + 𝑏3 .
(14)

Now to study the local stability of these equilibrium points,
the Jacobian matrix 𝐽(𝑦1, 𝑦2, 𝑦3) for the system (3) at any
point (𝑦1, 𝑦2, 𝑦3) is determined as

(−2𝑎2𝑦1 − 𝑎3 − 𝑎4𝑦3 𝑎1 −𝑎4𝑦1𝑏1 −2𝑏2𝑦2 − 1 − 𝑏3𝑦3 −𝑏3𝑦2𝑦3 𝑦3 𝑦1 + 𝑦2 − 2𝑦3 − 𝑏4). (15)

Thus, system (3) has the following Jacobian matrix near 𝐸0 =(0, 0, 0).
𝐽 (𝐸0) = (−𝑎3 𝑎1 0𝑏1 −1 00 0 −𝑏4). (16)

Then the characteristic equation of 𝐽(𝐸0) is given by

(𝜆 + 𝑏4) [𝜆2 + (𝑎3 + 1) 𝜆 + 𝑎3 − 𝑎1𝑏1] = 0. (17)

Clearly, all roots of (17) have negative real parts if and only if
the following condition holds:

𝑎3 > 𝑎1𝑏1. (18)

So, 𝐸0 is locally asymptotically stable under condition (18)
and saddle point otherwise. Therefore, 𝐸0 is locally asymp-
totically stable whenever 𝐸1 does not exist and unstable
whenever 𝐸1 exists.

The Jacobianmatrix of system (3) around the equilibrium
point 𝐸1 = (�̃�1, �̃�2, 0) reduced to

𝐽 (𝐸1) = (−2𝑎2�̃�1 − 𝑎3 𝑎1 −𝑎4�̃�1𝑏1 −2𝑏2�̃�2 − 1 −𝑏3�̃�20 0 �̃�1 + �̃�2 − 𝑏4)= (𝑎𝑖𝑗)3×3 .
(19)

Then the characteristic equation of 𝐽(𝐸1) is written by

[𝜆 − 𝑎33] [𝜆2 − (𝑎11 + 𝑎22) 𝜆 + 𝑎11𝑎22 − 𝑎12𝑎21] = 0. (20)

Straightforward computation shows that all roots of (20) have
negative real part provided that

�̃�1 + �̃�2 < 𝑏4 (21)(2𝑎2�̃�1 + 𝑎3) (2𝑏2�̃�2 + 1) > 𝑎1𝑏1. (22)

So, 𝐸1 is locally asymptotically stable if the above two
conditions hold.

Finally the Jacobian matrix of system (3) around the
interior equilibrium point 𝐸2 = (𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) is written

𝐽 (𝐸2) = (𝑏𝑖𝑗)3×3 ; (23)
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here 𝑏11 = − (2𝑎2𝑦∗1 + 𝑎4𝑦∗3 + 𝑎3) ,𝑏12 = 𝑎1,𝑏13 = −𝑎4𝑦∗1 ,𝑏21 = 𝑏1,𝑏22 = − (2𝑏2𝑦∗2 + 𝑏3𝑦∗3 + 1) ,𝑏23 = −𝑏3𝑦∗2 ,𝑏31 = 𝑦∗3 ,𝑏32 = 𝑦∗3 ,𝑏33 = −𝑦∗3 .

(24)

Hence, the characteristic equation of 𝐽(𝐸2) becomes

𝜆3 + 𝐷1𝜆2 + 𝐷2𝜆 + 𝐷3 = 0 (25)

with𝐷1 = − (𝑏11 + 𝑏22 + 𝑏33) > 0,𝐷2 = 𝑏11𝑏22 − 𝑏12𝑏21 + 𝑏11𝑏33 − 𝑏13𝑏31 + 𝑏22𝑏33− 𝑏23𝑏32,𝐷3 = 𝑏33 (𝑏12𝑏21 − 𝑏11𝑏22) + 𝑏11𝑏23𝑏32 − 𝑏12𝑏23𝑏31+ 𝑏22𝑏13𝑏31 − 𝑏21𝑏13𝑏32.
(26)

Consequently, Δ = 𝐷1𝐷2 − 𝐷3 can be written as

Δ = (𝑏11 + 𝑏22) (𝑏12𝑏21 − 𝑏11𝑏22) − 𝑏11𝑏22𝑏33− (𝑏11 + 𝑏22) (𝑏11𝑏33 − 𝑏13𝑏31) .− 𝑏222𝑏33 − 𝑏11𝑏233 − 𝑏22𝑏233 + 𝑏13𝑏31 (𝑏33 + 𝑏21)+ 𝑏23𝑏32 (𝑏33 + 𝑏12)
(27)

Since 𝐷1 > 0, then according to Routh-Hurwitz criterion 𝐸2
is locally asymptotically stable if and only if 𝐷3 > 0 and Δ =𝐷1𝐷2 −𝐷3 > 0. According to the form of𝐷3 and the signs of
Jacobian elements the last four terms are positive, while the
first term will be positive under the sufficient condition (28)
below. However Δ becomes positive if and only if in addition
to condition (28) the second sufficient condition given by (29)
holds.

