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A new result of solvability for a wide class of systems of variational equations depending on parameters and governed by
nonmonotone operators is found in a Banach real and reflexive space with applications to Dirichlet and Neumann problems related

to nonlinear elliptic systems.

1. Introduction

Many researchers (e.g., [1-9]) have devoted (and are still
devoting) their studies to the solvability and the investigation
of multiple and positive solutions of nonlinear elliptic prob-
lems.

A class of general systems of variational equations has
been studied in [10]. The Dirichlet and Neumann problems
investigated in [11] belong to this class.

In this paper, we prove a further existence theorem
related to the problem of [10] in the homogeneous case,
by using the Lagrange multipliers and the “algebraic”
approach which is based on the fibering method [12]. This
theorem and the ones of [10] include the results of [8] and
some results of [13-15]. Now, let us recall the problem studied
in [10].

Let Wy, -1 -» (W, I -1I,) (n > 1) be Banach reflexive
and real spaces. Let W = X,_ W, with [vl = Y,_, lIvell, Vv =

(v,...>v,) € W. Let (), [resp., &, -»] be the duality
between W," dual space of W, [resp.,W" dual space of W]
and W, [resp., W]. Let us denote by “0” Fréchet differential
operator and by “0, " Fréchet differential operator with
respecttou,. Let A # OandDj #0(j=1,....,m m=>1)be
real functionals defined in W and let B, and B, (€ = 1,...,n)
be real functionals defined in W, satisfying the following
conditions:

(i;1) A is lower weakly semicontinuous in W and C'(w\
{0}), B, and B, are weakly continuous in W, and
C'(W,),3p > 1: A(tv) =tPA(v) Vt > 0and Vv € W,
B,(tv,) = t?B,(v,) and B,(tv,) = t! B,(v,) Vt > 0 and
Yv, € W,.

(i1,) D is weakly continuous in W and c'(w\{o}), 3q; >
1:Di(tv) = tUD;(v) Vt 2 0,and Vv € W, 1 < gq; <
< g, itm> 1
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Let us set the following:

Hy, (v) = A®v) - Z [AeBe (ve) + peBy (Ve)] )

=1

m

E(v) = Hy, ()= Y D;(v),

J=1

Vv =(vp,...

S/l‘u = {VG W:H/\M(V) = 1},
Vi = {vew:H, (v <0},

S(D,)={veW:D, (v) = -1},

v*(Dy,....D,, ) = «lvew;fz)j(vpo} asm; =1,..

j=1

Let us consider the following problem.

Problem (P). Find u = (uy,...,u,) € W\ {0} such that

<au,~A (u), Vi>i = A; (0B; (;), Vi>i T Ui <a§i (), Vi>,-
+ ) (3,D;w),v;), )
=1

Vie{l,...,n}, Vv, e W,

In Section 2, we present new cases ((c;)-(¢,)) in which
Problem (P) is solvable. In these cases, we introduce one of
the following hypotheses:

(i13) Fe(h ) > 0 IIIP < c(A, wHy, (v) Vv € W.

(i) 3cAp) > 0 = IWIP < c(h, w)H,,(v) ¥v € V'(Dy)
(if V(D)) # 2).

Theorem 1 assures the existence of at least one solution. It is
possible to get the existence of a second solution from a result
of [10, Theorem 2.2]. This result is based in particular on the
following assumption:

(i15) Viun S(D,) is not empty and bounded in W.

The applications to Dirichlet problems in Section 3 [resp.,
Neumann problems in Section 4] (whose variational form is
included in Problem (P)), for the sake of brevity, deal with
the first case of solvability, since in this case we can use at
the same time Theorems 1 and 4. When n > 1, thanks to
Propositions 2 and 5, we have got sufficient conditions so
that the components of the found solutions are not identically
equal to zero.

,v,) € W, where A = (1,,...
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An)s = (ps o) € R

)

s .

2. Solvability of Problem (P)
Let us consider the following cases:

(q)m>1,q, < p, V(D) # 2,D; <0Vjef2,... m
and (i;,) holds.

()m>1,3m; € {2,....m} : q, < p,D; >0Vj €
{1,...,m1},Dj <O0Vje{m+1,....mlifm, <m,
and (i,5) holds.

(g)m > 1,9, < p,D; 2 0Vj € {l,....,m -1},
Z]m;ll D;(v) > 0 Vv € W\ {0}, D,, changes sign, and
(i13) holds.

() m > 1, p < qy, Dy changes sign, D; > 0Vj €
{2,...,m}, Z;":z D;(v) > 0¥y € W\ {0}, and (i,3)
holds.

Let us introduce the open set & of the space W:

a4 =v' (D)) in (¢),
#=v*(Dy,...,D,) in (c), )
A =W\{0} in (6),(c),

and let us set

E(t,v) = E(tv) = t"H), (v) - Y t¥D; (v), (4)
j=1

oE
v (t’ V) = E (t> V) > (5)

Vt>0, Vv e .

It is easy to control that, for each v € ¢/, the equation

y(Lv)=0 ©)
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has only one positive root #(v) and it results in

0
FLew .o,
E(t(v),») =minE(t,v) <0 7)
in (¢)-(a),
0
Lewm <o,
E(t®),v) = Ig%xg(t, v) >0 (8)
in (¢).
The implicit function theory assures the functional t(v)

belongs to CY(of). Then, the functional E(v) = E(t(v),)
belongs to C (o) and it results in

E (u), vy
= | p(tW)?™" Hy, ) - Y q; (t )?™" D; (u)
j=1
-0t (), vy + (t ()P KOH), (1), vy

s )
= D (tW)? KID; (u), vy = (t (W)
j=1

- KOH,,, (u),v) - Z (t (W)Y 0D; (), vy
j=1

Yue o, VveW.

It is important to remark that (9) can also be written as
follows:

CIE W), vy = (t ()
- | €BH,, (t W)u), vy - Y KD, (t W u),vy | 10)
j=1

Yue o, VveW.

Theorem 1. Under assumptions (iy,), (i},), in cases (¢;)-(cy),
one has

3 = (v(l),...,vg) €SN :
_ _ (11)
E(+) = inf{E(v) VeS), rmf},
u’ =t (vo) V0 is solution of Problem (P). (12)

3
Proof. Let us set
gzinf{ﬁ(v):veswnd},
_ m
E (t,v)=t" - Y tUD;(v),
=1
= 13)
9E, (
t) = = ta
W6 = S )
Vt>0, Vved,
Em=E @t W0,y Wed,
where t,(v) is the positive root of equation v, (t,v) = 0.
Pointing out that E eC L) and
Em=E () WeS,nd, (14)
let us prove that
W ed:
N (15)
E, (VO) =e.

Let {V}} ¢ Sy N & such that El(vk) — e; thatis,

=1
We note that
p(6 (1) - 2.9 (1 (A" D, (M) =0 @)
=
moreover,
”vk"p <c(hu) (18)

since (i 4) holds in (¢;) and (i,5) holds in (¢,)-(c,).
Inequality (18) implies that v € W exists such that
(within a subsequence) s weakly in W. Then,

0<H, ()<, (19)
D;(v*) = D;(+*) asj=1,..,m. (20)

Let us verify that
supt, (v%) < +oo. (21)

In (¢;)-(c3), let § > 0 such that IDj(v)I <dVv e S N o/ and
Vj e {l,...,m}. Weset Vt > 0, d(t) = ptP™' - 8g,t17", in
(¢,), and O(t) = ptP! - 52;111 q]-tqf1 in (), O(t) = ptP~' -
OYL a;th ™ in (cy).

