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Chemical entropy generation and magnetohydrodynamic effects on the unsteady heat and fluid flow through a porous medium
have been numerically investigated. The entropy generation due to the use of a magnetic field and porous medium effects on
heat transfer, fluid friction, and mass transfer have been analyzed numerically. Using a similarity transformation, the governing
equations of continuity, momentum, and energy and concentration equations, of nonlinear system, were reduced to a set of
ordinary differential equations and solved numerically. The effects of unsteadiness parameter, magnetic field parameter, porosity
parameter, heat generation/absorption parameter, Lewis number, chemical reaction parameter, and Brinkman number parameter
on the velocity, the temperature, the concentration, and the entropy generation rates profiles were investigated and the results were
presented graphically.

1. Introduction

Industries developing technology related to heat transfer are
more concerned with the design of new thermal systems;
thus research is in progress to investigate the hydrodynamic
and heat transfer behavior of new forms of heat transfer
fluid. Recently, entropy generation (or production) has been
used to gauge the significance of irreversibility related to
heat transfer, friction, and other nonideal processes within
thermal system by Bejan [1]. Entropy generation and its
minimization have been considered as an effective tool
to improve the performance of any heat transfer process.
Entropy generation minimization of diabetic distillation col-
umn with trays has been investigated using a new approach
by Spasojević et al. [2] in which the exchanged heat has been
considered as a control variable instead of temperature.

Andersson et al. [3] analyzed the momentum and heat
transfer in a laminar liquid film on a horizontal stretching
sheet governed by time-dependent boundary layer equations.
Tsai et al. [4] studied the nonuniform heat source/sink effect
on the flow and heat transfer from an unsteady stretching

sheet through a quiescent fluidmedium extending to infinity.
Elbashbeshy and Bazid [5] presented similarity solutions of
the boundary layer equations, which describe the unsteady
flow and heat transfer over an unsteady stretching sheet.
Shateyi and Motsa [6] investigated thermal radiation effects
on heat andmass transfer over an unsteady stretching surface.
Bouabid et al. [7] studied analysis of the magnetic field
effect on entropy generation at thermosolutal convection
in a square cavity. Oliveski et al. [8] proposed an entropy
generation and natural convection in rectangular cavities.
Achintya [9] Analyzed the entropy generation due to natural
convection in square enclosures with multiple discrete heat
sources. Magherbi et al. [10] investigated second law analysis
in convective heat and mass transfer. El Jery et al. [11] studied
effect of external oriented magnetic field on entropy gen-
eration in natural convection and Abd El-Aziz [12] studied
radiation effect on the flow and heat transfer over an unsteady
stretching sheet.

This study is a complementary study to the work of
[6] to include the thermal radiation effects on heat and
mass transfer over an unsteady stretching surface. This also
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presents chemical entropy generation and magnetohydrody-
namic effects on the unsteady heat and fluid flow through
a porous medium which are numerically investigated. The
entropy generation due to the use of a magnetic field
and porous medium effects on heat transfer, fluid friction,
and mass transfer have been analyzed numerically. The
effects of unsteadiness parameter, magnetic field parameter,
porosity parameter, heat generation/absorption parameter,
Lewis number, chemical reaction parameter, and Brinkman
number parameter on the velocity, the temperature, the
concentration, and the entropy generation rates profiles were
investigated and the results were presented graphically.

2. Problems Development

The flow, assumed to be unsteady, laminar, and incompress-
ible fluid on a horizontal sheet with chemical entropy gen-
eration and magnetohydrodynamic effects through a porous
medium, has been considered. The viscous dissipation effect
is also taken into consideration. The radiative heat flux in
the 𝑥-direction is negligible in comparison with that in the
𝑦-direction. The fluid motion arises due to the stretching of
the elastic sheet. The continuous sheet aligned with the 𝑥-
axis at 𝑦 = 0 moves in its own plane with a surface velocity
𝑈
𝑤
(𝑥, 𝑡), the surface temperature 𝑇

𝑤
(𝑥, 𝑡), and the surface

concentration𝐶
𝑤
(𝑥, 𝑡) varying both along the sheet and with

time. The magnetic Reynolds number of the flow is taken to
be small enough that the inducedmagnetic field is assumed to
be negligible in comparison with the applied magnetic field,
that is, 𝐵 = (0, 𝐵

0
, 0), where 𝐵

0
is the uniform magnetic

field acting normal to the plate. 𝑢 and V are the velocity of
𝑥 and 𝑦 component, and 𝑇 and 𝐶 are the temperature and
concentration, respectively. The governing boundary layer
equations of continuity, momentum, energy, and concentra-
tion equations under Boussinesq approximations could be
written as follows.