(2𝑎2𝑦∗1 + 𝑎4𝑦∗3 + 𝑎3) (2𝑏2𝑦∗2 + 𝑏3𝑦∗3 + 1) > 𝑎1𝑏1 (28)𝑦∗3 > 𝑏1,𝑦∗3 > 𝑎1. (29)

Therefore under these two sufficient conditions 𝐸2 is locally
asymptotically stable.

4. Global Stability

In this section the global stability for the equilibrium points
of system (3) is investigated by using the Lyapunov method
as shown in the following theorems.

Theorem 2. Assume that the vanishing equilibrium point𝐸0 is
locally asymptotically stable; then it is globally asymptotically
stable in 𝑅3+ if and only if the following condition holds:𝑎4𝑏1𝑎3 < 𝑏3 < 𝑎4𝑎1 . (30)

Proof. Consider the following positive definite real valued
function: 𝑉0 (𝑦1, 𝑦2, 𝑦3) = 1𝑎4𝑦1 + 1𝑏3𝑦2 + 𝑦3. (31)

Straightforward computation shows that the derivative of 𝑉0
with respect to 𝑡 is given by𝑑𝑉0𝑑𝑡 < (𝑎4𝑏1 − 𝑎3𝑏3𝑎4𝑏3 )𝑦1 + (𝑎1𝑏3 − 𝑎4𝑎4𝑏3 )𝑦2 − 𝑏4𝑦3. (32)

Therefore, by using condition (30), we obtain 𝑑𝑉0/𝑑𝑡 which
is negative definite in 𝑅3+, and then𝑉0 is a Lyapunov function
with respect to 𝐸0. Hence 𝐸0 is globally asymptotically stable
in 𝑅3+ and the proof is complete.

Theorem 3. Assume that the predator free equilibrium point𝐸1 = (�̃�1, �̃�2, 0) is locally asymptotically stable; then it is
globally asymptotically stable in 𝑅3+ if the following condition
holds:

( 𝑎1𝑎4𝑦1 + 𝑏1𝑏3𝑦2)2
< 4( 𝑎1�̃�2𝑎4𝑦1�̃�1 + 𝑎2𝑎4)( 𝑏1�̃�1𝑏3𝑦2�̃�2 + 𝑏2𝑏3) . (33)

Proof. Consider the following positive definite real valued
function:

𝑉1 (𝑦1, 𝑦2, 𝑦3) = 1𝑎4 (𝑦1 − �̃�1 − �̃�1 ln 𝑦1�̃�1)
+ 1𝑏3 (𝑦2 − �̃�2 − �̃�2 ln 𝑦2�̃�2) + 𝑦3. (34)

Straightforward computation shows that the derivative of 𝑉1
with respect to 𝑡 is given by𝑑𝑉1𝑑𝑡 = −( 𝑎1�̃�2𝑎4𝑦1�̃�1 + 𝑎2𝑎4) (𝑦1 − �̃�1)2

− ( 𝑏1�̃�1𝑏3𝑦2�̃�2 + 𝑏2𝑏3) (𝑦2 − �̃�2)2
+ ( 𝑎1𝑎4𝑦1 + 𝑏1𝑏3𝑦2) (𝑦1 − �̃�1) (𝑦2 − �̃�2) − 𝑦23
− (𝑏4 − �̃�1 − �̃�2) 𝑦3.

(35)
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Now using condition (33) gives us that𝑑𝑉1𝑑𝑡 < −[√ 𝑎1�̃�2𝑎4𝑦1�̃�1 + 𝑎2𝑎4 (𝑦1 − �̃�1)
− √ 𝑏1�̃�1𝑏3𝑦2�̃�2 + 𝑏2𝑏3 (𝑦2 − �̃�2)]2 − (𝑏4 − �̃�1 − �̃�2) 𝑦3.

(36)

Clearly 𝑑𝑉1/𝑑𝑡 is negative definite due to local stability
condition (21). Hence 𝑉1 is a Lyapunov function with respect
to 𝐸1, and then 𝐸1 is globally asymptotically stable, which
completes the proof.

