
Research Article
Entropy Solution for Doubly Nonlinear Elliptic
Anisotropic Problems with Robin Boundary Conditions

I. Ibrango1 and S. Ouaro2
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We study in this paper nonlinear anisotropic problems with Robin boundary conditions. We prove, by using the technic of
monotone operators in Banach spaces, the existence of a sequence of weak solutions of approximation problems associated with the
anisotropic Robin boundary value problem. For the existence and uniqueness of entropy solutions, we prove that the sequence of
weak solutions converges to a measurable function which is the entropy solution of the anisotropic Robin boundary value problem.

1. Introduction

The aim of this paper is to study the following nonlinear
anisotropic elliptic Robin boundary value problem:

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥

𝑖

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) + 𝑏 (𝑢) = 𝑓 in Ω,

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) 𝜂

𝑖
= −𝛾 (𝑢) on 𝜕Ω,

(1)

where Ω is an open bounded domain of R𝑁 (𝑁 ≥ 3) with
smooth boundary and meas(Ω) > 0, 𝑓 ∈ 𝐿

1
(Ω), 𝜂 =

(𝜂

1
, . . . , 𝜂

𝑁
) is the unit outward normal on 𝜕Ω, and 𝛾(𝑢) =

|𝑢|

𝑟(𝑥)−2
𝑢.

All papers on problems like (1) considered particular
cases of function 𝑏. Indeed, in [1], Bonzi et al. studied the
following problems:

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥

𝑖

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) + |𝑢|

𝑝𝑀(𝑥)−2
𝑢 = 𝑓 in Ω,

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) 𝜂

𝑖
= − |𝑢|

𝑟(𝑥)−2
𝑢

on 𝜕Ω,

(2)

where 𝑓 ∈ 𝐿

1
(Ω). The authors use minimization technics

used in [2] or [3] (see also [4, 5]) to prove the existence and
uniqueness of entropy solution.

The Robin type boundary conditions in the variable
exponents setting are new and interesting problems and were
for the first time studied by Boureanu and Radulescu in [3].
The main difficulty for the study of problem in [3] was the
definition of an admissible space of solutions. The authors
defined the appropriate space and obtained its properties
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which permit them to use minimization method to prove the
existence of weak solutions to the following problem:

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥

𝑖

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) + 𝑏 (𝑥) |𝑢|

𝑝𝑀(𝑥)−2
𝑢 = 𝑓 (𝑥, 𝑢)

in Ω,

𝑢 ≥ 0 in Ω,

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) 𝜂

𝑖
= 𝑔 (𝑥, 𝑢)

on 𝜕Ω.

(3)

Since we consider 𝐿1-data 𝑓 instead of the function 𝑓(𝑥, 𝑢)

considered in [3], the suitable notion of solution is the
entropy solution introduced by Bénilan et al. in [6] (see also
[7]). With the Robin type boundary conditions, the values
of the solutions at the boundary must be precise and the
notion of solutions considered must include the boundary
condition. In this paper, as the function 𝑏 is more general, it is
not possible to use minimization technic to get the existence
of solution. Therefore, we used the technic of monotone
operators in Banach spaces (see [8]) to get the existence of
entropy solutions of (1).

For presenting our main result, we first have to describe
the data involved in our problem. LetΩ be a bounded domain
inR𝑁 (𝑁 ≥ 3) with smooth boundary domain 𝜕Ω and ⃗

𝑝(⋅) =

(𝑝

1
(⋅), . . . , 𝑝

𝑁
(⋅)) such that, for any 𝑖 = 1, . . . , 𝑁, 𝑝

𝑖
(⋅) : Ω →

[2;𝑁) is a continuous function with

1 < 𝑝

−

𝑖
ess inf

𝑥∈Ω

𝑝

𝑖 (
𝑥) ≤ ess sup

𝑥∈Ω

𝑝

𝑖 (
𝑥) 𝑝

+

𝑖
< +∞. (4)

For any 𝑖 = 1, . . . , 𝑁, let 𝑎
𝑖
: Ω × R → R be a Carathéodory

function satisfying the following:

(i) There exists a positive constant 𝐶
1
such that









𝑎

𝑖 (
𝑥, 𝜉)









≤ 𝐶

1
(𝑗

𝑖 (
𝑥) +









𝜉









𝑝𝑖(𝑥)−1
) , (5)

for almost every 𝑥 ∈ Ω and for every 𝜉 ∈ R, where
𝑗

𝑖
is a nonnegative function lying in 𝐿

𝑝


𝑖
(⋅)
(Ω), with

(1/𝑝

𝑖
(𝑥)) + (1/𝑝



𝑖
(𝑥)) = 1.

(ii) For 𝜉, 𝜂 ∈ R with 𝜉 ̸= 𝜂 and for almost every 𝑥 ∈ Ω,
there exists a positive constant 𝐶

2
such that

(𝑎

𝑖 (
𝑥, 𝜉) − 𝑎

𝑖
(𝑥, 𝜂)) (𝜉 − 𝜂)

≥

{

{

{

𝐶

2









𝜉 − 𝜂









𝑝𝑖(𝑥) if 







𝜉 − 𝜂









≥ 1,

𝐶

2









𝜉 − 𝜂









𝑝
−

𝑖 if 







𝜉 − 𝜂









< 1.

