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We prove the existence of a curve (with respect to the scalar delay) of periodic positive solutions for a smooth model of Cooke-
Kaplan’s integral equation by using the implicit function theorem under suitable conditions. We also show a situation in which any
bounded solution with a sufficiently small delay is isolated, clearing an asymptotic stability result of Cooke and Kaplan.
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1. Introduction

By modelling some infectious diseases with periodic contact
rate that varies seasonally, Cooke andKaplan [1] cameupwith
the nonlinear integral equation

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, − ∞ < 𝑡 < +∞, (1)

where 𝑢(𝑡) represents the proportion of infections in the
population at time 𝑡,𝑓 : R×[0,∞) → [0,∞); (𝑡, 𝑥) 󳨃→ 𝑓(𝑡, 𝑥)

is a (nonnegative) continuous functionwhich is𝜔-periodic in
the variable 𝑡; and 𝜏 is a positive real number corresponding
to the length of time an individual remains infectious.

This has attracted many mathematicians such as Leggett
and Williams [2], Nussbaum [3], and Agarwal and O’Regan
[4] who have considered many variants of this model and
used cone theoretic arguments to establish their existence
results.

In this paper, we consider 𝜏 as a positive real parameter
and prove under suitable conditions (5) the existence of a
unique curve of periodic positive solutions when 𝑓 is of
separable variables; say 𝑓(𝑡, 𝑥) ≡ 𝑞(𝑡)𝑔(𝑥) with 𝑞 : R →

[0, +∞) continuous and 𝜔-periodic, and 𝑔 : [0, +∞) →

[0, +∞) is of class C1. Furthermore we show a uniqueness

result for bounded solutions of (1) when 𝑓(𝑡, 0) ≡ 0, 𝑓 is
continuous and continuously differentiable with respect to its
second variable 𝑥, and 𝜏 > 0 is sufficiently small.

2. The Results

In the sequel 𝜔 denotes a positive constant real number,
C
𝜔
(R) denotes the real Banach space of 𝜔-periodic contin-

uous functions from R to R equipped with the supremum
norm

‖𝑢‖
𝜔
= sup
𝑡∈R

|𝑢 (𝑡)| = max
0≤𝑡≤𝜔

|𝑢 (𝑡)| , (2)

C1
𝜔
(R) denotes the space of 𝜔-periodic continuously differ-

entiable functions from R to R, and 𝐶
𝑏
(R) denotes the real

Banach space of bounded continuous functions from R to R
equipped with the supremum norm

‖𝑢‖
∞

= sup
𝑡∈R

|𝑢 (𝑡)| . (3)

Given a function of two variables 𝑢 : (𝜏, 𝑡) 󳨃→ 𝑢(𝜏, 𝑡), we shall
set

𝑢
𝜏
(𝑡) fl 𝑢 (𝜏, 𝑡) . (4)
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2 Abstract and Applied Analysis

Theorem 1. Let 𝑞 : R → [0, +∞) be a (nonnegative) continu-
ous𝜔-periodic function that is not identically equal to zero and
𝑔 : [0, +∞) → [0, +∞) be a nonnegative continuous function
of classC1.

Suppose, moreover, that there exists a real number 𝑥
0
> 0

such that
𝑥
0
− 𝜔𝑞𝑔 (𝑥

0
) = 0,

𝜔𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
< 1,

(5)

where 𝑞 = (1/𝜔) ∫

𝜔

0
𝑞(𝑠)𝑑𝑠 (the mean value of 𝑞).