Theorem 4. Assume that the interior equilibrium point 𝐸2 =(𝑦∗1 , 𝑦∗2 , 𝑦∗3 ) is locally asymptotically stable in 𝑅3+; then it
is globally asymptotically stable if and only if the following
condition holds:

(𝑦∗2 𝑎1𝑏3𝑦∗1 𝑏1 − 𝑎4)2 < 4𝑦∗2 𝑎1𝑎2𝑏3𝑏4𝑦∗1 𝑏1 . (37)

Proof. Consider the following positive definite real valued
function around 𝐸2:𝑉1 (𝑦1, 𝑦2, 𝑦3) = (𝑦1 − 𝑦∗1 − 𝑦∗1 ln 𝑦1𝑦∗1 )

+ 𝑦∗2 𝑎1𝑦∗1 𝑏1 (𝑦2 − 𝑦∗2 − 𝑦∗2 ln 𝑦2𝑦∗2 )
+ 𝑦∗2 𝑎1𝑏3𝑦∗1 𝑏1 (𝑦3 − 𝑦∗3 − 𝑦∗3 ln 𝑦3𝑦∗3 ) .

(38)

Our computation for the derivative of 𝑉2 with respect to 𝑡
gives that𝑑𝑉2𝑑𝑡 = − 𝑎1𝑦1𝑦2𝑦∗1 (𝑦2𝑦∗1 − 𝑦1𝑦∗2 )2 − 𝑎2 (𝑦1 − 𝑦∗1 )2

− 𝑦∗2 𝑎1𝑏2𝑦∗1 𝑏1 (𝑦2 − 𝑦∗2 )2
+ (𝑦∗2 𝑎1𝑏3𝑦∗1 𝑏1 − 𝑎4) (𝑦1 − 𝑦∗1 ) (𝑦3 − 𝑦∗3 )
− 𝑦∗2 𝑎1𝑏3𝑏4𝑦∗1 𝑏1 (𝑦3 − 𝑦∗3 )2 .

(39)

Now by using the condition (37) we obtain that𝑑𝑉2𝑑𝑡
< − 𝑎1𝑦1𝑦2𝑦∗1 (𝑦2𝑦∗1 − 𝑦1𝑦∗2 )2 − 𝑦∗2 𝑎1𝑏2𝑦∗1 𝑏1 (𝑦2 − 𝑦∗2 )2

− [√𝑎2 (𝑦1 − 𝑦∗1 ) − √𝑦∗2 𝑎1𝑏3𝑏4𝑦∗1 𝑏1 (𝑦3 − 𝑦∗3 )]2 .
(40)

According to the above inequality we have 𝑑𝑉2/𝑑𝑡 which
is negative definite; therefore, 𝐸2 is globally asymptotically
stable in 𝑅3+ and hence the proof is complete.

5. Local Bifurcation

In this section the local bifurcation near the equilibrium
points of system (3) is investigated using Sotomayor’s the-
orem for local bifurcation [24]. It is well known that the
existence of nonhyperbolic equilibrium point is a necessary
but not sufficient condition for bifurcation to occur. Now
rewrite system (3) in the form

�̇� = 𝑓 (𝑌) , (41)

where 𝑌 = (𝑦1, 𝑦2, 𝑦3)𝑇 ,𝑓 = (𝑓1, 𝑓2, 𝑓3)𝑇 . (42)

Then according to Jacobian matrix of system (3) given in
(15), it is simple to verify that for any nonzero vector 𝑈 =(𝑢1, 𝑢2, 𝑢3)𝑇 we have𝐷2𝑓 (𝑦1, 𝑦2, 𝑦3) (𝑈, 𝑈)

= 𝜕2𝑓𝜕𝑦21 𝑢21 + 𝜕2𝑓𝜕𝑦1𝜕𝑦2 𝑢1𝑢2 + 𝜕2𝑓𝜕𝑦2𝜕𝑦1 𝑢2𝑢1 + 𝜕2𝑓𝜕𝑦22 𝑢22
+ 𝜕2𝑓𝜕𝑦1𝜕𝑦3 𝑢1𝑢3 + 𝜕2𝑓𝜕𝑦3𝜕𝑦1 𝑢3𝑢1 + 𝜕2𝑓𝜕𝑦2𝜕𝑦3 𝑢2𝑢3
+ 𝜕2𝑓𝜕𝑦3𝜕𝑦2 𝑢3𝑢2 + 𝜕2𝑓𝜕𝑦23 𝑢23.