Let us denote by ¢, the positive root of equation ®(¢) = 0.
Since y,(t,v) = O(t) Vt > 0 and Vv € Sy N A, we have

t,(V) <t, Vk € N,



In (¢,), we note that from (17) (tl(vk))qlDl(vk)
(P/a)(& (V)P = ¥7(q;/9) (8, (V)T D;(vF); then,

. (22)
IS
2 (1-2) ()Y

from which (21) follows taking into account (16).

Relation (21) assures that w € [0, +00o[ exists such that
(within a subsequence) t,(+v*) — w.

Consequently, from (16), (17), and (20), we obtain

W =Y wD;(v) = ¢, (23)
=1
R 1 0
po’ =Y ;w7 D; () =0 (24)
=1
Let us add that

w >0,
(25)

Wed.

In (¢;)-(c3), since from (7) e < 0, (23) implies that w > 0 and
0 # 0; then, v* € o in (c;), while (24) = +* € o in (¢)
and (g,). In case (¢,) (where from (8) e > 0), since from (17)
Z;":l qj(tl(vk))q/'_PDj(vk) = p, we have Z;il q]-a)qf_PDj(vo) =
p from which we obtain (25).

Evidently, ((24), (25)) = w = tl(vo); then, (23) can be
written in the form (tl(vo))P - z;.il(tl(vo))qiDj(vO) = ¢; that

is, El(vo) = e. Then, (15) holds.
Let us prove that

Hy, (v")=1 in 19). (26)

In fact, taking into account that (i;,) holds in (¢;) and (i;5)
holds in (¢,)-(c,), we obtain

Wed =
“VO“ >0 = (27)

HA# (VO) > 0.
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On the other hand, since v* € o = 6+° € o VO > 0, we have

G0 (0") - lp(fl (6°))"

m

-2 (GVO))%_I D; (GVO)] %tl (6+)

=

m

= 2a;(1 (0))" 677D, (+")

=—6"p(t, (0°))

Then, if H M(vo) < 1, we get the contradiction

Vo > 0.

(HM" (VO))_I/P VO € SA/‘ N d,

]7:;1 ((HM (VO))_I vo) < 1731 (VO) =e

Relations (14), (15), and (26) allow (11).
From (11), a Lagrange multiplier T exists such that

(29)

<<81:5 (VO) V) =7 K0H,, (vo) VY W eWw. (30)

Setting in (30) v = W, we get 7 = 0, since <<aHAM(VO),V0>> =
pHAH(VO) = p, and from (9) <<8E(v0),v0>> =
()P C0H,, (), "y - Z;Zl(t(vo))qf'(aDj(vo),VO)) =
P - X7, q;t¢")TD;(*) = 0. Then, (30),
taking into account (10), implies <<8H,\H(t(v0)vo),v>>
Y, KOD;(t(v*)v°), v}y Vv € Wi then, (12) holds. O

N

Proposition 2. Let n > 1. Let v* as in Theorem 1 and F
Sau N . Let us suppose the following:

(ig) Vv € Fv, € Wy \ {0} and a function O(-,v,V,) —
W belonging to C°(]sy, 1]) N C'(Is, 1[) (0 < s, < 1)
[resp., C°([1,s,[) N C'(J1,55]) (1 < s, < +00)] exist
such that ©(1,v,v;,) = v, ¥(s) = O(s,v,¥;,) € S)uVs €
Isg> 11 [resp., Vs € [1,sy[] and for some s, €]sy, 1]
[resp., s; €]1,s,[] Z;":l(t(?(s)))qi(d/ds)Dj(i(s)) <0
[resp., > 0] Vs €]s,, 1[ [resp., Vs €]1,s,[].

Then, V° ¢ F.

Proof. In fact, with v and %(s) as in (ié’)s2 €lsy, 1[ [resp., s, €
11, s;[] exists such that ¥(s) € S N A and (d/ds)E(¥(s)) =
—Z;.il(t(?(s)))qi(d/ds)Dj(v(s)) > 0 [resp., < 0] Vs €]s,, 1]

[resp., Vs €]l,s,[]; then, E(V(s)) < E(v) Vs €ls,, 1[ [resp.,
Vs €]1,s,(]. L]

Remark 3. Condition (ig) with & ¢ Siu includes condition

(i’f6) introduced in [10] and it implies the conclusion of
Theorem 2.2 of [10].
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In the case

() m > 1, (i;5) holds, g, < p,and D; < 0Vj €
{2,....,m},

for each v € Vi N S(D,), (6) has only one positive root ¢(v)
and we have (oy/ot)(t(v),v) # 0.

Set E(v) = E(t(v),v) Vv € Vi n S(D,), in [10, Theorem
4.2], the following result has been proved.

Theorem 4. Under conditions (iy,), (i,,), in case (cs), one has
the following:

30 = (V... 9,) € V3, NS(Dy) -

E@) = inf{i(v) LveVy,n S(Dl)}, 31)

u =t (V) v is solution of Problem (P).

We add the following proposition.

Proposition 5. Let n > 1. Let v as in Theorem 4 and F <
Vi NS(D,). Let one suppose the following:

(g’h) Vv € F v, € W, \ {0} and a function O(-,v,V,) —
W belonging to C°(]sy,1]) N C'(Jsy, 1)) (0 < s, <
1) [resp., C°([1,5,]) N C'(JL,5,[) (1 < 55 < +00)]
exist such that ©(1,v,%,) = v, ¥(s) = O(s,v,7),) €
S(D,) Vs €lsy, 1] [resp., Vs € [1,s,[] and for somes, €
Jsoo 1L [resp. s, €11, 5[] (£((5)))P (d/ds) Hiy (¥(5)) -
ZT:I(t(V(s)))qi(d/ds)Dj(i?(s)) > 0 [resp., < 0] Vs €
Isy, L[ [resp., Vs €]1, s, [].

Then, v ¢ F.

Proof. Let v and ¥(s) be as in (g'h). Since t(v) > 0, y(t(v),v) =
0 and (oy/ot)(t(v),v) # O0; then, an open ball B exists
with center v included in VXH and a unique functional t* (w)
belonging to C'(B) such that t*(w) > 0 and y(t*(w),w) =
0 Vw € B. Evidently, t*(w) = t(w) Yw € B n S(D,). Set
s, €]s;, 1[ [resp., s, €]1,s,[] such that 7(s) € B Vs €]s,, 1]
[resp., Vs € [1, s,[]; we have

% (t" (@ (s))" Hy, (#(s))

=Y (" F))V D ()
j=1
(32)

d
= ((EE) LH, )
Y EEE)Y LD,() >0
i=1 s

[resp., < 0] Vs € |sy, 1[ [resp., Vs € |1,s,[] .