(6)

(iii) There exists a positive constant 𝐶
3
such that

𝑎

𝑖 (
𝑥, 𝜉) ⋅ 𝜉 ≥ 𝐶

3









𝜉









𝑝𝑖(𝑥)
,

(7)

for 𝜉 ∈ R and for almost every 𝑥 ∈ Ω.

The hypotheses on 𝑎

𝑖
are classical in the study of nonlinear

problems (see [1, 3]).
The function 𝑏 is such that

𝑏 : R → R is continuous, surjective, nondecreasing

with 𝑏 (0) = 0.

(8)

Throughout this paper, for any 𝑖 = 1, . . . , 𝑁, we assume that

𝑝 (𝑁 − 1)

𝑁 (𝑝 − 1)

< 𝑝

−

𝑖
<

𝑝 (𝑁 − 1)

𝑁 − 𝑝

,

𝑝

+

𝑖
− 𝑝

−

𝑖
− 1

𝑝

−

𝑖

<

𝑝 − 𝑁

𝑝 (𝑁 − 1)

,

𝑁

∑

𝑖=1

1

𝑝

−

𝑖

> 1,

(9)

where𝑁/𝑝 = ∑

𝑁

𝑖=1
(1/𝑝

−

𝑖
).

We put for all 𝑥 ∈ Ω,

𝑝

𝑀 (𝑥)max {𝑝
1 (
𝑥) , . . . , 𝑝𝑁 (𝑥)} ,

𝑝

𝑚 (𝑥)min {𝑝
1 (
𝑥) , . . . , 𝑝𝑁 (𝑥)}

(10)

and for all 𝑥 ∈ 𝜕Ω,

𝑝

𝜕
(𝑥) =

{

{

{

(𝑁 − 1) 𝑝 (𝑥)

𝑁 − 𝑝 (𝑥)

if 𝑝 (𝑥) < 𝑁,

+∞ if 𝑝 (𝑥) ≥ 𝑁.

(11)

We make the following assumption:

𝑟 ∈ 𝐶 (Ω)

with 1 < 𝑟

−
≤ 𝑟

+
< min

𝑥∈𝜕Ω

{𝑝

𝜕

1
(𝑥) , . . . , 𝑝

𝜕

𝑁
(𝑥)} .

(12)

Note that the function 𝛾 is continuous, defined on R with
𝛾(𝑡)𝑡 ≥ 0 for all 𝑡 in R and 𝛾(0) = 0.

A prototype example that is covered by our assumptions
is the following anisotropic ⃗

𝑝(⋅)-harmonic system:

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥

𝑖

(

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−2
𝜕𝑢

𝜕𝑥

𝑖

) = 𝑓, (13)

which, in the particular case when𝑝
𝑖
= 𝑝 for any 𝑖 = 1, . . . , 𝑁,

is the 𝑝-Laplace equation.
The rest of the paper is organized as follows. In Section 2,

we present some preliminary results. In Section 3, we study
the existence and uniqueness of entropy solution.

2. Preliminaries

We recall in this section some definitions and basic properties
of anisotropic Lebesgue and Sobolev spaces with variable
exponent. Set

𝐶

+
(Ω) = {𝑝 ∈ 𝐶 (Ω) such that min

𝑥∈Ω

𝑝 (𝑥) > 1} . (14)
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For any 𝑝 ∈ 𝐶

+
(Ω), the variable exponent Lebesgue space is

defined by

𝐿

𝑝(⋅)
(Ω) {𝑢 : Ω

→R, measurable such that ∫

Ω

|𝑢|

𝑝(𝑥)
𝑑𝑥 <∞} ,

(15)

endowed with the so-called Luxemburg norm

|𝑢|𝑝(⋅)

inf {𝜆 > 0 such that ∫

Ω

















𝑢 (𝑥)

𝜆

















𝑝(𝑥)

𝑑𝑥 ≤ 1} .

(16)

The 𝑝(⋅)-modular of the 𝐿𝑝(⋅)(Ω) space is the mapping 𝜌
𝑝(⋅)

:

𝐿

𝑝(⋅)
(Ω) → R defined by

𝜌

𝑝(⋅) (
𝑢) ∫

Ω

|𝑢|

𝑝(𝑥)
𝑑𝑥. (17)

For any 𝑢 ∈ 𝐿

𝑝(⋅)
(Ω), the following inequality (see [9, 10]) will

be used later:

min {|𝑢|𝑝
−

𝑝(⋅)
; |𝑢|

𝑝
+

𝑝(⋅)
} ≤ 𝜌

𝑝(⋅) (
𝑢)

≤ max {|𝑢|𝑝
−

𝑝(⋅)
; |𝑢|

𝑝
+

𝑝(⋅)
} .

(18)

For any 𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) and V ∈ 𝐿

𝑞(⋅)
(Ω) with (1/𝑝(𝑥)) +

(1/𝑞(𝑥)) = 1 in Ω, we have the following Hölder type
inequality:















∫

Ω

𝑢V 𝑑𝑥














≤ (

1

𝑝

−
+

1

𝑞

−
) |𝑢|𝑝(⋅) |

V|𝑞(⋅) . (19)

If Ω is bounded and 𝑝, 𝑞 ∈ 𝐶

+
(Ω) such that 𝑝(𝑥) ≤ 𝑞(𝑥)

for any 𝑥 ∈ Ω, then the embedding 𝐿

𝑞(⋅)
(Ω) → 𝐿

𝑝(⋅)
(Ω) is

continuous (see [11, Theorem 2.8]).
Herein, we need the following anisotropic Sobolev space

with variable exponent:

𝑊

1,�⃗�(⋅)
(Ω) {𝑢 ∈ 𝐿

𝑝𝑀(⋅)
(Ω) such that 𝜕𝑢

𝜕𝑥

𝑖

∈ 𝐿

𝑝𝑖(⋅)
(Ω) , 𝑖 = 1, . . . , 𝑁} .