(43)

Consequently, we obtain that

𝐷2𝑓 (𝑦1, 𝑦2, 𝑦3) (𝑈, 𝑈) = ( −2𝑎2𝑢21 − 2𝑎4𝑢1𝑢3−2𝑏2𝑢22 − 2𝑏3𝑢2𝑢32𝑢1𝑢3 + 2𝑢2𝑢3 − 2𝑢23) (44)

and therefore

𝐷3𝑓 (𝑦1, 𝑦2, 𝑦3) (𝑈, 𝑈,𝑈) = (000) . (45)

Thus system (3) has no pitchfork bifurcation due to (45).
Moreover, the local bifurcation near the equilibrium points
is investigated in the following theorems:

Theorem 5. System (3) undergoes a transcritical bifurcation
near the vanishing equilibrium point, but saddle node bifurca-
tion cannot occur, when the parameter 𝑎3 passes through the
bifurcation value 𝑎∗3 = 𝑎1𝑏1.
Proof. According to the Jacobian matrix 𝐽(𝐸0) given by (16),
system (3) at the equilibrium point 𝐸0 with 𝑎3 = 𝑎∗3 has zero
eigenvalue, say 𝜆∗0 = 0, and the Jacobian matrix 𝐽(𝐸0, 𝑎∗3 )
becomes

𝐽 (𝐸0, 𝑎∗3 ) = 𝐽∗0 = (−𝑎∗3 𝑎1 0𝑏1 −1 00 0 −𝑏4). (46)
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Now let 𝑈[0] = (𝑢[0]1 , 𝑢[0]2 , 𝑢[0]3 )𝑇 be the eigenvector corre-
sponding to the eigenvalue 𝜆∗0 = 0. Thus 𝐽∗0𝑈[0] = 0 gives𝑈[0] = (𝑢[0]1 , 𝑏1𝑢[0]1 , 0)𝑇, where 𝑢[0]1 represents any nonzero
real number. Also, let 𝑊[0] = (𝑤[0]1 , 𝑤[0]2 , 𝑤[0]3 )𝑇 represents
the eigenvector corresponding to the eigenvalue 𝜆∗0 = 0 of𝐽∗𝑇0 . Hence 𝐽∗𝑇0 𝑊[0] = 0 gives that 𝑊[0] = (𝑤[0]1 , 𝑎1𝑤[0]1 , 0)𝑇,
where 𝑤[0]1 denotes any nonzero real number. Now, since

𝑑𝑓𝑑𝑎3 = 𝑓𝑎3 (𝑌, 𝑎3) = (𝑑𝑓1𝑑𝑎3 , 𝑑𝑓2𝑑𝑎3 , 𝑑𝑓3𝑑𝑎3)𝑇= (−𝑦1, 0, 0)𝑇 (47)

thus𝑓𝑎3(𝐸0, 𝑎∗3 ) = (0, 0, 0)𝑇, which gives (𝑊[0])𝑇𝑓𝑎3(𝐸0, 𝑎∗3 ) =0. So, according to Sotomayor’s theorem for local bifurcation,
system (3) has no saddle node bifurcation at 𝑎3 = 𝑎∗3 . Also,
since

𝐷𝑓𝑎3 (𝐸0, 𝑎3) = (−1 0 00 0 00 0 0) (48)

then,

(𝑊[0])𝑇 (𝐷𝑓𝑎3 (𝐸0, 𝑎∗3 ) 𝑈[0])= (𝑤[0]1 , 𝑎1𝑤[0]1 , 0) (−𝑢[0]1 , 0, 0)𝑇 = −𝑢[0]1 𝑤[0]1 ̸= 0. (49)

Moreover, by substituting 𝐸0, 𝑎∗3 , and 𝑈[0] in (44) we get that

𝐷2𝑓 (𝐸0, 𝑎∗3 ) (𝑈[0], 𝑈[0])
= (−2𝑎2 (𝑢[0]1 )2 , −2𝑏2𝑏21 (𝑢[0]1 )2 , 0)𝑇 . (50)

Hence, it is obtain that

(𝑊[0])𝑇𝐷2𝑓 (𝐸0, 𝑎∗3 ) (𝑈[0], 𝑈[0])= −2 (𝑎2 + 𝑎1𝑏2𝑏21 ) (𝑢[0]1 )2 𝑤[0]1 ̸= 0. (51)

Thus, according to Sotomayor’s theorem system (3) has a
transcritical bifurcation at 𝐸0 as the parameter 𝑎3 passes
through the value 𝑎∗3 ; thus the proof is complete.