Consequently, %(V(s)) < E(v) Vs €ls,, 1[ [resp., Vs €]1,s,[].
O

Remark 6. Let W, (¢ = 1,...,n) be a vector lattice.
Let +° [resp., V] be as in Theorem1 [resp., Theorem 4]. If
HAH(VI,...,Vn) = HAM(|V1|)---,|V,1|) and Dj(vl,...,vn) =
Dj(lvll,...,lvnl) Vv =,...,v,) € Wand Vj e {1,...,m},

then (|v?|,...,|v2|) € SN, t(Iv(l)I,...,Ivfll) = t(W°),
E(WL.... vpl) = EGP) [resp., (4], [7,]) € V3, nS(Dy),
t(|1_/1|’ D] |1_/7l|) = t(T/)) E(lvll’ R |1_/n|) = E(v)]

Then, reasoning as in Theorem 1 proof’s final step [resp.,
Theorem 4.2 of [10]], we see that it(vo)(lv(l)l, AU |v2|) [resp., £
t)(Ivl,...,v,])] are solutions of Problem (P). Conse-
quently, we can assume that v) > 0; that is, u) > 0 [resp.,
Vp=01ie,u,>20Jas=1,...,n

3. Dirichlet Problems

We assume W = (W P(Q)" (n = 1) with |v]
(Ut [ IVvelPdx) P vy = (vy,...,,) € W, By(v,)
p_l fQ by|v,Pdx Vv, € WOI’P(Q), and E[ = 0, where 1 <
p <00, Q¢ RN is open, bounded, connected and C*B set
(0<B<1),b, € L(Q)\ {0} with b, > 0.

Let us consider the functional A (as in (i;;)) such that
A®) = p'elv|IP Vv € W (€ = const. > 0).

Let us use the following notations: p = Np/(N-p)if N >
p, P = coelse; | - |y is the Lebesgue measure in RY; H), S,
V) areinstead of H,, Sy, V5 Ay is the first eigenvalue and

u, is the first eigenfunction of the problem u, € WO1 P(Q) :
—Cdiv(|Vu,|P2Vu,) = 0b,|u,|P2u, in Q [16].

We present some results about the validity of assumptions
(i13)-(i;5). To this aim, let us set I = {1,...,n} and, for each
I'#@)c LV ={veW:v,=0ife eI\I"v, =
cou, if € € I with ¢, € R and ¢, # 0 as some £ € I}, let us
introduce the following hypothesis:

(i3) I" € I exists: D;(v) < 0 for every v € V™.

(i;) I" < I exists such that D;(v) < 0 and A(v) =
&p Yoer | IVvelPdax for every v e V™.

Proposition 7. If A, < A, for each € € {1,...,n}, then (i\3)
holds. When V¥(D,) # @ and (i) holds with " # I, then,
with Ly < A% as€ € I\, 38" > 0 : (iy,) holds if A, < A} +6"
as€ € I". When V'(D,) # @ and (i5) holds with I* = I, then
38" > 0: (iyy) holdsif A\, < A, + 8" as€ € I.

Proof. The first statement is obvious. We can prove the second
and the third ones as in [11, Propositions 2.3 and 2.4]. O

Proposition 8. When (i;) holds with I" # I, then with A, <
Apas€ e INI* 36" > 0: (iy5) holds if A, € [A,, A, +87[ V€ €
I" and A, > A, as some €. When (i;) holds with I" = I, then
36" > 0: (iy5) holds if A, € [A;, Ay + 8" [ V€ € Tand A, > A,
as some L.

Proof. See [11, Propositions 2.5 and 2.6]. O



Let us now investigate Problem (P) in two concrete cases
where ¢ = 1.

Application 1. Let n > 1 and, for each v = (v,...,v,) € W,

" ply
A@w)=p! JQ <Z |Vv€|y> dx,
e=1

n 12/
D, (v) = (JQ pi ™ dx) Lz (; |V€|h> dx, (33)

D; )= q;1 JQ Pj |djl |v1|yf + djj |Vj|Yj'qj/Yj dx

as j=2,...,n,
where

1<y<p,
qn > L
1<y <42
1<yj<qj
as j=2,..m gy =qu +q12 <G < <G, <P, q1 < P3

pr e L% (Q); (34)

pj € L7 (Q),
P <0,
djbdjj e L () \ {0}

as j=2,...,n

Let us consider the following system:

n (p/y)-1
~ div [(Z |vue|y> |Vae, [ vul}
=1

=MAb |“1|p_2 U

n (@ua/71)
+ 41 <j <Z Iug|1’1> dx) P1 |u1|‘1u—2 ",
Q\ =1
n (gr2/y1)-1
+ 412 (J 1 |”1|q“ dx) (Z |”e|y1>
Q e=1

py, n2 i ld Viid l l%l%/%)*z
lea|" "y + ) py ey |7 + i |u
i

(ol iy ") o

in Q,
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" (p/y)-1
—div [(Z |Vue|y> Vg, |2 Vu,»:|
=1

n (ar2/y)-1
—2 11 1
=LAb, |“ilp U; + 4, (L pr | dx) <Z [t4|” )
=1

- ) (@il vi) -2
. |ui|y1 2 u; + p; |d11 |u1|y’ +d;; Iuily'| i

: (dn |”1|Yi +dj; |”i|yx) d;; |”i|yi72 U;

inQasi=2,...,n,
;=0 onodQasi=1,...,n
(35)
Let us introduce the following conditions:
pr£0(=V'(D)+2), (36)
|, ) ax
@ (37)
<0(= D, (quy,....cu,) < 0iff ¢, #0).
Then (Propositions 7 and 8),
(36) =
(38)
(with A, < A, as €=1,...,n (i4) holds),
(36),(37) =
(with A, < A, as €=2,...,n 36 (39)
>0: (iy4) holds if A; < A] +86}),
(37) =
(with A, <A, as €=2,...,n 35, (40)

>0 (iys) holds if A, € AT A" +85]).

Proposition 9 (Theorems 1 and 4, Remark 6,). Under condi-
tions (34), one has the following:

When (36) holds [resp., (36) and (37) hold], with
Ao A, as in (38) [resp., (39)], system (35) has at
least two weak solutions u° and —u° (u° = %°,7° =

const. > 0,v° € S, NV*¥(D,)), and one has u? >0as
i= 1,...,n,u? # 0.

When q, < p and (37) holds, with A,,..., A, as in
(40), system (35) has at least two weak solutions u and
—u (U =7v, T = const. >0, v € V; NnS(D,)), and
onehasu; >0asi=1,...,n,u, #0.

Consequently, when q,, < p and (36), (37) hold, with A, < A,
as € > 2 and Ay €]A],A] + min{6}, 8, }[, system (35) has at
least four different weak solutions.
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Proposition 10. If
either yy <y<y; asj=2,...,n (41)
or djldjj <0,
Y <y (42)
as j=2,...,n,
thenu? #0asi=2,...,n.

Proof. 1t is sufficient (Proposition 2) to verify the following.
Ash =2,...,n (i) holds with & = {v € S, N V*(D,) :
ve20as€=1,....,n, v £ 0, v, =0} # 2.
Let, for example, h = 2. Let v € &. First of all,

J piviidx >0,
Q
Ay <Ay, = (43)
5= J Vv, [P dx — A, J bV dx > 0,
Q Q
Let us introduce the function g(s,7) = H,(sv, TV, ...,5V,)

= p L @IV + 8 Ty [V [)PYdx — 7P A, | byvidx -
" Y ps2 Ae [ bevidx] Vs, 7 > 0. Let us note that

g(1,0)=1,
dg p-1
—=(s,7) 201" >0 Vs=>0, V>0,
g(s,0) = sf<1 Vselo 1],
lim g(s,7)=+co Vs=>0;
T— +00
then,
only one 7(s) >0
(t(s) >0ifs< 1, 7(1) =0) exists such that
(45)
g (SxT(S)) =1,
Vs €]0,1].
About the function 7(s), we have
li =0.
Jim 2 (o

In fact, with {s,} €]0, 1[ and lim s, = 1, since g(s,,, 7(s,)) = 1,
{r(s,)} is necessarily bounded. Then (within a subsequence),
lim 7(s,) = w with g(1,w) = 1, from which w = 0. Then, 7(s)
belongs to c°qo,1)).