(20)

𝑊

1,�⃗�(⋅)
(Ω) is a separable and reflexive Banach space (see [2])

under the norm

‖𝑢‖�⃗�(⋅)
= |𝑢|𝑝𝑀(⋅)

+

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

. (21)

We need the following embedding and trace results.

Theorem 1 (see [9, Corollary 2.1]). Let Ω ⊂ R𝑁
(𝑁 ≥ 3)

be a bounded open set and for all 𝑖 = 1, . . . , 𝑁, 𝑝
𝑖
∈ 𝐿

∞
(Ω),

𝑝

𝑖
(𝑥) ≥ 1 a.e. in Ω. Then, for any 𝑞 ∈ 𝐿

∞
(Ω) with 𝑞(𝑥) ≥ 1

a.e. in Ω such that

ess inf
𝑥∈Ω

(𝑝

𝑀 (𝑥) − 𝑞 (𝑥)) > 0, (22)

one has the compact embedding

𝑊

1,�⃗�(⋅)
(Ω) → 𝐿

𝑞(⋅)
(Ω) .

(23)

Theorem 2 (see [3, Theorem 6]). Let Ω ⊂ R𝑁
(𝑁 ≥ 2)

be a bounded open set with smooth boundary and let ⃗

𝑝(⋅) ∈

(𝐶

+
(Ω))

𝑁, 𝑟 ∈ 𝐶(Ω) satisfy the condition

1 ≤ 𝑟 (𝑥) < min {𝑝𝜕
1
(𝑥) , . . . , 𝑝

𝜕

𝑁
(𝑥)} , ∀𝑥 ∈ 𝜕Ω. (24)

Then, there is a compact boundary trace embedding

𝑊

1,�⃗�(⋅)
(Ω) → 𝐿

𝑟(⋅)
(𝜕Ω) .

(25)

We introduce the numbers

𝑞 =

𝑁 (𝑝 − 1)

𝑁 − 1

,

𝑞

∗
=

𝑁 (𝑝 − 1)

𝑁 − 𝑝

=

𝑁𝑞

𝑁 − 𝑞

.

(26)

The following result is due to Troisi (see [12]).

Theorem 3. Let 𝑝
1
, . . . , 𝑝

𝑁
∈ [1, +∞); 𝑔 ∈ 𝑊

1,(𝑝1 ,...,𝑝𝑁)
(Ω)

and

𝑞 = (𝑝)

∗
𝑖𝑓 (𝑝)

∗
< 𝑁,

𝑞 ∈ [1, +∞) 𝑖𝑓 (𝑝)

∗
≥ 𝑁.

(27)

Then, there exists a constant 𝐶
4
> 0 depending on 𝑁,𝑝

1
, . . . ,

𝑝

𝑁
if 𝑝 < 𝑁 and also on 𝑞 andmeas(Ω) if 𝑝 ≥ 𝑁 such that









𝑔







𝐿
𝑞
(Ω)

≤ 𝐶

4

𝑁

∏

𝑖=1

[









𝑔







𝐿
𝑝𝑀 (Ω)

+

















𝜕𝑔

𝜕𝑥

𝑖















𝐿
𝑝𝑖 (Ω)

]

1/𝑁

.
(28)

In this paper, we will use theMarcinkiewicz spaceM𝑞
(Ω)

(1 < 𝑞 < +∞) as the set of measurable functions 𝑔 : Ω → R

for which the distribution function

𝜆

𝑔 (
𝑘) = meas ({𝑥 ∈ Ω :









𝑔 (𝑥)









> 𝑘}) , 𝑘 ≥ 0 (29)

satisfies an estimate of the form

𝜆

𝑔 (
𝑘) ≤ 𝐶𝑘

−𝑞
, for some finite constant 𝐶 > 0. (30)

We will use the following pseudonorm inM𝑞
(Ω):









𝑔







M𝑞(Ω)
inf {𝐶 > 0 : 𝜆

𝑔 (
𝑘) ≤ 𝐶𝑘

−𝑞
, ∀𝑘 > 0} . (31)

For any 𝑘 > 0, the truncation function 𝑇

𝑘
is defined by

𝑇

𝑘 (
𝑠) = max {−𝑘;min {𝑘; 𝑠}} . (32)

It is clear that lim
𝑘→+∞

𝑇

𝑘
(𝑠) = 𝑠 and |𝑇

𝑘
(𝑠)| = min{|𝑠|; 𝑘}.
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In order to simplify the notation, for any V ∈ 𝑊

1,�⃗�(⋅)
(Ω),

we use V instead of V
|𝜕Ω

for the trace of V on 𝜕Ω.
Set T1,�⃗�(⋅)

(Ω) as the set of the measurable functions 𝑢 :

Ω → R such that, for any 𝑘 > 0, 𝑇
𝑘
(𝑢) ∈ 𝑊

1,�⃗�(⋅)
(Ω).