Theorem 6. Assume that condition (22) holds; then system
(3) undergoes a transcritical bifurcation near the predator free
equilibrium point𝐸1, but saddle node bifurcation cannot occur,
when the parameter 𝑏4 passes through the bifurcation value𝑏∗4 = �̃�1 + �̃�2.
Proof. According to the Jacobian matrix 𝐽(𝐸1) given by (19),
system (3) at the equilibrium point 𝐸1 with 𝑏4 = 𝑏∗4 has zero
eigenvalue, say 𝜆∗1 = 0, and the Jacobian matrix 𝐽(𝐸1, 𝑏∗4 )
becomes 𝐽 (𝐸1, 𝑏∗4 ) = 𝐽∗1 = (𝑎∗𝑖𝑗)3×3 , (52)

where 𝑎∗𝑖𝑗 = 𝑎𝑖𝑗; ∀𝑖, 𝑗 = 1, 2, 3, with 𝑎∗33 = 0. Now let,𝑈[1] = (𝑢[1]1 , 𝑢[1]2 , 𝑢[1]3 )𝑇 be the eigenvector corresponding
to the eigenvalue 𝜆∗1 = 0. Thus 𝐽∗1𝑈[1] = 0 gives 𝑈[1] =(Λ 1𝑢[1]3 , Λ 2𝑢[1]3 , 𝑢[1]3 )𝑇, whereΛ 1 = (𝑎12𝑎23−𝑎22𝑎13)/(𝑎11𝑎22−𝑎12𝑎21) and Λ 2 = (𝑎21𝑎13 − 𝑎11𝑎31)/(𝑎11𝑎22 − 𝑎12𝑎21) are
negative according to the sign of the Jacobian elements and𝑢[1]3 represents any nonzero real numbers. Also, let 𝑊[1] =(𝑤[1]1 , 𝑤[1]2 , 𝑤[1]3 )𝑇represent the eigenvector corresponding to
eigenvalue 𝜆∗1 = 0 of 𝐽∗𝑇1 . Hence 𝐽∗𝑇1 𝑊[1] = 0 gives that𝑊[1] = (0, 0, 𝑤[1]3 )𝑇, where 𝑤[1]3 stands for any nonzero real
numbers. Now, since𝑑𝑓𝑑𝑏4 = 𝑓𝑏4 (𝑌, 𝑏4) = (𝑑𝑓1𝑑𝑏4 , 𝑑𝑓2𝑑𝑏4 , 𝑑𝑓3𝑑𝑏4)𝑇 = (0, 0, −𝑦3)𝑇 (53)

thus 𝑓𝑏4(𝐸1, 𝑏∗4 ) = (0, 0, 0)𝑇, which gives (𝑊[1])𝑇𝑓𝑏4(𝐸1, 𝑏∗4 ) =0. So, according to Sotomayor’s theorem for local bifurcation,
system (3) has no saddle node bifurcation at 𝑏4 = 𝑏∗4 . Also,
since

𝐷𝑓𝑏4 (𝐸1, 𝑏4) = (0 0 00 0 00 0 −1) (54)

then, we can have

(𝑊[1])𝑇 (𝐷𝑓𝑏4 (𝐸1, 𝑏∗4 ) 𝑈[1])= (0, 0, 𝑤[1]3 ) (0, 0, −𝑢[1]3 )𝑇 = −𝑢[1]3 𝑤[1]3 ̸= 0. (55)

Moreover, substituting 𝐸1, 𝑏∗4 , and 𝑈[1] in (44) gives

𝐷2𝑓 (𝐸1, 𝑏∗4 ) (𝑈[1], 𝑈[1]) = 2 (𝑢[1]3 )2
⋅ (−𝑎2Λ21 − 𝑎4Λ 1, −𝑏2Λ22 − 𝑏3Λ 2, Λ 1 + Λ 2 − 1)𝑇 . (56)

Hence, it is obtained that

(𝑊[1])𝑇𝐷2𝑓 (𝐸1, 𝑏∗4 ) (𝑈[1], 𝑈[1])= 2 (Λ 1 + Λ 2 − 1) (𝑢[1]3 )2 𝑤[1]3 ̸= 0. (57)

Thus, according to Sotomayor’s theorem system (3) has a
transcritical bifurcation at 𝐸1 as the parameter 𝑏4 passes
through the value 𝑏∗4 ; thus the proof is complete.

Theorem 7. Assume that condition (21) holds; then system
(3) undergoes a saddle node bifurcation near the predator free
equilibrium point 𝐸1 when the parameter 𝑎1 passes through the
bifurcation value 𝑎∗1 = (2𝑎2�̃�1 + 𝑎3)(2𝑏2�̃�2 + 1)/𝑏1.
Proof. According to the Jacobian matrix 𝐽(𝐸1) given by (19),
system (3) at the equilibrium point 𝐸1 with 𝑎1 = 𝑎∗1 has zero
eigenvalue, say 𝜆∗∗1 = 0, and the Jacobian matrix 𝐽(𝐸1, 𝑎∗1 )
becomes 𝐽 (𝐸1, 𝑎∗1 ) = 𝐽∗∗1 = (𝑎∗∗𝑖𝑗 )