Let us add that 7(s) belongs to C 1(J0, 1[) and it results in

R
T e (47)

Vs €]0,1[, lin}i’g'(s,‘r(s)) €10, +00] .

7
Then, with %(s) = (sv;, 7(s)v,, ..., sv,), we have
v(1) =,
(48)
v(s)eS, Vse]o,1],
and, moreover, taking into account the first one of (43),
lim iD @ (s)) = —oc0
s—1" dS ! - ’
od )
lim d—Dj (#(s)) € R as j =2 when (41) holds,
s—1"ds
. d _
lim —D, (V(s)) < +00,
s—> 1" dS (49)

d
lim —D, (¥(s)) = —00,
Jim 2,02 (36 = o0
lim iD "(s)) €R
s—1-ds j

as j > 2 (if n>2) when (42) holds,

from which lim,_, ;- Z;‘zl(t(V(s)))qi(d/ds)Dj(V(s)) = —00.
O

Proposition 11. Ifd;d;; <Oandy; <y <yasj=2,...,n
thenu; # Oasi=2,...,n.

Proof. It is sufficient (Proposition 5) to prove the following.
Ash =2,...,n (") holds with & = {v € V; nS(D,) :
ve20as€=1,...,n, v £0, v, =0} # @.
Let, for example, h = 2. Let v € &F. Firstly, we have

J-Q piviidx <o0. (50)

Let us consider the function g, (s, 7) = D,(sv, TV,...,5V,) =
s ([, pviidx) [J@ I+ Y, viNMdxys, T 2 0.
Since

g1 (1>0) =-1,

5]
i(s,'r)<0 Vs >0, V>0,
or (51)

g, (s,0)=-sT>-1 Vse]o,1[,

TEergl (s,7)=-00 Vs>0,



we have the following:

only one 7(s) >0
(t(s)>0ifs< 1, 7(1) = 0) exists such that

52
91 (57(s)) = -1, 2

Vs €]0,1],

the function 7(s) belongs to CO(]O, 1) n C'qo, 1)), ©'(s) =
—(1/(x()" gy (s, 7(s)), and

linl}i’g'1 (s,7(s)) €10, +00[, Vse]o,1[. (53)

Then, set ¥(s) = (sv;, T(s)vy,. .., sv,,); we get

V(1) =,

D, (¥(s))=-1 Vse]0,1],

Slirx}%HA (V(s)) €R,

(54)
.od
lim —D, (v(s)) = —oo,
s—1ds
tim £ p (V(s)) €R i >2 (ifn>2);
s—1-ds j Vs asJ h ?
in  particular,  lim,_, ;- [(t(¥(s5)))? (d/ds)H, (¥(s))
Y, (#((5)) % (d/ds)D;(%(s))] = +oo. 0
Application 2. Let n > 2 and, for each v = (v{,...,v,) € W,
AW =p Y [ |9l dx,
=174
n a/n
D, (v)=q, [J (dl v, | + dz |v€|h> dx
o =2
(55)

n a/n
—J J(ZMV‘) dx |,
Q =2

D;(v) = qJ_'l Z L Pj |de 'Vj'yj +dj, |Ve|yj|qj/Yj dx

C#j

as j=2,...,n,
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where

l<yj<q; asj=1...,n

G < <Gp

4 < p»
4n < D3
_ _ (56)
dy,d,d e L (Q), withd,,d>0, d/" <d;
pj € L (Q), with p; <0,
dj € L* () \ {0}
as j=2,...,n, €£=1,...,n.
Let us consider the system:
—div []Vu1|P72 Vul] =Mb |ul|‘072 u, +d, (dl [y "
n (a1/y)-1 n
+dy |”e|h> Jor [y + 2P |djj |”j|yj
=2 =
T e
+dj |u1|yf) dj |u1|y"72 u,
in Q,
—div [|Vui|P_2 Vui] =\b |ul-|p_2 w+d (dl |ul|y1
n a1/n1-1 n a1 /n-1
1 17 T 1 (57)
caSlal) ()
=2 =2
- S ' (il 7)-2
wl” U+ Zpi |d,»,- || + dip || | wi
I
: (dii |”i|% +dj |“e|Yi) d; |“i|%_2 u;
L y; (g;lyp)-2 y;
- Skt el” o P [
&
+dj; |”i|yj) dji l”i|Yj_2 u;
inQasi=2,...,n,
;=0 onoQasi=1,...,n
Evidently, V*(D,) # @ and D(0,cu;,...,cu,) <

0 V(cy,...>c,) € R™\ {0}. Then, set I* (#+ @) € {2,...,n};
we have (Propositions 7 and 8)
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with A, <A, as€eI\I" 38 >0:(ij,) holdsif A, <A, +8] Ve eI, (58)
with A, <A, as€eI\I" 38, >0:(ij5) holdsif A, € [A,,A, +8,[ VeI, A, > A, as some ¢. (59)

Proposition 12 (see Theorems 1 and 4, Remark 6). Under
conditions (56), one has the following:

With Ay, ..., A, asin (58), system (57) has at least two
0.0

weak solutions u® and —u° (W° = °, ° = const. >
0, V' € S, N V*(D,)), and one has u? >0asi =
L...,n, “(1) # 0.

When q,, < p, with A,,..., A, as in (59), system (57)
has at least two weak solutions i and —u (U =7v, T =
const. > 0, v € V;, N S(D,)), and one has u; > 0 as
i=1,...,n

Consequently, when q,, < p, with A, < Ay as€ € I\I", A, €
[A;, A, +min{d], 8} V€ € I*, and A, > A as some ¢, system
(57) has at least four different weak solutions.

Proposition 13. Let djjdje < 0asj=2,...,nand € =
L...,nwith€# j. Lety; <y as j=2,...,n. Then,

u?aéO asi=2,...,m
(60)
u #0 asi=1,...,n

Proof. 1t is sufficient (Propositions 2 and 5) to prove that

Ash=2,...,n (ig) holds with & = {v € S,
NV (D)) :v,20as€=1,...,n, v, £ 0, v, (61)
=0} + @;
(i') holds with F = {v e V; NS(D;): v, 2 0as £
(62)
=1,...,n, v, =0} # @;
Ash=2,...,n (") holds with F = {v e V;
NS(D,):v,20as8=1,...,n, v, £ 0, v, =0}, (63)
it 7 +o.
About (61), let v € F. Let K € Q be a compact set such

that |[K|y, > 0 and v; > 0 in K. Let [11, Proposition A.1]
(@e)ocece, € C(Q) with 0 < @, < 1 such that

¢, — x strongly in L° (Q),
J lV(pslS dx — +00 (64)
Q

ase — 0" Vs e [1,+00[,

where y is the characteristic function of K. We choose ¢ such
that

S=p" “Q Ve, |” dx - A, JQ bh(pfdx] > 0,

(65)
JQ Ph |dh1|(qh/yh)_2 V?hwdhldhh‘/’zhdx >0
and let us set %, = 6 /Pg.. With 7(s) = (s"Pv,,...,(1 -
$)/P7,, ..., s"Pv, ), we have
V(1) =,
(66)
v(s) €S, Vsel0,1].
It is easy to verify that
d = y1/p-1 rd
P10 E@)=—A=9"F fi () + 1 (5)
Vs € [0,1[ with lim f, (s) € R, lim f, (s) € R,
s— 17 s—1"
A D, (7)) ~ = (1 - )P
dsh h
as s — 17 (g, = const. > 0),
(67)

2D, 06) =19+ 79

as j€{2,...,n} \ {h} Vs e [0,1[ with ¢j = const. > 0,

slin?ffj (s)eR ifvy, =0,
i d_ £ 07
SLT—EDJ' @(s)) =—-00 i viv, # 0.