Then there exists 𝛿 ∈ (0, 𝜔) and a unique curve of nontriv-
ial nonnegative 𝜔-periodic solutions 𝑢 ∈ C1((𝜔 − 𝛿, 𝜔 + 𝛿);
C1
𝜔
(R)); 𝜏 󳨃→ 𝑢(𝜏, ⋅) š 𝑢

𝜏
such that by setting 𝑢

𝜏
fl 𝑢(𝜏, ⋅) we

have

𝑢
𝜔
(𝑡) = 𝑥

0
, ∀𝑡 ∈ R, (6)

and for each 𝜏 ∈ (𝜔 − 𝛿, 𝜔 + 𝛿),

𝑢
𝜏
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔 (𝑢
𝜏
(𝑠)) 𝑑𝑠, − ∞ < 𝑡 < +∞; (7)

that is, 𝑢
𝜏
solves (1) with 𝑓(𝑡, 𝑥) ≡ 𝑞(𝑡)𝑔(𝑥).

Remarks 2. (i) For 𝜏 sufficiently closed but not equal to 𝜔,
the solution 𝑢

𝜏
provided by Theorem 1 is not constant (since

it can be seen in the proof that (𝜕𝑢/𝜕𝜏)(𝜔, 𝑥
0
) ̸≡ 0).

(ii) The assumptions of this theorem are satisfied (due to
the intermediate value theorem) when 𝑞 : R → [0, +∞)

is a nonnegative continuous 𝜔-periodic function that is not
identically equal to zero and 𝑔 : [0, +∞) → [0, +∞) is a
nonnegative continuous function of classC1 such that

lim sup
𝑥→0
+

𝑔 (𝑥)

𝑥

= +∞,

inf
𝑥≥𝑥
∗

𝑔 (𝑥)

𝑥

= 0 for some 𝑥
∗
> 0,

𝜔𝑞(sup
𝑥>0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
) < 1.

(8)

(iii) The conclusion ofTheorem 1 still holds, according to
its proof, when 𝑞 : R → [0, +∞) is a nonnegative continuous
𝜔-periodic function that is not identically equal to zero, for
some real number 𝑥

1
> 0, 𝑔 is continuously differentiable

from [0, 𝑥
1
] into [0, +∞), and there exists a real number 𝑥

0
∈

(0, 𝑥
1
) that satisfies the conditions (5).

(iv) Note that if 𝑞 : R → [0, +∞) is a nonnegative con-
tinuous 𝜔-periodic function that is not identically equal to
zero and 𝑔 : [0, +∞) → [0, +∞) is a nonnegative continuous
function of class C1 which is superlinear or for which there
exists a positive number 𝑥∗ such that

𝑔
󸀠

𝑟
(0) = 0,

𝑔 (𝑥
∗
)

𝑥
∗

>

1

𝜔𝑞

,

(9)

then (1) with 𝜏 = 𝜔 has a positive constant solution but we
cannot say more because 𝜔𝑞(sup

0<𝑥<𝑥
∗ |𝑔
󸀠
(𝑥)|) > 1.

Proposition 3. Let

𝑓 : R × [0, +∞) 󳨀→ [0, +∞) ,

(𝑡, 𝑥) 󳨃󳨀→ 𝑓 (𝑡, 𝑥)

(10)

be a nonnegative bounded continuous function, 𝜔-periodic
with respect to 𝑡, not identically equal to zero and having a
continuous partial derivative 𝜕𝑓/𝜕𝑥. Suppose, moreover, that

𝑓 (𝑡, 0) = 0 ∀𝑡 ∈ R. (11)

Then,

(i) for every 𝜏 > 0, any solution of (1) is a priori bounded,

(ii) given 𝜏 > 0, any solution 𝑢 of (1), such that

sup
𝑡∈R

∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑓

𝜕𝑥

(𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 < 1, (12)

is isolated,

(iii) in particular, for any 𝜏 > 0 such that

sup
𝑡∈R

∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑓

𝜕𝑥

(𝑠, 0)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 = max
0≤𝑡≤𝜔

∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑓

𝜕𝑥

(𝑠, 0)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 < 1, (13)

the zero function is an isolated solution of (1).

Example 4. The assumptions of this theorem are satisfied in
each of the next two cases followed by an illustration of part
(iii) of Remarks 2:

(i) Let 𝑔(𝑥) = 𝑒
−𝑥 for every 𝑥 ≥ 0 and 𝑞(𝑡) = (1/2)(1 +

sin(2𝜋𝑡)) for all 𝑡 ∈ R and 𝜔 = 1.