We define the space T
1,�⃗�(⋅)

tr (Ω) as the set of functions 𝑢 ∈

T1,�⃗�(⋅)
(Ω) such that there exists a sequence (𝑢

𝑛
)

𝑛
⊂ 𝑊

1,�⃗�(⋅)
(Ω)

satisfying

𝑢

𝑛
→ 𝑢 a.e. in Ω,

𝜕𝑇

𝑘
(𝑢

𝑛
)

𝜕𝑥

𝑖

→

𝜕𝑇

𝑘 (
𝑢)

𝜕𝑥

𝑖

in 𝐿

1
(Ω) , ∀𝑘 > 0,

there exists a measurable function V on 𝜕Ω such that 𝑢
𝑛

→ V a.e. on 𝜕Ω.

(33)

We need the following lemma proved in [13].

Lemma 4. Let 𝑔 be a nonnegative function in 𝑊

1,�⃗�(⋅)
(Ω).

Assume 𝑝 < 𝑁 and there exists a constant 𝐶 > 0 such that

∫

Ω









𝑇

𝑘
(𝑔)









𝑝
−

𝑀
𝑑𝑥 +

𝑁

∑

𝑖=1

∫

{|𝑔|≤𝑘}

















𝜕𝑔

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥 ≤ 𝐶 (1 + 𝑘) ,

∀𝑘 > 0.

(34)

Then, there exists a constant 𝐷, depending on 𝐶, such that









𝑔







M𝑞
∗

(Ω)
≤ 𝐷, (35)

where 𝑞∗ = 𝑁(𝑝 − 1)/(𝑁 − 𝑝).

3. Entropy Solutions

Thenotion of entropy solutions to problem (1) where the data
𝑓 belongs to 𝐿1(Ω) is the following.

Definition 5. A measurable function 𝑢 ∈ T
1,�⃗�(⋅)

tr (Ω) is an
entropy solution of problem (1) if 𝑏(𝑢) ∈ 𝐿

1
(Ω), 𝛾(𝑢) ∈

𝐿

1
(𝜕Ω), and, for every 𝑘 > 0,

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝜎 ≤ ∫

Ω

𝑓𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥,

(36)

for every 𝜑 ∈ 𝑊

1,�⃗�(⋅)
(Ω) ∩ 𝐿

∞
(Ω).

The existence result is the following theorem.

Theorem 6. Assume that (4)–(12) hold. Then, problem (1)
admits at least one entropy solution.

Proof. The proof is done in three steps.

Step 1 (the approximate problem). We define the reflexive
space

𝐸 = 𝑊

1,�⃗�(⋅)
(Ω) × 𝐿

𝑝𝑀(⋅)
(𝜕Ω) .

(37)

Let𝑋
0
be the subspace of 𝐸 defined by

𝑋

0
= {(𝑢, V) ∈ 𝐸 : V = 𝜏 (𝑢)} , (38)

where 𝜏(𝑢) is the trace of 𝑢 ∈ T
1,𝑝(⋅)

tr (Ω) in the usual sense,
since 𝑢 ∈ 𝑊

1,�⃗�(⋅)
(Ω). In the sequel, wewill identify an element

(𝑢, V) ∈ 𝑋

0
with its representative 𝑢 ∈ 𝑊

1,�⃗�(⋅)
(Ω).

For any 𝑛 ∈ N and 𝜀 > 0, we consider the sequence of
approximate problems:

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕V
𝜕𝑥

𝑖

𝑑𝑥 + 𝜀∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
V 𝑑𝑥

+ ∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) V 𝑑𝑥 + ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) V 𝑑𝜎

= ∫

Ω

𝑓

𝑛
V 𝑑𝑥,

(39)

where 𝑓
𝑛
= 𝑇

𝑛
(𝑓), and we define an operator 𝐴

𝑛
by

⟨𝐴

𝑛 (
𝑢) , V⟩ = ⟨𝐴 (𝑢) , V⟩ + ∫

Ω

𝑇

𝑛 (
𝑏 (𝑢)) V 𝑑𝑥

+ ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢)) V 𝑑𝜎 ∀𝑢, V ∈ 𝑋

0
,

(40)

where

⟨𝐴 (𝑢) , V⟩ =
𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕V
𝜕𝑥

𝑖

𝑑𝑥

+ 𝜀∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢V 𝑑𝑥.

(41)

Note that









𝑓

𝑛







∞
≤









𝑓







1

meas (Ω)

,









𝑓

𝑛







1
= ∫

Ω









𝑓

𝑛









𝑑𝑥 ≤ ∫

Ω









𝑓









𝑑𝑥 =









𝑓







1
,

𝑓

𝑛
→

𝑛→+∞
𝑓 in 𝐿

1
(Ω) , a.e. in Ω.