Then, lim, _, ;- Z;‘:l(t(V(s)))q/’ (d/ds)Dj(i?(s)) = —00.
About (62), let v € &. Set

,SV,)

- g/ [ | <d1r” ()"
Q
n a\n (68)
+dsh (ZV? )) dx
=

n a\n
- j dsh (Zv}?) dx| Vs,7>0;
Q =2

g1 (s,7) = Dy (tuy, sv5, . ..
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we have
g1 (la 0) = _l)

0
Y (,1)>0 Vs>0, V>0,

g1 (s,0)=-sT < -1 Vs>1,

lim g, (s,7) =+c0 Vs>0.
T—+00

Relations (69) imply that
only one 7(s) >0
(t(s)>0ifs>1, 7(1) =0) exists such that
(70)
g1 (SxT(S)) =-1,
Vs>1

and the function 7(s) belongs to C([1, +oo]) N C*(]1, +o0[)
and it results in

NS
TOT T e ()
Vs > 1, linll+§1 (s, 7 (s)) € ]-00,0[.
Then, with ¥(s) = (7(s)uy, sv,,...,sv,), we have
v(l) =,
(72)
v(s)eS(D;) Vs=1;
moreover,
li d H, (v 0
lim <= H, (7(5) € ]-00,0],
.d — .
slinll+£Dj @ (s)) = 400 if v; #0, )
Slinll+%Dj #(s) eR ifv; =0,
as j=2,...,n
from which lim, _, 1+ [(£(¥(s)))P(d/ds)H, (¥(s)) -
Z?:l(t(?(s)))qi(d/ds)Dj(V(s))] = —oo since v; # 0 as
some j > 2.

Finally, let us verify (63), for example, when i = 2. Let
v € #. Since

v, 0=
(74)
v; # 0 assome j>2,
j
we can suppose v; ~ 0. Set ¥(s) = (v,(1 -
)My, sty v,); we have
v(1) =,
(75)

v(s) € S(D;) Vse[0,1];
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we add that

Jim L (7)€ R

lim iD2 @ (s)) = —o0,
s—>1-ds

(76)
slinl{%D3 7 (s)) = —oo0,
SILI?,%Dj #(s)) <+o0, asj>3 (ifn>3)
from  which  lim,_, [(¢(F()P(d/d)Hy(F(s) -
Y (@))% (d/ds)D;(¥(s))] = +oo. O

4. Neumann Problems

We assume W = (WP(Q)" (n > 1,1 < p < co, Q C
RN is an open, bounded, connected and C™ set, |v| =
Oty [UVvel? + v P1d) P vy = (vy,...,v,) € W),
By(v) = p" [ belvelPdx ¥v, € WHP(Q) with b, € L®(Q) \
{0}, and B,(v,) = p' [, BlvelPdo ¥y, € WP(Q) with
b, € L®(0Q)\ {0} (0 is the measure on dQ, v, = y,(v,), where
Yo : WHP(Q) — WPDIPP(HQ) is the trace operator).

Let us consider the functional A (as in (i;;)) such that
A(w) = pT'eY |, IVv,lPdx Vv € W (€ = const. > 0).
Moreover, ||y and p have been settled as in Section 3, v is the
outward orthogonal unitary vector to 0Q), p = (N-1)p/(N -
p)if p<N,and p=coif p> N.

About the validity of assumptions (i;5)-(i,5), we set C* =
fc =(c¢y...nc,) e R" i, =0if € e I\I", ¢, # 0 as some
el (I=1{1,...,n}, I"(# @) ¢ I) and we introduce the
following assumptions:

(iy) I" € 1 exists: D;(c) < 0 for every c € C*.
(i,) I" < Iexists: D;(c) < Oand A(c) = 0foreveryc € C".

Proposition 14. When b, > 0 and b, > 0 as € € I, then (i,3)
holds if Ay < 0, yp < 0, and Ap + p, < 0 as € € I. When
(i,) holds with I* # I, b, > Oandb, > Oas€ € I1\1I°,
Vi(D,) + @, then with Ay < 0, p, < 0 and A, + p, < 0 as
€ e I\I" 38" > 0: (i) holds if |A,|, |p| < 8" V€ € I*. When
(iy) holds with " = I and V*(D,) # @, then 36" > 0 : (iy,)
holds if |A,, |ue| < 8" Ve € 1.

Proof. We reason by contradiction as in [11, Propositions 3.2
and 3.3]. ]

Proposition 15. When (i,) holds with I* # I, b, > 0 and b, >
Oaslel\I, IQ bydx > 0 and Jaﬂéeda >0asl eI, then
withA, <0, <0, and A+, < Oas € INI* 38" > 0: (i5)
holds if Ay, p, € [0,6"]1 V€ € I" and A, + p, > 0 for some £.
When (i,) holds with I" = I, IQ b,dx > 0 and .[ao bydo > 0 as
¢ €1, then 38" > 0 : (iy5) holds if Ay, y, € [0,6] V€ € I and
Ay + pp > 0 for some €.

Proof. See [11, Propositions 3.4 and 3.5]. O
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Passing to the applications, we state in advance that the
results of [8] for problem
—div(qulP_2 Vu) =b(x)u" inQ,

(77)

|VulP~? g_u =a(x)ul on0Q
v

can be obtained by using Theorem1 and Proposition 14,
Theorems 2.1 and 2.2 of [10], and Propositions 3.3 and A.4
of [11] (taking into account [17] too).

Application 3. Let n > 1 and, for each v = (v, ...
We set

Av) = p_IZJ |Vv€|P dx,
=170

n aly
D,(v)=q;' LQ <Zde |"e|y> do
=1

B Z .[an d, |ve|" d"] ]
=1

n

D, =-[]

=1

V) €W,

Yelve

>

J Pe |Ve|w do
Glo)

where
I<y<q <p,

1<V3<Yé’ Ye < D>

41 <qy = Z)’é; (79)
=1

dpd, € L (0Q), dyd, > 0;
Pr € L (90) \ {0}

Let us consider the system:
- div (|Vui|P_2 Vui) = Ab |wP P in Q,

Pzau

|V” | #il;i |”i|Pi2 U

n aq,/y-1 R
+ <Zde |”e|y) d; |’/‘i|y72 u;—d; |”i|qli2
=1

Vé/n) (80)
Yelve-2 I
(J pi ] d")
0

on 0Q)

—(H

C#i

j Pe |ue|w do
o0

'Vi’ IJ p; |”i|Yi do
20

pl |M |Yx

U;

asi=1,...,n

1

Proposition 16. Let u = (u,...
system (80). Then,

,u,) be a weak solution of

Ai i 07

for some i € {1,...,n} = u; is not constant;

u; >0 Vie{l,...,n}

—u, e L°(Q)NC(Q) Vief{l,...,n}, (82)

foc
w; >0 if u; # 0.