The continuity equation:

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0. (1)

The momentum equations:

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

+ V
𝜕𝑢

𝜕𝑦

= ]
𝜕
2

𝑢

𝜕𝑦
2
−

𝜎𝐵
2

(𝑥, 𝑡)

𝜌

𝑢 − 𝑆
1
(𝑥, 𝑡) 𝑢. (2)

The energy equation:

𝜕𝑇

𝜕𝑡

+ 𝑢

𝜕𝑇

𝜕𝑥

+ V
𝜕𝑇

𝜕𝑦

= 𝛼

𝜕
2

𝑇

𝜕𝑦
2
−

1

𝜌𝐶
𝑝

𝜕𝑞
𝑟

𝜕𝑦

+

𝑄
1
(𝑥, 𝑡)

𝜌𝐶
𝑝

(𝑇 − 𝑇
∞
) .

(3)

The concentration equations:

𝜕𝐶

𝜕𝑡

+ 𝑢

𝜕𝐶

𝜕𝑥

+ V
𝜕𝐶

𝜕𝑦

= 𝐷

𝜕
2

𝐶

𝜕𝑦
2
− 𝑘
1
(𝑥, 𝑡) (𝐶 − 𝐶

∞
) . (4)

The boundary conditions are

𝑢 (𝑥, 0) = 𝑈
𝑤
(𝑥, 𝑡) ,

V (𝑥, 0) = 0,

𝑇 (𝑥, 0) = 𝑇
𝜔
(𝑥, 𝑡) ,

𝐶 (𝑥, 0) = 𝐶
𝑤
(𝑥, 𝑡) ,

𝑢 (𝑥,∞) → 0,

𝑇 (𝑥,∞) → 𝑇
∞
,

𝐶 (𝑥,∞) → 𝐶
∞
,

(5)

where 𝜎 is the electrical conductivity, 𝜌 is the density of
the fluid, 𝜇 is the viscosity of the fluid, 𝛼 = 𝑘/𝜌𝐶

𝑝
is

the thermal diffusivity of the fluid, 𝐶
𝑝
is the heat capacity

at constant pressure, 𝑘
1
is the thermal conductivity, 𝑄

1
is

heat generation/absorption rate (is positive in the case of the
sheet’s generation of heat and is negative in the case of the
sheet’s absorption of heat from the fluid flow), 𝐷 is the mass
diffusivity, 𝑇

∞
is temperature of the fluid at infinity, and 𝑞

𝑟
is

the radiative heat flux in the 𝑦-direction. Using the Rosseland
approximation (Sparrow andCess [13] andMoradi et al. [14]),
the radiative heat flux 𝑞

𝑟
is given by

𝑞
𝑟
= −

4𝜎
∗

3𝑘
∗

𝜕𝑇
4

𝜕𝑦

, (6)

where 𝜎∗ is the Stefan-Boltzmann constant and 𝑘∗ is the
mean absorption coefficient. Assuming that the temperature
difference within the flow is sufficiently small such that 𝑇4
could be approached as the linear function of temperature:

𝑇
4

≅ 4𝑇
3

∞
𝑇 − 3𝑇

4

∞
. (7)

Following Andersson et al. [15], the surface velocity 𝑈
𝑤
(𝑥, 𝑡)

is assumed to be 𝑈
𝑤
(𝑥, 𝑡) = 𝑏𝑥/(1 − 𝑎𝑡), where both 𝑎 and

𝑏 are positive constants with dimension reciprocal time. We
have 𝑏 as the initial stretching rate and 𝑏/(1−𝑎𝑡) is increasing
with time. In the context of polymer extrusion, the material
properties particularly the elasticity of the extruded sheet
may vary with time even though the sheet is being pulled
by a constant force. With unsteady stretching, however,
𝑎
−1 becomes the representative time scale of the resulting

unsteady boundary layer problem. We assume that all of
the surface temperature 𝑇

𝑤
(𝑥, 𝑡), the surface concentration

𝐶
𝑤
(𝑥, 𝑡), the applied transversemagnetic field𝐵(𝑥, 𝑡), the vol-

umetric heat generation/absorption rate𝑄
1
(𝑥, 𝑡), the thermal

conductivity 𝑘
1
(𝑥, 𝑡), and the porous medium 𝑆

1
(𝑥, 𝑡) are on
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a stretching sheet to vary with the distance 𝑥 along the sheet
and time in the following forms:

𝐵 (𝑥, 𝑡) = 𝐵
0
(1 − 𝑎𝑡)

−1/2

,

𝑄
1
(𝑥, 𝑡) = 𝑄

0
(1 − 𝑎𝑡)

−1

,

𝑇
𝑤
(𝑥, 𝑡) = 𝑇

∞
+ 𝑇
0
(

𝑏𝑥
2

2]
) (1 − 𝑎𝑡)

−3/2

,

𝐶
𝑤
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∞
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(

𝑏𝑥
2

2]
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,

𝑆
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]
𝜅
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0
(1 − 𝑎𝑡)

−1

,

𝑘
1
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0
(1 − 𝑎𝑡)

−1

.

(8)

We introduce the similarity transformations

𝜓 = √]𝑏 (1 − 𝑎𝑡)−1/2 𝑥𝑓 (𝜂) ,

𝑇 = 𝑇
∞
+ 𝑇
0
(
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2

2]
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−3/2

𝜃 (𝜂) ,
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∞
+ 𝐶
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(
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2
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𝜑 (𝜂) ,
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𝑏

]
(1 − 𝑎𝑡)

−1/2

𝑦.

(9)

Equation (1) is satisfied automatically and so are governing
equations (2)–(5); we have

𝑓


− 𝐴(

𝜂𝑓


2

+ 𝑓
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(𝑓𝜑
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𝜑 − (

𝐴

2

) (3𝜑 + 𝜂𝜑


) − 𝛾𝜑)

= 0,

(10)

with the boundary conditions

𝑓 (0) = 0,

𝑓


(0) = 1,

𝜃 (0) = 1,

𝜑 (0) = 1,

𝑓


(∞) = 0,

𝜃 (∞) = 0,

𝜑 (∞) = 0.

(11)

Here the prime denotes a partial differentiation with respect
to 𝜂, 𝜅 is the permeability of the porous medium, 𝐴 = 𝑎/𝑏 is
the unsteadiness parameter,𝑀 = 𝜎𝐵

2

0
/𝑏𝜌 is themagnetic field

parameter, 𝑆 = 𝑆
0
/𝑏 is the porosity parameter, 𝑃

𝑟
= 𝜇𝐶
𝑝
]/𝑘 is

the Prandtl number,𝑅 = 𝑘∗𝑘/4𝜎∗𝑇3
∞
is the thermal radiation

parameter,𝐻 = 𝑄
0
/𝑏𝜌𝐶
𝑝
is the heat generation/absorption

parameter, 𝐿
𝑒
= 𝑘/𝐷𝜌𝐶

𝑝
is the Lewis number, and 𝛾 = 𝑘

0
/𝑏

is the chemical reaction parameter.

3. Entropy Generation

In the present problem, the volumetric entropy generation
is therefore the sum of irreversibilities due to heat transfer,
fluid friction, mass transfer by pure concentration gradients,
and mass transfer by mixed product of concentration and
thermal gradients with magnetic field and porous medium
effects which is given by

𝑆
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Using the nondimensional quantities, we obtain the local
entropy generation rates in nondimensional form:
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where 𝜆
1
= 𝑥
2

𝑇
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2 are the characteristic entropy generation rate.

The total dimensionless entropy generation is obtained by

𝑁
𝑠
= 𝐵
𝑟
𝑅
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where 𝐵
𝑟
= 𝜇𝑇

∞
𝑏
2

𝑥
2

/𝑘(Δ𝑇) is the Brinkman number,
𝑅
𝑒
= 𝑏𝑥
2

/] is local Reynolds number, Ω = Δ𝑇/𝑇
∞

is the
dimensionless temperature ratio, and Ω

1
= Δ𝐶/𝐶

∞
is the

dimensionless concentration ratio.

4. Result and Discussion

The system of nonlinear ordinary differential equations (10)
together with the boundary conditions (11) is locally similar
and solved numerically by using the Control Volume Finite-
Element Method. Numerical values of the velocity, the tem-
perature, and the concentration profiles have been used to
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Figure 1: Influence of unsteadiness parameter on (a) the velocity profile, (b) the temperature profile, (c) the concentration profile, and (d)
the entropy generation rates profile.

compute the entropy generation rates, found for different
values of the various parameters occurring in the prob-
lem with unsteadiness parameter, magnetic field parameter,
porosity parameter, heat generation/absorption parameter,
Lewis number, chemical reaction parameter, and Brinkman
number parameter; the results are displayed in Figures 1–
7, for the velocity, the temperature, the concentration, and
the entropy generation rates profiles. In order to verify the
accuracy of our present method, we have compared our
results with those of Shateyi and Motsa [6] and Abd El-Aziz
[12]. Table 1 shows the values of −𝜃(0) for several of𝐴 and𝑃

𝑟
.