Clearly 𝑞 is a 1-periodic nonnegative function with
𝑞 = (1/𝜔) ∫

𝜔

0
𝑞(𝑠)𝑑𝑠 = 1/2. Moreover 𝑔 is a

nonnegative function of classC1 on [0, +∞) and so

𝜔𝑞 sup
𝑥>0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝜔𝑞 sup

𝑥>0

𝑒
−𝑥

=

1

2

< 1. (14)

One can even realize that the positive solution 𝑥
0
of

the equation

𝑥 −

𝑒
−𝑥

2

= 0 (15)

belongs to the interval (0, 1/2).

(ii) Let 𝑔(𝑥) = exp(−𝑥2/2) for every 𝑥 ≥ 0 and 𝑞(𝑡) =

(1 + sin(𝜋𝑡))/2 for all 𝑡 ∈ R and 𝜔 = 2.

Clearly 𝑞 is a 2-periodic nonnegative function with

𝑞 =

1

𝜔

∫

𝜔

0

𝑞 (𝑠) 𝑑𝑠 =

1

2

. (16)
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Moreover 𝑔 is a nonnegative function of class C1 on
[0, +∞) and 𝑔

󸀠
(𝑥) = −𝑥 exp(−𝑥2/2) for 𝑥 > 0,

lim
𝑥→0
+

𝑔 (𝑥)

𝑥

= +∞,

lim
𝑥→+∞

𝑔 (𝑥)

𝑥

= 0,

𝜔𝑞(sup
𝑥>0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
) = sup
𝑥>0

(𝑥𝑒
−𝑥
2
/2
) = (

2

𝑒

)

1/2

< 1.

(17)

Then we can conclude according to part (ii) of
Remarks 2.

(iii) Let 𝑔(𝑥) = 𝑥(1 − 𝑥) for every 0 ≤ 𝑥 ≤ 1, 𝑞(𝑡) =

5(1 + sin(4𝜋𝑡)) for all 𝑡 ∈ R, and 𝜔 = 1/2.
It follows that 𝑞 is a 1/2-periodic nonnegative func-
tion with 𝑞 = 5, and 𝑔 is a nonnegative function of
class C1 on [0, 1] with 𝑔

󸀠
(𝑥) = 1 − 2𝑥 for 0 < 𝑥 < 1.

Moreover 𝑥
0
= 3/5 satisfies

𝑥
0
− 𝜔𝑞𝑔 (𝑥

0
) = 0,

𝜔𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

1

2

< 1.

(18)

The result follows from part (iii) of Remarks 2.

Proof of Theorem 1. Suppose that the assumptions of
Theorem 1 are satisfied.

Step 1. Let 𝑔̃ be a real-valued C1-extension of 𝑔 to R; for
instance,

𝑔̃ (𝑥) =

{

{

{

𝑔 (𝑥) if 𝑥 ≥ 0,

𝑔
󸀠

𝑟
(0) 𝑥 + 𝑔 (0) if 𝑥 < 0,

(19)

which may change sign; in other words 𝑔̃ is defined from R

into R.
Although

𝑔 ([0, +∞)) ⊂ [0, +∞) , (20)

we shall need just a positive real number 𝑥
1
> 𝑥
0
such that

𝑔 ([0, 𝑥
1
]) ⊂ [0, +∞) (21)

for the sake of generality (see Remarks 2(iii)). Hence

𝑔̃ (𝑥) = 𝑔 (𝑥) ≥ 0, ∀𝑥 ∈ [0, 𝑥
1
] . (22)

Now set

Ω = {𝑢 ∈ C
𝜔
(R) : 0 < 𝑢 (𝑡) < 𝑥

1
, ∀𝑡 ∈ [0, 𝜔]} . (23)

Clearly Ω is open in C
𝜔
(R) and contains the constant

function 𝑥
0
. Moreover consider the mapping

𝐹 : (0, +∞) × Ω 󳨀→ C
𝜔
(R) ,

(𝜏, 𝑢) 󳨃󳨀→ 𝐹 (𝜏, 𝑢)

(24)

defined by

[𝐹 (𝜏, 𝑢)] (𝑡) = 𝑢 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔̃ (𝑢 (𝑠)) 𝑑𝑠,

−∞ < 𝑡 < +∞.