Proof. Relation (81) is evident. About (82), it is easy to verify
that

ZJ Vi, [P Vs - Vvdx<c1J. (gui+l>pl
(z)dj [ o3 e 1 ] -

where ¢, -¢; are positive constants and y, = max{y,,...,y,}.
Consequently [11, Proposition A.4], u; € L°(Q) from which,
since —div(|Vay|P Vi) = AP u; in Q, we deduce that
u; € CX(Q) [17) and u; > 0if u; # 0 [18]. O

loc

Let us introduce the conditions:

i s d, (= v (D)  2), (84)
n aly R R
(Zd5> <min{d,,...,d,}
=2 (85)
(=> D, (0,6...,6,) <OV (cp...rc,) € R\ {O}),
b =0,
- (86)
b >0,
I bdx > 0,
Q
J bdo > 0 (87)
oQ

as € =2,...,n.
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Then (Propositions 14 and 15),

(84)-(86) =
(with A, <0, gy <0, Ay +py <0 36
(88)
>0: (iy,) holds if |A,|,|ue| < &) V€
€{2,...,n}),
(85)-(87) =
(with A, <0, g; <0 and A; +p; <0 36,
>0: (iys) holds if A,,p, € [0,6,] Ve (59
€{2,...,n} and A, + p, > 0 as some £).
Proposition 17 (Theorems 1 and 4, Remarksé,

Proposition 16). Under conditions (79), one has the following:

When (84)-(86) hold, with A, y, as in (88), system
(80) has at least two weak solutions u° and —u® W° =
90, 7% = const. > 0, V0 € S N V*(Dy)), and one

0
has u? € L™(Q) nCys (Q), u? >0asi=1,...,n

i foc

W >0ifu) # 0.

When q, < p and (85)-(87) hold, with A,, y, as in
(89), system (80) has at least two weak solutions u and
~-u(u=7v, T=const. >0, v € V)t_u N S(D,)), and

one hasu; € L°(Q) N Cz,’oaci(Q), u,>20asi=1,...,n,
u; > 0ifu; ~ 0.

Consequently, when q, < p and (84)-(87) hold, with A,, y, as
in (89) and min{d}, 8, } instead of 85, system (80) has at least
four different weak solutions.

Proposition 18. One gets the following:

”(1) 0 on o (90)
either y, > p

!
ory<y, = (o)
ug £0

as some h € {2,...,n}.

Proof. Relation (90) is evident. About (91), it is sufficient
(Proposition 2) to verify that

(ig) holds with & = {v € S, NV*(D,) : v, 2 0 as € =
L...,n, v, =0} + @.

Let us check, for example, the case h = 2. Let v € &; then,
I' € 0Q exists such that o(T') > 0 and ),,,, d,v) > O onT. Let

k € Q bea compact set with positive measure and Q' an open
—
set such that Q' € Q, k € Q'. Thanks to [11, Propositions A.1,
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A.2], a compact set T < I'witho(T) > 0, (P1e)o<ece, < CP(Q),
and (¢,¢)cece, € Co(RY) exist such that

0<g<1
supp ¢y, € @,
¢, — x strongly in L° (Q),
J [Voy| dx — +0o as e — 0" Vs € [1,+00],
’ (92)
0<¢p =<1,
supp ¢, € R¥\ 0,
¢ — X strongly in L (0Q2),

J @5, dx — 0 ase— 0" Vs € [1,+o0],
RN

where x [resp., ] is the characteristic function of K [resp.,
T]. Set @, = @), + ¢y; let us fix & such that

o= p ||, Vol dx=1, | bt

- b Pd] 0,
Hy LQ P ao | > (93)

a/y-1
J (Zdﬁ) dypldo > 0,
0Q

)
Then, with %(s) = (s"/Pv,, (1 — 5)"/P67Pg,, ..., s"Pv,), we
have
(1) =
V(s) € Sy Vse [0,1],
A D, 3(s) ~ -5 (1 -5V
ds ! !
ass — 1~ (¢ = const. > 0),
D, (7(s)) = —5,s % WIP (1  gylp (94)
Vs € [0,1] (G, = const. > 0)
— 1im Y ¢ 09 LD, 5(5)
=1 ds /
= —00.
O

Proposition 19. Let for some h € {2,...,n} either y, > p or
y <y, Leth, > 0,1, >0, and y, _[an;hdcr > 0. Then, u;, # 0
on o€

Proof. Since in Proposition18u) > 0, it is sufficient

(Proposition 2) to prove that
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(ig) holds with F = {v € S}, N V(D) : v, > 0 as £ =
L,...,n, v,>0, v, =0 on 0Q} + @.

Let us suppose, for example, h = 2. Let v € % and
¢, = const. > 0.Set g(s,7) = Hy,(sv,sv; + 16,...,
sv,) = p st [ IVnlPdx — A, [ by(sv, + 16)Pdx -

uytPcf Jaa b,do] + sPHy,(v,0,...,v,) Vs, T > 0; we have

g(l’o):1)

0

—g(s,r)<o Vs >0, V7 >0,

or (95)
g(s0)=s">1 Vs>1,

lim g(s,7)=-0c0 Vs>0;
T— +00

then, 7 : [1,+0o[ — [0,+00[ belonging to C([1,+00[) N
C'(]1, +o0[) exists such that g(s,7(s)) =1Vs > 1,7(s) > 0
if s > 1, 7(1) = 0, and lim,_, ;-7 (s) €]0, +oo[. Consequently,
set ¥(s) = (svy, sv, + 1(s)cy, . . ., sV,,); it results in

V(1) =,

V(s) € S Vs=z1,

od
Sli)rr11+£D1 ¥(s)) =q,D; (v) >0,

(96)
lim iDz @(s)=0=
s—1tds
c d
sli“?y; (EF @)Y 2-D;(7(s)) € 0, +00[ .
O

Proposition 20. If either y, > y or jao pido =0, it results in
u, # 0 (97)
u, #0 onodQ when A, =0. (98)

Proof. About (97) [resp., (98)], it is sufficient (Proposition 5)
to prove that

(i') holds with & = {v € V/\_# NSD;) : v, 20as? =

I,...,n, v; =0 [resp.,v; = 0 on 0Q]} # .