The comparisons in all the above cases are found to agreewith
each other excellently. Also the results are found to be similar
to those by Shateyi and Motsa [6] and Abd El-Aziz [12]. So it
is good.

In Figures 1(a), 1(b), 1(c), and 1(d), respectively, the
influence of the unsteadiness parameter on the velocity
profile, the temperature profile, the concentration profile, and
the entropy generation rates profile is shown. It is observed
that the velocity profile, the temperature profile, and the
concentration profile decrease while the entropy generation
rates profile increases with the increase of the unsteadiness
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Figure 2: Influence of the magnetic field parameter on (a) the velocity profile, (b) the temperature profile, (c) the concentration profile, and
(d) the entropy generation rates profile.

parameter. When 𝐴 = 0, we have a steady state flow and for
𝐴 > 0, we have an unsteady flow.

In absence of both magnetic field parameter and porosity
parameter effects on the velocity profile, the temperature
profile, the concentration profile, and the entropy generation
rates profile are illustrated in Figures 2(a), 2(b), 2(c), 2(d),
3(a), 3(b), 3(c), and 3(d), respectively; also, we have found that
the velocity profile decreases while the temperature profile,
the concentration profile, and the entropy generation rates
profile increase with the increase of each of themagnetic field

parameter and porosity parameter, and this is due to the fact
that the thermal boundary layer increases withmagnetic field
parameter and porosity parameter. The presence of each of
the magnetic field and porosity creates additional entropy.

The effects of heat generation/absorption parameter on
the temperature and the entropy generation rates profiles
are presented in Figures 4(a) and 4(b), respectively. It is
observed that the temperature profile increases while the
entropy generation rates profile decreases with increase of
heat generation/absorption parameter. This is due to the fact
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Figure 3: Influence of the porosity parameter on (a) the velocity profile, (b) the temperature profile, (c) the concentration profile, and (d) the
entropy generation rates profile.

that the increase of the heat source/sink parameter means
an increase of the heat generated inside the boundary layer
leading to higher temperature profile.

The effect of the Lewis number parameter on the concen-
tration and the entropy generation rates profiles is shown on
Figures 5(a) and 5(b), respectively, and we have found that
the concentration profile decreases while entropy generation
rates profile increases with increase of the values of the Lewis
number parameter.

The concentration profile for different values of the
chemical reaction parameter is plotted in Figure 6;we observe

that the concentration profile decreases with the increase
of the chemical reaction parameter. The influence of the
Brinkman number parameter on the entropy generation rates
profile is shown in Figure 7; we have found that the entropy
generation rates profile increases with the increase of the
Brinkman number parameter.

5. Conclusions

The entropy generation due to the use of a magnetic field
and porous medium effects on heat transfer, fluid friction,
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Figure 4: Influence of the heat generation/absorption parameter on (a) the temperature profile and (b) the entropy generation rates profile.
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Figure 5: Influence of the Lewis number parameter on (a) the concentration profile and (b) the entropy generation rates profile.

andmass transfer have been analyzed numerically.Numerical
values of the velocity, the temperature, and the concentration
profiles have been used to compute the entropy generation
rates, found for different values of the various parame-
ters occurring in the problem. The effects of unsteadiness
parameter,magnetic field parameter, porosity parameter, heat
generation/absorption parameter, Lewis number, chemical
reaction parameter, and Brinkman number parameter on the

velocity, the temperature, the concentration, and the entropy
generation rates profiles are discussed graphically. The main
conclusions derived from this study are given below:

(1) The increasing values of porosity parameter andmag-
netic field parameter lead to increase in the entropy
generation rates profile, and we also observed that
the temperature profile and the concentration profile
increase, while the velocity profile decreases.
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Figure 6: Influence of the chemical reaction parameter on the
concentration profile.