(25)

Then 𝐹 is well-defined by the 𝜔-periodicity of 𝑞 and the
continuity of both 𝑞 and 𝑔. Also for every (𝜏, 𝑢) ∈ (0, +∞)×Ω

fixed, we have

𝐹 (𝜏, 𝑢) = 0 ⇐⇒

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

[𝐹 (𝜏, 𝑢)] (𝑡) = 0, ∀𝑡 ∈ R

𝑢 (𝑡) − ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔̃ (𝑢 (𝑠)) 𝑑𝑠 = 0, ∀𝑡 ∈ R

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔̃ (𝑢 (𝑠)) 𝑑𝑠 ≥ 0, ∀𝑡 ∈ R

𝑢 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔 (𝑢 (𝑠)) 𝑑𝑠 ≥ 0, ∀𝑡 ∈ R.

(26)

Thus for (𝜏, 𝑢) ∈ (0, +∞) × Ω, 𝐹(𝜏, 𝑢) = 0 if and only if 𝑢 is a
positive solution of (1) with 𝑓(𝑡, 𝑥) ≡ 𝑞(𝑡)𝑔(𝑥).

Step 2. Now one can see that 𝐹 is of classC1 by the properties
of the parameter dependent integrals and those of Nemytskii
operators [5].

It is not hard to check that, for every 𝜏 > 0 and every
𝑢 ∈ C

𝜔
(R), we have for all ℎ ∈ C

𝜔
(R),

𝐷
1
𝐹 (𝜏, 𝑢) : 𝑡 󳨃󳨀→ −𝑞 (𝑡 − 𝜏) 𝑔 (𝑢 (𝑡 − 𝜏)) ,

[𝐷
2
𝐹 (𝜏, 𝑢)] (ℎ) : 𝑡 󳨃󳨀→ ℎ (𝑡)

− ∫

𝑡

𝑡−𝜏

𝑞 (𝑠) 𝑔
󸀠
(𝑢 (𝑠)) ℎ (𝑠) 𝑑𝑠.

(27)

In particular𝐷
1
𝐹(𝜔, 𝑥

0
) is the function −𝑔(𝑥

0
)𝑞 since 𝑞 is 𝜔-

periodic, while 𝐷
2
𝐹(𝜔, 𝑥

0
) is the endomorphism of C

𝜔
(R);

ℎ 󳨃→ 𝐷
2
𝐹(𝜔, 𝑥

0
)(ℎ), such that

[𝐷
2
𝐹 (𝜔, 𝑥

0
) (ℎ)] (𝑡) = ℎ (𝑡)

− 𝑔
󸀠
(𝑥
0
) ∫

𝑡

𝑡−𝜔

𝑞 (𝑠) ℎ (𝑠) 𝑑𝑠,

∀𝑡 ∈ R.

(28)

Step 3. We have 𝐹(𝜔, 𝑥
0
) = 0.

Moreover
󵄩
󵄩
󵄩
󵄩
𝐷
2
𝐹 (𝜔, 𝑥

0
) − 𝐼

󵄩
󵄩
󵄩
󵄩
= sup
‖ℎ‖
𝜔
≤1

󵄩
󵄩
󵄩
󵄩
𝐷
2
𝐹 (𝜔, 𝑥

0
) (ℎ) − ℎ

󵄩
󵄩
󵄩
󵄩𝜔

≤ sup
𝑡∈R

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
∫

𝑡

𝑡−𝜔

𝑞 (𝑠) 𝑑𝑠

= 𝜔𝑞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(𝑥
0
)