Let v € &% and ¢ = const. > 0. Let g,(s,7) =
D, (tc;, $vy5 ..., 8V,) = q{l [Jaﬂ(dl‘r"cf +5" Yo dgv};)ql/”da -
il [ dido - 1Y, [ dvido] Vs 2 0and VT 2 0.
We note that

g:(1,0) =-1,

d
Y (s1)>0 V¥s=0, V>0,

g1 (5,0) = =sT <=1 Vs>1,

lir}rl g1 (5,7) =+00 Vs>0.
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Then, 7 : [1,+0o[— [0,+0o[ ((s) > 0if s > 1, 7(1) = 0)
belonging to C°([1, +00[) N C'(]1, +00[) exists such that

gi(s,7(s)=-1 Vs=1,

7' (s) = G1(7(s)) Vs>1, (qo0)

BN N
(T ()"

lim g, (s, 7(s)) € ]-00,0[,
s— 1t

from which with %(s) = (v(s)c;,sv5,...
(sv; + T(s)c;> 8V, .., 8V,)] we get

,sv,) [resp.,v(s) =

V(1) =,

v(s)eS(D;) Vs=1,

lim LD, (7 (s)) = 0, (101)
s—1tds
lim (@) L, () € 100,01
0

Evidently,u, # 0 on0Qifn = 2.

Proposition 21. When n > 2 and for some h € {2,...,n}
J‘aQ ﬁhda = 0, bh > 0, ‘Hh > 0, then

u, #0 ondQ. (102)

Proof. Let us prove (102) as h = 2. Reasoning by contra-
diction, let %, = 0 on 0Q; that is, v, = 0 on 0Q. Let
¢, = const. > 0. As g,(s,7) = Dy(sV},V, + T, 5V,)
= q,'[[,,(ds77S) + 8" Y sy dpvy) W Vdo - 70! [ dydo -
ST Y pin Ja(z d,vl'do] Vs, T > 0, we have

g, (s,0)=-sT">-1 Vse]o,1[, (103)

TEngl (s,7)=-00 Vs=0. (104)

Thanks to (103), (104), for each s €]0,1[, it is possible to
choose 7(s) > 0 such that g,(s, 7(s)) = —1. Then, set ¥(s) =
(v}, v, + T(8)cy, - . ., SV,,); it results in

D, (#(s)) =-1 Vse]o,1[; (105)
moreover, since
H,, (7(s) = p' HQ V9, |F dx
Y j b, (7, +7(s) ) dx
Q
~ (T ())& LQEZdG] +sPHy, (9,,0,...,%,) (106)

< p! H |vv2|de—Azj sz/fdx]
Q Q
+SPHMJ (1_/1,0,...,1_/") E— H/\‘M (1_/) <0

ass— 1,
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s €]0, 1[ exists such that
Hy, (¥(s)) <0 Vsels 1.
Relations (105), (107) imply that (Theorem 4)
E@(s) = E@)

= D,(¥(s)) = 0, we have

Vs €5, 1[.
Since D, (V)
pE@)P " Hy, () +q, ¢ @) =0,

pt@ ()P H,y, (7(s)) +q, t (@ N =0

Vs €]0,1[,
from which
E@) = o|m, @] """,
E(@() =0 |H/\;4 (v (s))|_q1/(P_ql) Vs €]0,1],

where & = (ql/p)ql/(p*ql) — (ql/p)P/(p*ql) > 0.
From (108), (110), we get
Hy, (v) <H,, (v(s)) Vsels 1.

We add that since
d
(_;ql (s7)=7""G(s,7) Vs, T3>0,

lim g (s,7) € ]0,+00[,
izo*

then s, €Js, 1[ and 7, €]0, 1[ exist such that

0
I (s,1)>0 Vselsyl[, Vre 0|,
T

from which

() 2715 Vse€]sp 1|

thanks to (103). Relations (111), (114) imply that
Hy, @) <-p () S, LQ b,do
. ! H 199, dx — A, J by |
Q Q
+sPHy, (9,,0,...,9,)
<-p 'y, J b,do
20

J 9%, [P dx - A, j by |

t+s H/\‘u(vl)o)-~-a1_/n) VSG]SO,I[,
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from which, ass — 17, we get the contradiction

107 _ - = _
(107) Hy,(v) <-p lrgcf‘uzj b2d0+HAM W)
o0 (116)
< H,, ).
(108
) O
Application 4. Let n > 1 and, for each v = (v{,...,v,) € W,
we set
Iy
(109) _ n r
AW =p" J (Z |W€|V> dx,
@\ =1
a/n
Dy (v) = q;l JQ P1 <Zd€ lVe|YI> dx,
117)
(110) " L\
D, = g’ J Sdylvlt)  dx
=1
—Zj%mwx] 7= 2m
=179
an)
where
I<y<p,
1<y.<q; asj=1,...,m,
112) Vi < 4;j J
9 < Ps
G <G < <G <P
p €CP(Q)NL®(Q),
118
(113) d, = const. > 0; (8)
(114) dje» Jje >0
n 9;/v; _
<Zdje) <m1n{d11, ..,djn}.
=1
Let us consider the system:
n ply-1
—div [(Z |V”e|y) |V14,<|y_2 Vu,-] =\b, |”i|P_2 u;
e=1
(115)

ai/n
)
d, |”€|yl> d; |ui|yl U;

o
16

WgE
T

/_\

+

n ‘ij/)’j*I
Z jt |“e|yj> dji s

j
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—dj; w7 ”i:| in Q,

" (p/v)-1 ou
—2 OU; = -2
(Brwu) ™ ol 2 =it
=1 v
onodQasi=1,...,n

(119)

Proposition 22. Let either q,, < p or y, = 0 V€ € {1,...,n}.

Ifu = (u,...,u,) is a weak solution of system (119) with all

nonnegative components, then u; € L*°(Q) Vi € {1,...,n}.

Proof. The statement is true in virtue of [11, Proposition A .4,
Remark A.5], and of relation

., . (pIy-1
z JQ (Z que|y> |Vui|y_2 Vu; - Vv;dx
i1 =

n n p-1 (120)
. | dx + J s+
(;V) X c3m€ax|‘u€| 0 (;M )
: (Zv,) do
i=1
Y= (v y,) € (WH(@Q)NL® (@) with v, >0,
where ¢, —¢; are positive constants. O
Let us introduce the conditions:
pr £ 0(=V"(D)+92), (121)
j prdx <0(=> D, (c) <0 Vc € R"\ {0}), (122)
Q
J bydx > 0,
Q
[ Bo>o =
20
asf=1,...,n.
We have (Propositions 14 and 15)
(121),(122) =
(38; > 0: (iy,) holds if |A,|,|u,| < &) Ve (124)

€f{l,...,n}),
(122),(123) =
(36, > 0: (iy5) holds if A,, p, € [0,8,] Ve (125)

€{l,...,n}, A, +pp >0 as some £).
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Proposition 23 (see Theorems 1 and 4, Remark 6). Under
conditions (118), one has the following:

When (121) and (122) hold, with A,, u, as in (124),
system (119) has at least two weak solutions u® and
—u® w® =1%°, 1% =const. >0, V¥ € SNV (D)),
andonehasu? >0asi=1,...,n

When q,, < p and (122), (123) hold, with A,, u, as in
(125), system (119) has at least two weak solutions u and
—u(u =7V, T =const. >0,V € V/{M N S(D,)), and
onehasu; >0asi=1,...,n

Consequently, when q,, < p and (121)-(123) hold, with A, y,
as in (125) and min{d}, 8, } instead of 85, system (119) has at
least four different weak solutions.

From Propositions 22 and 23, we deduce the following.

Proposition 24. We haveu; € L°(Q) asi = 1,...,n. Ifeither
G < DOy, =0V € {1,...,n}, thenu € L°(Q) asi =
1,...,n

Proposition 25. Let Oy = {x € Q : p;(x) = 0}. Ify > y, and
[Qly =0, thenu? £0asi=1,...,n

Proof. 1t is sufficient (Proposition 2) to show that

ash = 1,...,n (ij) holds with F = {v € S, n
VYD) :v,20as €=1,...,n v, =0} #+ @.