3×3
, (58)
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where 𝑎∗∗𝑖𝑗 = 𝑎𝑖𝑗; ∀𝑖, 𝑗 = 1, 2, 3, with 𝑎∗∗12 = 𝑎∗1 . Now let𝑈[11] = (𝑢[11]1 , 𝑢[11]2 , 𝑢[11]3 )𝑇 be the eigenvector corresponding
to the eigenvalue 𝜆∗∗1 = 0. Thus 𝐽∗∗1 𝑈[11] = 0 gives 𝑈[11] =(−(𝑎∗1 /𝑎11)𝑢[11]2 , 𝑢[11]2 , 0)𝑇, where 𝑢[11]2 represents any nonzero
real numbers. Also, let𝑊[11] = (𝑤[11]1 , 𝑤[11]2 , 𝑤[11]3 )𝑇 represent
the eigenvector corresponding to eigenvalue 𝜆∗∗1 = 0 of𝐽∗∗𝑇1 . Hence 𝐽∗∗𝑇1 𝑊[11] = 0 gives that 𝑊[11] = (−(𝑎21/𝑎11)𝑤[11]2 , 𝑤[11]2 , (Ψ/𝑎11𝑎33)𝑤[11]2 )𝑇, where Ψ = 𝑎13𝑎21 − 𝑎11𝑎23
is negative due to the sign of the Jacobian elements and 𝑤[11]2
denotes any nonzero real numbers. Now, since𝑑𝑓𝑑𝑎1 = 𝑓𝑎1 (𝑌, 𝑎1) = (𝑑𝑓1𝑑𝑎1 , 𝑑𝑓2𝑑𝑎1 , 𝑑𝑓3𝑑𝑎1)𝑇 = (𝑦2, 0, 0)𝑇 (59)

thus 𝑓𝑎1(𝐸1, 𝑎∗1 ) = (�̃�2, 0, 0)𝑇; hence (𝑊[11])𝑇𝑓𝑎1(𝐸1, 𝑎∗1 ) =−(𝑎21/𝑎11)𝑤[11]2 �̃�2 ̸= 0. So, according to Sotomayor’s theorem
for local bifurcation the first condition of saddle node
bifurcation is satisfied in system (3) at 𝑎1 = 𝑎∗1 . Moreover,
substituting 𝐸1, 𝑎∗1 , and 𝑈[11] in (44) gives

𝐷2𝑓 (𝐸1, 𝑎∗1 ) (𝑈[11], 𝑈[11])
= (𝑢[11]2 )2 (−2𝑎2𝑎∗21𝑎211 , −2𝑏2, 0)𝑇 . (60)

Hence, it is obtained that

(𝑊[11])𝑇𝐷2𝑓 (𝐸1, 𝑎∗1 ) (𝑈[11], 𝑈[11])
= 2(𝑎2𝑎∗21 𝑎21𝑎311 − 𝑏2)(𝑢[11]2 )2 𝑤[11]2 ̸= 0. (61)

Thus, according to Sotomayor’s theorem system (3) has a
saddle node bifurcation at 𝐸1 as the parameter 𝑎1 passes
through the value 𝑎∗1 ; thus the proof is complete.

Theorem 8. Assume that(2𝑎2𝑦∗1 + 𝑎4𝑦∗3 + 𝑎3) (2𝑏2𝑦∗2 + 𝑏3𝑦∗3 + 1) < 𝑎1𝑏1 (62)

𝑦∗1 < 𝑎1𝑎4 . (63)

Then system (3) undergoes a saddle node bifurcation near
the interior equilibrium point 𝐸2, as the parameter 𝑏1 passes
through the bifurcation value 𝑏∗1 = Γ1/Γ2, where Γ1 and Γ2 are
given in the proof.

Proof. According to the determinant of the Jacobian matrix𝐽(𝐸2) given by 𝐷3 in (25), condition (62) represents a
necessary condition to have nonpositive determinant for𝐽(𝐸2). Now rewrite the form of the determinant as follows:𝐷3 = Γ1 − 𝑏1Γ2. (64)

Here Γ1 = 𝑏11𝑏23𝑏32 + 𝑏22𝑏31𝑏13 − 𝑏11𝑏22𝑏33 − 𝑏12𝑏23𝑏31 andΓ2 = 𝑏13𝑏32−𝑏33𝑏12. Obviously, Γ1 is positive always, while Γ2 is
positive under the condition (63).Thus it is easy to verify that