󵄨
󵄨
󵄨
󵄨
󵄨
< 1,

(29)

showing that𝐷
2
𝐹(𝜔, 𝑥

0
) is an isomorphism ofC

𝜔
(R), Cf [5,

page 212] or [6, page 31].
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Therefore by the implicit function theorem [5–7], there
is an open neighbourhood 𝑉

0
of (𝜔, 𝑥

0
) in (0, +∞) × Ω, a

positive real number 𝛿 < 𝜔, and an open neighbourhood
Ω
0

⊆ Ω and a unique continuously differentiable map 𝜑

from (𝜔 − 𝛿, 𝜔 + 𝛿) to Ω
0
such that 𝜑(𝜔) = 𝑥

0
and for any

(𝜏, 𝑢) ∈ (𝜔 − 𝛿, 𝜔 + 𝛿) × Ω,

((𝜏, 𝑢) ∈ 𝑉
0
, 𝐹 (𝜏, 𝑢) = 0) ⇐⇒

(𝜏 ∈ (𝜔 − 𝛿, 𝜔 + 𝛿) , 𝑢 = 𝜑 (𝜏)) .

(30)

In addition

𝜑
󸀠
(𝜏) = [𝐷

2
𝐹 (𝜏, 𝜑 (𝜏))]

−1

𝐷
1
𝐹 (𝜏, 𝜑 (𝜏)) , ∀𝜏 ∈ 𝑈

0
, (31)

and so

𝜑
󸀠
(𝜔) = −𝑔 (𝑥

0
) [𝐷
2
𝐹 (𝜔, 𝑥

0
)]
−1

(𝑞) ̸≡ 0. (32)

The result follows.

Proof of Proposition 3. (1) Let us fix 𝜏 > 0 and suppose that
V is any solution of (1) with 𝑓 satisfying the hypotheses of
Proposition 3. Then we have

0 ≤ V (𝑡) = ∫

𝑡

𝑡−𝜏

𝑓 (𝑠, V (𝑠)) 𝑑𝑠 ≤ 𝜏
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩∞

, ∀𝑡 ∈ R, (33)

showing that V is bounded by the boundedness of 𝑓.
(2) Let us fix 𝜏 > 0 and suppose 𝑢 is a solution of (1) such

that

sup
𝑡∈R

∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑓

𝜕𝑥

(𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 < 1. (34)

Consider the nonlinear map 𝐺 : 𝐶
𝑏
(R) → 𝐶

𝑏
(R) defined by

[𝐺 (V)] (𝑡) = V (𝑡) − ∫

𝑡

𝑡−𝜏

𝑓 (𝑠, V (𝑠)) 𝑑𝑠, ∀𝑡 ∈ R. (35)

Indeed if V is a bounded continuous function from R into
R, then 𝐺(V) is also continuous by the continuity of 𝑓 and
is moreover bounded by the previous result.

Again it is not hard to see that𝐺, as amap from𝐶
𝑏
(R) into

𝐶
𝑏
(R), is continuously differentiable and given V ∈ 𝐶

𝑏
(R), we

have for every ℎ ∈ 𝐶
𝑏
(R)

[𝐺
󸀠
(V) (ℎ)] (𝑡) = ℎ (𝑡) − ∫

𝑡

𝑡−𝜏

𝜕𝑓

𝜕𝑥

(𝑠, V (𝑠)) ℎ (𝑠) 𝑑𝑠,

∀𝑡 ∈ R.

(36)

So that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐺
󸀠
(𝑢) − 𝐼

󵄩
󵄩
󵄩
󵄩
󵄩
≤ sup
𝑡∈R

∫

𝑡

𝑡−𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑓

𝜕𝑥

(𝑠, 𝑢 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠 < 1 (37)

by assumption. This implies that 𝐺󸀠(𝑢) is an automorphism.
And since 𝐺(𝑢) = 0, we conclude that 𝑢 is an isolated zero of
𝐺; that is, 𝑢 is an isolated solution of (1).

(3) follows immediately from (2).
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