(42)
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Assertion 1 (the operator 𝐴 is of type M). (i) The operator 𝐴
is monotone. Indeed, for 𝑢, V ∈ 𝑊

1,�⃗�(⋅)
(Ω), we have

⟨𝐴 (𝑢) − 𝐴 (V) , 𝑢 − V⟩ = ⟨𝐴 (𝑢) , 𝑢 − V⟩ + ⟨𝐴 (V) , V

− 𝑢⟩ = ∫

Ω

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕 (𝑢 − V)
𝜕𝑥

𝑖

𝑑𝑥

+ 𝜀∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢 (𝑢 − V) 𝑑𝑥

+ ∫

Ω

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)

𝜕 (V − 𝑢)

𝜕𝑥

𝑖

𝑑𝑥 + 𝜀∫

Ω

|V|𝑝𝑀(𝑥)−2

⋅ V (V − 𝑢) 𝑑𝑥

= ∫

Ω

𝑁

∑

𝑖=1

[𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) − 𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)]

⋅ (

𝜕𝑢

𝜕𝑥

𝑖

−

𝜕V
𝜕𝑥

𝑖

)𝑑𝑥 + 𝜀∫

Ω

(|𝑢|

𝑝𝑀(𝑥)−2
𝑢

− |V|𝑝𝑀(𝑥)−2 V) (𝑢 − V) 𝑑𝑥.

(43)

Therefore,

⟨𝐴 (𝑢) − 𝐴 (V) , 𝑢 − V⟩ ≥ 0, (44)

since for 𝑖 = 1, . . . , 𝑁, for almost every 𝑥 ∈ Ω, 𝑎
𝑖
(𝑥, ⋅) and

𝑡 → |𝑡|

𝑝𝑀(𝑥)−2
𝑡 are monotone.

(ii) The operator 𝐴 is hemicontinuous. Indeed, for every
𝑢, V in𝑊

1,�⃗�(⋅)
(Ω), let

𝜑 : 𝑡 ∈ R → 𝜑 (𝑡) = ⟨𝐴 (𝑢 + 𝑡V) , V⟩ (45)

and let 𝑡, 𝑡
0
∈ R be such that 𝑡 → 𝑡

0
. We have 𝑤 = 𝑢 + 𝑡V →

𝑤

0
= 𝑢 + 𝑡

0
V in𝑊

1,�⃗�(⋅)
(Ω).

Using the Hölder type inequality, there exists 𝑖

0
∈

{1, . . . , 𝑁} such that








𝜑 (𝑡) − 𝜑 (𝑡

0
)









=









⟨𝐴 (𝑢 + 𝑡V) , V⟩ − ⟨𝐴 (𝑢 + 𝑡

0
V) , V⟩





≤

𝑁

∑

𝑖=1

∫

Ω

















𝑎

𝑖
(𝑥,

𝜕𝑤

𝜕𝑥

𝑖

) − 𝑎

𝑖
(𝑥,

𝜕𝑤

0

𝜕𝑥

𝑖

)

































𝜕V
𝜕𝑥

𝑖

















𝑑𝑥

+ 𝜀∫

Ω













|𝑤|

𝑝𝑀(𝑥)−2
𝑤 −









𝑤

0









𝑝𝑀(𝑥)−2
𝑤

0













|V| 𝑑𝑥

≤ 𝑁(

1

𝑝

−

𝑖0

+

1

(𝑝



𝑖0
)

−
)

⋅



















𝑎

𝑖0
(𝑥,

𝜕𝑤

𝜕𝑥

𝑖0

) − 𝑎

𝑖0
(𝑥,

𝜕𝑤

0

𝜕𝑥

𝑖0

)

















𝑝


𝑖0
(⋅)



















𝜕V
𝜕𝑥

𝑖0

















𝑝𝑖0
(⋅)

+ 𝜀(

1

𝑝

−

𝑀

+

1

(𝑝



𝑀
)

−
)

⋅













|𝑤|

𝑝𝑀(𝑥)−2
𝑤 −









𝑤

0









𝑝𝑀(𝑥)−2
𝑤

0











𝑝


𝑀
(⋅)

|V|𝑝𝑀(⋅) .

(46)

Let us denote 𝜓
𝑖0
(𝑥, 𝑤) = 𝑎

𝑖0
(𝑥, 𝜕𝑤/𝜕𝑥

𝑖0
).

Using assumption (5) and [11, Theorems 4.1 and 4.2]
we have 𝜓

𝑖0
(𝑥, 𝑤) → 𝜓

𝑖0
(𝑥, 𝑤

0
) in 𝐿

𝑝


𝑖0
(⋅)
(Ω). Then, we

deduce that 𝜑 is continuous; namely, the operator 𝐴 is
hemicontinuous.

Since the operator 𝐴 is monotone and hemicontinuous,
then according to Lemma 2.1 in [8], 𝐴 is of type M.

Assertion 2 (the operator𝐴
𝑛
is of typeM). Indeed, let (𝑢

𝑘
)

𝑘∈N

be a sequence in𝑋

0
such that

𝑢

𝑘
⇀ 𝑢 weakly in 𝑋

0
,

𝐴

𝑛
𝑢

𝑘
⇀ 𝜒 weakly in 𝑋



0
,

lim sup
𝑘→+∞

⟨𝐴

𝑛
(𝑢

𝑘
) , 𝑢

𝑘
⟩ ≤ ⟨𝜒, 𝑢⟩ .