Let us consider, for example, the case h = 1. Let v € & Firstly,
let us prove that %, € W"P(Q) exists with %, > 0 such that

5= ” 97,7 dx - A, J b dx - J Elvfda]
Q Q 20 (126)
>0,
(p/y)-1

J <Z |We|7> V7, " dx > 0, (127)

@\ e#1

@ /n-1

J o (Zd%‘) x> 0. (128)

Q 231

Let Q" = {x € Q: p;(x) >0}and Q, = {x € Q : |Vv,(x)| >
0} (¢=1,...,n).Sincev € V*(D,), then ¢, € {2,...,n} exists
such that |Q€0|N > 0.Infact, [Qply = 0VE € {2,...,n} =
vp = const. V€ € {2,...,n} = D,(v) <0.

Firstly, let us suppose [Q, N Q*|y > 0. Then, a compact
set Ky € Q exists such that |[Ky|y > 0 and [Vv, | > 0 in K,
Let [11, Proposition A.1] (¢)gcece, € Co (Q) With0 < @, < 1
such that

¢, — x strongly in L° (Q),
j |V(/)£|S dx — +00 (129)
Q

as e — 0" Vs e [1,+00[,
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where y is the characteristic function of K. Set Q, = {x €
Q,, : Vo, (x)| > 0} and J = {e €]0,¢[: |Q.l5y > 0}; we can
consider two cases:

infJ =0, (130)
either ] = @
(131)
or inf ] > 0.

In case (130), thanks to (129), it is possible to choose € such
that (126)-(128) hold with ¥, = ¢,. In case (131), also from
(129), we can find € such that v, = gv, + ¢, satisfying (126)-
(128), where ¢ € C°(Q"),0 < ¢ < 1,and ¢ = 1 in K,,.

Let us suppose now |, N Q|5 = 0. Since | Q|5 = 0, we
have

3 a compact set Ky € Q\ a

Kyl >0,
Kol )
|Vv€0| >0

in K.
Let us add that
veV' (D)) =
36, €{2,...,n},

a compact set K, € Q" :
(133)
|Ky |y > 0,

Ve, >0
in K.

Let (@c)ocece, S Co(Q7) such that 0 < ¢, < 1, ¢, —
x strongly in L°(Q) and IQ Vo '"dx — +ocoase —
0"Vs € [1,+00[, where y is the characteristic function of K.
Evidently, ¥, = ngv, + ¢, satisfies (126)-(128) with suitable
n>0ande @€ CSO(Q\§+),O <¢<l,and g =1in K.
Let us introduce the function g(s,7) = H,, (17, sv,,
osv) = P @IV 48 Y (V)P Vdx
P (1, io bvdx + p [, b7do) = " Y, (A, [ vidx +
Ue Iao bevgdo)]\fs, 7 > 0. Equation (126) implies that

lim g(s,7) =+00 Vs>0,
T— +00

3g . (134)
a—(s,1)261 >0 Vs>0, Vr>0.
T

Consequently, since g(1,0) = 1 and g(s,0) = s < 1 Vs
10,1[, 7 :]0,1] — [0,+co[ (z(1) = 0 and 7(s) > 0 if s
1) belonging to C°(0,1]) n C'(]0, 1[) such that g(s,1(s))
1 Vs €]0, 1], and we have

A m

T (s) = - G(s,7(s) Vselo1[; (135)

_
(x ()
and then, lim__, ;- §(s, 7(s)) €]0, +oo[ by (127).
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In conclusion, set ¥(s) = (7(s)V;, sv5, ...
into account (128), (135), it results in

,sv,,) and, taking

V(1) =,

v(s) €Sy, Vse]o1],

lim iD1 @ (s)) = —oo0,
s—>1-ds

(136)
Slinlqi%Dj (F(s)) <+o00 asj#1
- slgrllj_i CEEY LD, () = ~co.
O

Proposition 26. Ifforsome jy € {2,...,m} y; <y <y, then

u? #0asi=1,...,n
Proof. It is sufficient (Proposition 2) to show that

ash = 1,...,n(ig) holds with F = {v € §;, n
V(D)) :ve=0asf=1,...,n v,=0} # @.
Let us suppose h = 1 and let v € . Let us verify that ¥, €

WUP(Q) exists with 7, > 0 such that (126) and (127) hold. At
this aim, we note that

veV? (D)) =
3, €{2,...,n}: (137)
'Qen'N >0,

where Q, = {xeQ: [V, (x)] > 0}. Let K € Q be a compact
set with positive measure. Let (¢,)oc.,, € Cp”(Q) such that
0<¢, <1,¢ — xstronglyinL°(Q2) and _[Q Vo 'dx —
+ooase — 0" Vs € [1, +oo[ (x = characteristic function of
K). With Q, and ] as in Proposition 25, it is possible to find
e such that v, = ¢, [resp., ¥, = v, + ¢,] satisfying (126) and
(127) in case (130) [resp., (131)]. Then, if 7(s) and ¥(s) are as in
Proposition 25, we have

(1) =,

V(s) € Sy Vse 10,1],

limiiDjo 7 (s)) = —oo0,

1-ds (138)
Jim D, () < +oo a5 j# i
— 1im Y ()Y LD, () = ~co.
S-S ds
[

Proposition 27. If for some j, € {2,...,m} y; <y, <y, then
u, # 0asi=1,...,n
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Proof. It is sufficient (Proposition 5) to show that

ash=1,...,n (") holds with & = {v € V; N S(D,) :
ve=0asl=1,....,n v, =0}, ifF + .

Let us suppose, for example, h = 1 and let us set Q™ =
{x € Q: p(x) < 0}. Let K € O be a compact set such
that |[K|y > Oand v, > 0in K for some ¢, € {2,...,n}.

Let 9 € C°(Q ) with0 < ¢ < landg = 1in K.
Set g,(s,7) = Dy(19,5,,...,5v,) = q; jgpl(lem(Pyl +
S Y o dgvzl Y1Vidx Vs, T > 0; it results in

g1 (1)0) =-1,

)
9 (s,7) <0 Vs3>0, Vr >0,
ot (139)

g, (s,0)=-sT>-1 Vse]o,1[,

Thr-{loogl (s,7) = —0c0 Vs=0.
Then, 3t :]0,1] — [0,+oo[ (v(1) = 0, 7(s) > 0ifs <

1) belonging to C°(J0,1]) n C*(J0, 1) such that g1(s,7(s)) =
-1 Vs €]0, 1], and we have

M= Lz
TS e e

Vs €]0,1[, lim g (s,7(s)) € ]0,+00[.
s—1"

(140)

Consequently, with %(s) = (7(s)@, sv,, ..., sv,), we get

V(1) =,

v(s) e S(D;) Vse]lo1],
sEHIl’%H/\‘M (V (S)) € ]_OO’O[)

lim —D; (v (s)) = —co,
s—>17dsS

o d _ o (141)
slinll,£Dj F(s)) <+o00 asj# j,

= lim | (t(7(9)" %HM ¥(s)
< . d _
= 2 E@ENY —-D; () | = +co.
i s
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