𝐷3 = 0 and hence 𝐽(𝐸2) has zero eigenvalue, say 𝜆∗2 = 0, as𝑏1 passes through the value 𝑏∗1 = Γ1/Γ2, which means that 𝐸2
becomes a nonhyperbolic point. Let now the Jacobian matrix
of system (3) at 𝐸2 with 𝑏1 = 𝑏∗1 be given by

𝐽 (𝐸2, 𝑏∗1 ) = 𝐽∗2 = (𝑏∗𝑖𝑗)3×3 , (65)

where 𝑏∗𝑖𝑗 = 𝑏𝑖𝑗 ∀𝑖, 𝑗 = 1, 2, 3, and 𝑏∗21 = 𝑏∗1 .
Let 𝑈[∗] = (𝑢[∗]1 , 𝑢[∗]2 , 𝑢[∗]3 )𝑇 be the eigenvector corre-

sponding to the eigenvalue 𝜆∗2 = 0. Thus 𝐽∗2𝑈[∗] = 0
gives 𝑈[∗] = (Φ1𝑢[∗]3 , Φ2𝑢[∗]3 , 𝑢[∗]3 )𝑇, where Φ1 = (𝑏12𝑏23 −𝑏22𝑏13)/(𝑏11𝑏22 − 𝑏12𝑏∗1 ) and Φ2 = (𝑏∗1 𝑏13 − 𝑏11𝑏23)/(𝑏11𝑏22 −𝑏12𝑏∗1 ) are positive due to the Jacobian elements and 𝑢[∗]3
represents any nonzero real number. Also, let 𝑊[∗] =(𝑤[∗]1 , 𝑤[∗]2 , 𝑤[∗]3 )𝑇 represent the eigenvector corresponding
to eigenvalue 𝜆∗2 = 0 of 𝐽∗𝑇2 . Hence 𝐽∗𝑇2 𝑊[∗] = 0 gives
that 𝑊[∗] = (Θ1𝑤[∗]3 , Θ2𝑤[∗]3 , 𝑤[∗]3 )𝑇, where Θ1 = (𝑏21𝑏32 −𝑏22𝑏31)/(𝑏11𝑏22 − 𝑏12𝑏∗1 ) and Θ2 = (𝑏12𝑏31 − 𝑏11𝑏32)/(𝑏11𝑏22 −𝑏12𝑏∗1 ) are negative due to the Jacobian elements and 𝑤[∗]3
denotes any nonzero real numbers. Now, since

𝑑𝑓𝑑𝑏1 = 𝑓𝑏1 (𝑌, 𝑏1) = (𝑑𝑓1𝑑𝑏1 , 𝑑𝑓2𝑑𝑏1 , 𝑑𝑓3𝑑𝑏1)𝑇 = (0, 𝑦1, 0)𝑇 (66)

thus 𝑓𝑏1(𝐸2, 𝑏∗1 ) = (0, 𝑦∗1 , 0)𝑇, which gives (𝑊[∗])𝑇𝑓𝑏1(𝐸2,𝑏∗1 ) = Θ2𝑦∗1𝑤[∗]3 ̸= 0. Consequently the first condition of
saddle node bifurcation is satisfied.Moreover, by substituting𝐸2, 𝑏∗1 , and 𝑈[∗] in (44) we get that

𝐷2𝑓 (𝐸2, 𝑏∗1 ) (𝑈[∗], 𝑈[∗]) = 2 (𝑢[∗]3 )2
⋅ (−𝑎2Φ21 − 𝑎4Φ1, −𝑏2Φ22 − 𝑏3Φ2, Φ1 + Φ2 − 1)𝑇 . (67)

Hence, it is obtained that

(𝑊[∗])𝑇𝐷2𝑓 (𝐸2, 𝑏∗1 ) (𝑈[∗], 𝑈[∗]) = 2 (𝑢[∗]3 )2 𝑤[∗]3× [− (𝑎2Φ21 + 𝑎4Φ1)Θ1 − (𝑏2Φ22 + 𝑏3Φ2)Θ2+ (Φ1 + Φ2 − 1)] ̸= 0.
(68)

So, according to Sotomayor’s theorem, system (3) has a saddle
node bifurcation as 𝑏1 passes through the value 𝑏∗1 and hence
the proof is complete.

6. Numerical Simulations

In this section, the global dynamics of system (3) is investi-
gated numerically. The objectives first confirm our obtained
analytical results and second specify the control set of param-
eters that control the dynamics of the system. Consequently,
system (3) is solved numerically using the following biologi-
cally feasible set of hypothetical parameters with different sets
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Figure 1: 3D phase plot of the system (3) for the data given by
(69) starting from different initial values in which the solution
approaches asymptotically to 0.46, 0.15, and 0.42.

of initial points and then the resulting trajectories are drawn
in the form of phase portrait and time series figures.𝑎1 = 2,𝑎2 = 0.1,𝑎3 = 0.4,𝑎4 = 0.5,𝑏1 = 0.4,𝑏2 = 0.1,𝑏3 = 0.5,𝑏4 = 0.2.