(47)

Since

𝑇

𝑛 (
𝑏 (𝑢)) 𝑢 ≥ 0,

𝑇

𝑛
(𝛾 (𝑢)) 𝑢 ≥ 0,

(48)

by Fatou’s lemma, we obtain that

lim inf
𝑘→+∞

(∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑘
)) 𝑢

𝑘
𝑑𝑥 + ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑘
)) 𝑢

𝑘
𝑑𝜎)

≥ ∫

Ω

𝑇

𝑛 (
𝑏 (𝑢)) 𝑢 𝑑𝑥 + ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢)) 𝑢 𝑑𝜎

(49)

and thanks to the Lebesgue dominated convergence theorem,
we have

lim
𝑘→+∞

(∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑘
)) V 𝑑𝑥 + ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑘
)) V 𝑑𝜎)

= ∫

Ω

𝑇

𝑛 (
𝑏 (𝑢)) V 𝑑𝑥 + ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢)) V 𝑑𝜎,

(50)

for all V in𝑋

0
. Consequently,

𝑇

𝑛
(𝑏 (𝑢

𝑘
)) + 𝑇

𝑛
(𝛾 (𝑢

𝑘
)) ⇀ 𝑇

𝑛 (
𝑏 (𝑢)) + 𝑇

𝑛
(𝛾 (𝑢))

weakly in 𝑋



0
.

(51)

Therefore, we deduce that

𝐴𝑢

𝑘
⇀ 𝜒 − (𝑇

𝑛 (
𝑏 (𝑢)) + 𝑇

𝑛
(𝛾 (𝑢))) weakly in 𝑋



0
.
(52)

As in Assertion 1, we prove that the operator 𝐴 is of type M,
so we have

𝐴𝑢 = 𝜒 − (𝑇

𝑛 (
𝑏 (𝑢)) + 𝑇

𝑛
(𝛾 (𝑢))) . (53)

Thus, it follows that

𝐴

𝑛
𝑢 = 𝜒. (54)

Hence, 𝐴
𝑛
is of type M.

Assertion 3 (the operator 𝐴
𝑛
is coercive). Indeed, since

𝑇

𝑛 (
𝑏 (𝑢)) 𝑢 + 𝑇

𝑛
(𝛾 (𝑢)) 𝑢 ≥ 0, (55)
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then

⟨𝐴

𝑛 (
𝑢) , 𝑢⟩ ≥ ⟨𝐴 (𝑢) , 𝑢⟩ . (56)

According to (7), we have

⟨𝐴 (𝑢) , 𝑢⟩ ≥ 𝐶

3
∫

Ω

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 + 𝜀∫

Ω

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥. (57)

Denote

I = {𝑖 ∈ {1, . . . , 𝑁} :

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

≤ 1} ,

J = {𝑖 ∈ {1, . . . , 𝑁} :

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

> 1} .

(58)

We have

∫

Ω

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 = ∑

𝑖∈I

∫

Ω

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥

+ ∑

𝑖∈J

∫

Ω

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥

≥ ∑

𝑖∈I

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
+

𝑖

𝑝𝑖(⋅)

+ ∑

𝑖∈J

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑝𝑖(⋅)

≥ ∑

𝑖∈J

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑝𝑖(⋅)

≥ ∑

𝑖∈J

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑚

𝑝𝑖(⋅)

≥

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑚

𝑝𝑖(⋅)

− ∑

𝑖∈I

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑚

𝑝𝑖(⋅)

≥

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝
−

𝑚

𝑝𝑖(⋅)

− 𝑁.

(59)

Using the convexity of the application 𝑡 ∈ R+
→ 𝑡

𝑝
−

𝑚 , 𝑝−
𝑚
> 1,

we obtain

∫

Ω

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 ≥

1

𝑁

𝑝
−

𝑚
−1

(

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

)

𝑝
−

𝑚

− 𝑁.

(60)

Then,

⟨𝐴

𝑛 (
𝑢) , 𝑢⟩ ≥

𝐶

3

𝑁

𝑝
−

𝑚
−1

(

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ 𝜀∫

Ω

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥 − 𝐶

3
𝑁.

(61)

(i) Assume |𝑢|
𝑝𝑀(⋅)

> 1. Then, (18) gives ∫
Ω
|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥 ≥

|𝑢|

𝑝
−

𝑚

𝑝𝑀(⋅)
.

So, combining (56) and (61) we get

⟨𝐴

𝑛 (
𝑢) , 𝑢⟩ ≥ 𝐶

[

[

(

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ |𝑢|

𝑝
−

𝑚

𝑝𝑀(⋅)

]

]

− 𝐶

3
𝑁 ≥

𝐶

2

𝑝
−

𝑚
−1

‖𝑢‖

𝑝
−

𝑚

�⃗�(⋅)
− 𝐶

3
𝑁,

where 𝐶 = min {
𝐶

3

𝑁

𝑝
−

𝑚
−1
; 𝜀} .

(62)

(ii) Assume |𝑢|
𝑝𝑀(⋅)

≤ 1. Then, combining (56) and (61)
we get

⟨𝐴

𝑛 (
𝑢) , 𝑢⟩ ≥ 𝐶

[

[

(

𝑁

∑

𝑖=1

















𝜕𝑢

𝜕𝑥

𝑖















𝑝𝑖(⋅)

)

𝑝
−

𝑚

+ |𝑢|

𝑝
−

𝑚

𝑝𝑀(⋅)

]

]

− 1

− 𝐶

3
𝑁 + 𝜀∫

Ω

|𝑢|

𝑝𝑀(𝑥)
𝑑𝑥

≥

𝐶

2

𝑝
−

𝑚
−1

‖𝑢‖

𝑝
−

𝑚

�⃗�(⋅)
− 1 − 𝐶

3
𝑁,

where 𝐶 = min {
𝐶

3

𝑁

𝑝
−

𝑚
−1
; 1} .