A = 1.0,M = 1.0, R = 1.0, Pr = 0.7,H = 0.0,

Le = 1.0, 𝛾 = 0.2, S = 0.1,

Re = 1.0, Ω = 10.0, Ω1 = 1.0

Br = 0.5, 1.0, 5.0

0

5

10

15

20

25

N
s(
𝜂
)

0.5 1.0 1.5 2.0 2.50.0
𝜂

Figure 7: Influence of the Brinkman number parameter on the
entropy generation rates profile.

(2) The entropy generation rates profile decreases with
the increase of the heat generation/absorption param-
eter. And also, the temperature profile increases.

(3) As the Lewis number parameter increases, we found
that the entropy generation rates profile increases,
while the concentration profile decreases.

Table 1: Comparison of the value −𝜃(0) for several of𝐴 and 𝑃
𝑟
with

𝑀 = 0.0, 𝑆 = 0.0,𝐻 = 0.0, 𝐿
𝑒
= 0.0, 𝛾 = 0.0, and 𝐵

𝑟
= 0.0.

𝐴 𝑃
𝑟

Abd El-Aziz [12] Shateyi and Motsa [6] Present study

0.8
0.1 0.4517 0.45149 0.4518
1.0 1.6728 1.67285 1.67275
10.0 5.70503 5.70598 5.70573

1.2
0.1 0.5087 0.50850 0.50841
1.0 1.818 1.81801 1.81793
10.0 6.12067 6.12102 6.12012

2.0
0.1 0.606013 0.60352 0.60341
1.0 2.07841 2.07841 2.07830
10.0 6.88506 6.88615 6.88586

(4) The entropy generation rates profile decreases with
the increase of the Brinkman number parameter.

(5) The unsteadiness parameter increases with the
increase of the entropy generation rates profile, and
also, the velocity profile, the temperature profile, and
the concentration profile decrease.

Nomenclature

𝐴: Unsteadiness parameter (= 𝑎/𝑏)
𝑎: Positive constant
𝐵: Magnetic field
𝐵
0
: Uniform transverse magnetic field

𝐵
𝑟
: Brinkman number (= 𝜇𝑇

∞
𝑏
2

𝑥
2

/𝑘(Δ𝑇))
𝑏: Positive constant
𝐶: Concentration profile
𝐶
𝑝
: Heat capacity at constant pressure

𝐶
𝑤
: Surface concentration

𝐷: Mass diffusivity
𝐻: Heat generation/absorption parameter (= 𝑄

0
/𝑏𝜌𝐶
𝑝
)

𝑘: Thermal conductivity
𝑘
∗: Mean absorption coefficient
𝐿
𝑒
: Lewis number (= 𝑘/𝐷𝜌𝐶

𝑝
)

𝑀: Magnetic field parameter (= 𝜎𝐵2
0
/𝑏𝜌)

𝑁
𝑠
: Entropy generation rates

𝑄
1
: Volumetric heat generation/absorption rate

𝑄
0
: Heating source

𝑞
𝑟
: Radiative heat flux

𝑇: Temperature profile
𝑇
𝑤
: Surface temperature

𝑇
∞
: Temperature of the fluid at infinity

𝑆: Porosity parameter (= 𝑆
0
/𝑏)

𝑆
𝐺
: Volumetric entropy generation

𝑃
𝑟
: Prandtl number (= 𝜇𝐶

𝑝
]/𝑘)

𝑅: Thermal radiation parameter (= 𝑘∗𝑘/4𝜎∗𝑇3
∞
)

𝑅
𝑒
: Local Reynolds number (= 𝑏𝑥2/])

𝑢: Velocity in the 𝑥-direction
𝑈
𝑤
: Surface velocity

V: Velocity in the 𝑦-direction
𝑥: Horizontal distance
𝑦: Vertical distance.
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Greek Symbols
𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
: Characteristic entropy generation rate

𝛼: Thermal diffusivity of the fluid
(= 𝑘/𝜌𝐶

𝑝
)

𝛾: Chemical reaction parameter (= 𝑘
0
/𝑏)

Ω: Dimensionless temperature ratio
(= Δ𝑇/𝑇

∞
)

Ω
1
: Dimensionless concentration ratio

(= Δ𝐶/𝐶
∞
)

𝜂: Similarity variable
𝜃: Dimensionless temperature distribution
𝜓: Stream function
𝜇: Viscosity of the fluid
𝜌: Density of the fluid
]: Kinematic viscosity of the fluid
𝜅: Permeability of the porous medium
𝜎: Electrical conductivity
𝜎
∗: Stephan-Boltzmann constant.

Subscripts
𝑤,∞: Conditions at the surface and in the free stream.
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