(69)

Clearly, Figure 1 shows the asymptotic approach of the
solutions, which started from different initial points to a
positive equilibrium point (0.46, 0.15, 0.42), for the data
given by (69). This confirms our obtained result regarding
the existence of globally asymptotically stable positive point
of system (3) provided that certain conditions hold.

Now in order to discuss the effect of the parameters values
of system (3) on the dynamical behavior of the system, the
system is solved numerically for the data given in (69) with
varying one parameter each time. It is observed that varying
parameters values 𝑎2, 𝑎4, 𝑏2, 𝑏3, and 𝑏4 have no qualitative
effect on the dynamical behavior of system (3) and the
system still approaches to a positive equilibrium point. On
the other hand, when 𝑎1 decreases in the range (𝑎1 ≤ 1.05)
keeping other parameters fixed as given in (69) the dynamical
behavior of system (3) approaches asymptotically to the
vanished equilibrium point as shown in the typical figure
given by Figure 2. Similar observations have been obtained on
the behavior of system (3) in case of increasing the parameter𝑎3 in the range (𝑎3 ≥ 0.8) or decreasing the parameter 𝑏1 in
the range (𝑏1 ≤ 0.2), with keeping other parameters fixed as
given in (69), and then the solution of system (3) is depicted
in Figures 3 and 4, respectively. Finally, for the parameters𝑎2 = 0.9 and 𝑏4 = 0.7 with other parameters fixed as given in

y1

y2

y3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

la
tio

ns

2000 4000 6000 8000 100000
Time

Figure 2: Time series of system (3) approaches asymptotically to
the vanishing equilibrium point for 𝑎1 = 0.8 with other parameters
given by (69).

y1

y2

y3

5000 10000 150000
Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Po
pu

la
tio

ns

Figure 3: Time series of system (3) approaches asymptotically to
the vanishing equilibrium point for 𝑎3 = 0.85with other parameters
given by (69).

(69), the solution of system (3) approaches asymptotically to
the predator free equilibrium point as shown in the Figure 5.

7. Discussion

In this paper, amodel that describes the prey-predator system
having a refuge and stage structure properties in the prey
population has been proposed and studied analytically as
well as numerically. Sufficient conditions which ensure the
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Figure 4: Time series of system (3) approaches asymptotically to
the vanishing equilibrium point for 𝑏1 = 0.15 with other parameters
given by (69).
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Figure 5: Time series of system (3) approaches asymptotically to the
predator free equilibrium point 𝐸1 = (0.42, 0.16, 0) for 𝑎2 = 0.9 and𝑏4 = 0.7 with other parameters given by (69).

stability of equilibria and the existence of local bifurcation
are obtained. The effect of each parameter on the dynam-
ical behavior of system (3) is studied numerically and the
trajectories of the system are drowned in the typical figures.
According to these figures, which represent the solution
of system (3) for the data given by (69), the following
conclusions are obtained.

(1) System (3) has no periodic dynamics rather than the
fact that the system approaches asymptotically to one
of their equilibrium points depending on the set of

parameter data and the stability conditions that are
satisfied.

(2) Although the position of the positive equilibrium
point in the interior of 𝑅3+ changed as varying in
the parameters values 𝑎2, 𝑎4, 𝑏2, 𝑏3, and 𝑏4, there is
no qualitative change in the dynamical behavior of
system (3) and the system still approaches to a positive
equilibrium point. Accordingly adding the refuge
factorwhich is included implicitly in these parameters
plays a vital role in the stabilizing of the system at the
positive equilibrium point.

(3) Decreasing in the value of growth rate of immature
prey or in the value of conversion rate from immature
prey tomature prey keeping the rest of parameter as in
(69) leads to destabilizing of the positive equilibrium
point and the system approaches asymptotically to the
vanishing equilibrium point, which means losing the
persistence of system (3).

(4) Increasing in the value of grownup rate of immature
prey keeping the rest of parameter as in (69) leads
to destabilizing of the positive equilibrium point
and the system approaches asymptotically to the
vanishing equilibrium point too, which means losing
the persistence of system (3).

(5) Finally, for the data given by (69), increasing intraspe-
cific competition of immature prey and natural death
rate of the predator leads to destabilizing of the pos-
itive equilibrium point and the solution approaches
instead asymptotically to the predator free equilib-
rium point, which confirm our obtained analytical
results represented by conditions (21)-(22).
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