(63)

Consequently, since 𝑝−
𝑚
> 1, the operator 𝐴

𝑛
is coercive.

Besides, the operator 𝐴
𝑛
is bounded and hemicontinu-

ous.
Then, for any 𝐹

𝑛
= 𝑇

𝑛
(𝑓) ∈ 𝐸


⊂ 𝑋



0
, we can deduce the

existence of a function 𝑢

𝑛
∈ 𝑋

0
such that

⟨𝐴

𝑛
(𝑢

𝑛
) , V⟩ = ⟨𝐹

𝑛
, V⟩ , ∀V ∈ 𝑋

0
. (64)

Namely, 𝑢
𝑛
is a weak solution of problem (39).

We are now going to prove that these approximated
solutions 𝑢

𝑛
tend, as 𝑛 goes to infinity, to a measurable

function 𝑢 which is an entropy solution of problem (1). To
start with, we establish some a priori estimates.

Step 2 (a priori estimates). Assume (4)–(12) and let 𝑢
𝑛
be a

solution of problem (39). We have the following results.

Lemma 7. There exists a constant 𝐶
5
> 0 such that

∫

Ω









𝑇

𝑘
(𝑢

𝑛
)









𝑝
−

𝑀
𝑑𝑥 +

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥

≤ 𝐶

5 (
𝑘 + 1) .

(65)

Proof. Let us take 𝑇
𝑘
(𝑢

𝑛
) as a test function in (39). Since

∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
) 𝑑𝑥 + 𝜀∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
)

+ ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
) 𝑑𝜎 ≥ 0,

(66)
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using relation (7), we obtain

𝐶

3

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 ≤ 𝑘









𝑓







1
. (67)

Then, we have

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥

=

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘;|𝜕𝑢𝑛/𝜕𝑥𝑖|>1}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥

+

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘;|𝜕𝑢𝑛/𝜕𝑥𝑖|≤1}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥

≤

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 + 𝑁 ⋅meas (Ω)

≤

𝑘

𝐶

3









𝑓







1
+ 𝑁 ⋅meas (Ω) .

(68)

Moreover, we have

∫

Ω









𝑇

𝑘
(𝑢

𝑛
)









𝑝
−

𝑀
𝑑𝑥 = ∫

{|𝑇𝑘(𝑢𝑛)|≤1}









𝑇

𝑘
(𝑢

𝑛
)









𝑝
−

𝑀
𝑑𝑥

+ ∫

{|𝑇𝑘(𝑢𝑛)|>1}









𝑇

𝑘
(𝑢

𝑛
)









𝑝
−

𝑀
𝑑𝑥

≤ meas (Ω) + ∫

{|𝑇𝑘(𝑢𝑛)|>1}

𝑘

𝑝
−

𝑀
𝑑𝑥

≤ meas (Ω) (1 + 𝑘

𝑝
−

𝑀
) .

(69)

Therefore, we get

∫

Ω









𝑇

𝑘
(𝑢

𝑛
)









𝑝
−

𝑀
𝑑𝑥 +

𝑁

∑

𝑖=1

∫

{|𝑢𝑛|≤𝑘}

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















𝑝
−

𝑖

𝑑𝑥

≤ meas (Ω) (1 + 𝑁 + 𝑘

𝑝
−

𝑀
) +

𝑘

𝐶

3









𝑓







1

≤ 𝐶

5 (
1 + 𝑘) ,

(70)

where 𝐶
5
= max{meas(Ω)(1 + 𝑁 + 𝑘

𝑝
−

𝑀
); (1/𝐶

3
)‖𝑓‖

1
}.

Lemma 8. For any 𝑘 > 0, there exist two constants𝐶
7
> 0 and

𝐶

8
> 0 such that

(i) ‖𝑢
𝑛
‖

M𝑞
∗

(Ω)
≤ 𝐶

7
,

(ii) ‖𝜕𝑢
𝑛
/𝜕𝑥

𝑖
‖

M
𝑝
−

𝑖
𝑞/𝑝
(Ω)

≤ 𝐶

8
, ∀𝑖 = 1, . . . , 𝑁.

Proof. (i) This is a consequence of Lemmas 4 and 7.
(ii)

(a) Let 𝛼 ≥ 1. For any 𝑘 ≥ 1, we have

𝜆

𝜕𝑢𝑛/𝜕𝑥𝑖
(𝛼) = meas({𝑥 ∈ Ω :

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















> 𝛼})

= meas({
















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















> 𝛼;









𝑢

𝑛









≤ 𝑘})

+meas({
















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















> 𝛼;









𝑢

𝑛









> 𝑘})

≤ ∫

{|𝜕𝑢𝑛/𝜕𝑥𝑖|>𝛼;|𝑢𝑛|≤𝑘}

𝑑𝑥 + 𝜆

𝑢𝑛
(𝑘)

≤ ∫

{|𝑢𝑛|≤𝑘}

(

1

𝛼

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















)

𝑝
−

𝑖

𝑑𝑥 + 𝜆

𝑢𝑛
(𝑘)

≤ 𝛼

−𝑝
−

𝑖
𝐶


𝑘 + 𝐶𝑘

−𝑞
∗

.

(71)

Then, there exists a positive constant 𝐶
6
such that

𝜆

𝜕𝑢𝑛/𝜕𝑥𝑖
(𝛼) ≤ 𝐶

6
(𝑘𝛼

−𝑝
−

𝑖
+ 𝑘

−𝑞
∗

) . (72)

Let us consider the function

𝑔 : [1, +∞) → R,

𝑡 → 𝑔 (𝑡) =

𝑡

𝛼

𝑝
−

𝑖

+ 𝑡

−𝑞
∗

.

(73)

We have 𝑔(𝑡) = 0 for 𝑡 = (𝑞

∗
𝛼

𝑝
−

𝑖
)

1/(𝑞
∗
+1). Thus, if we

take 𝑘 = (𝑞

∗
𝛼

𝑝
−

𝑖
)

1/(𝑞
∗
+1)

≥ 1 in (72) we get

𝜆

𝜕𝑢𝑛/𝜕𝑥𝑖
(𝛼) ≤ 𝐶

6
𝑘(

𝑞

∗
+ 1

𝑞

∗

1

𝛼

𝑝
−

𝑖

) ≤ 𝐶



6
𝛼

−(𝑞
∗
/(𝑞
∗
+1))𝑝

−

𝑖

≤ 𝐶



6
𝛼

−𝑝
−

𝑖
𝑞/𝑝

,

∀𝛼 ≥ 1, where 𝐶

6
is a positive constant.

(74)

(b) If 0 ≤ 𝛼 < 1, we have

𝜆

𝜕𝑢𝑛/𝜕𝑥𝑖
(𝛼) = meas({

















𝜕𝑢

𝑛

𝜕𝑥

𝑖

















> 𝛼}) ≤ meas (Ω)

≤ meas (Ω) 𝛼

−𝑝
−

𝑖
𝑞/𝑝

.

(75)

Then

𝜆

𝜕𝑢𝑛/𝜕𝑥𝑖
(𝛼) ≤ (𝐶



6
+meas (Ω)) 𝛼

−𝑝
−

𝑖
𝑞/𝑝

, ∀𝛼 ≥ 0.
(76)

Therefore, we deduce that there exists a positive
constant 𝐶

8
such that

















𝜕𝑢

𝑛

𝜕𝑥

𝑖















M
𝑝
−

𝑖
𝑞/𝑝
(Ω)

≤ 𝐶

8
, ∀𝑖 = 1, . . . , 𝑁. (77)
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Step 3 (existence of entropy solution). Using Lemma 8, we
have the following useful lemma (see [13]).

Lemma 9. For 𝑖 = 1, . . . , 𝑁, as 𝑛 → +∞, one has

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

) → 𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

) 𝑖𝑛 𝐿

1
(Ω) 𝑎.𝑒. 𝑥 ∈ Ω. (78)

In order to pass to the limit in relation (39), we also need the
following convergence results which can be proved as in [7] (see
also [1, 13]).

Proposition 10. Assume (4)–(12). If 𝑢
𝑛

∈ 𝑊

1,�⃗�(⋅)
(Ω) is a

weak solution of (𝑃
𝑛
) then the sequence (𝑢

𝑛
)

𝑛∈N∗ is Cauchy in
measure. In particular, there exist a measurable function u and
a subsequence still denoted by𝑢

𝑛
such that 𝑢

𝑛
→ 𝑢 inmeasure.

Proposition 11. Assume (4)–(12). If 𝑢
𝑛
∈ 𝑊

1,�⃗�(⋅)
(Ω) is a weak

solution of (𝑃
𝑛
) then

(i) there exists 𝑠 > 1 such that 𝑢
𝑛

→ 𝑢 a.e. in Ω and
moreover 𝑢

𝑛
⇀ 𝑢 in𝑊

1,𝑠
(Ω),

(ii) for all 𝑖 = 1, . . . , 𝑁, 𝜕𝑢

𝑛
/𝜕𝑥

𝑖
converges strongly

in 𝐿

1
(Ω). Moreover 𝑎

𝑖
(𝑥, 𝜕𝑢

𝑛
/𝜕𝑥

𝑖
) converges to

𝑎

𝑖
(𝑥, 𝜕𝑢/𝜕𝑥

𝑖
) in 𝐿1(Ω) strongly and in 𝐿𝑝



𝑖
(⋅)
(Ω) weakly

for all 𝑖 = 1, . . . , 𝑁,
(iii) 𝑢

𝑛
converges to some measurable function V a.e. in 𝜕Ω.

We can now pass to the limit in relation (39).
Let 𝜑 ∈ 𝑊

1,�⃗�(⋅)
(Ω) ∩ 𝐿

∞
(Ω) and choosing 𝑇

𝑘
(𝑢

𝑛
− 𝜑) as a

test function in (39), we get
𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ ∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ 𝜀∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝜎

= ∫

Ω

𝑓

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥.

(79)

For the right-hand side of (79), we have

∫

Ω

𝑓

𝑛 (
𝑥) 𝑇𝑘

(𝑢

𝑛
− 𝜑) 𝑑𝑥 → ∫

Ω

𝑓 (𝑥) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝑥, (80)

since 𝑓

𝑛
converges strongly to 𝑓 in 𝐿

1
(Ω) and 𝑇

𝑘
(𝑢

𝑛
− 𝜑)

converges weakly-∗ to 𝑇
𝑘
(𝑢 − 𝜑) in 𝐿

∞
(Ω) and a.e. inΩ.

For the first term of (79), we have (see [13])

lim inf
𝑛→+∞

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

≥

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(81)

We now focus our attention on the second term of (79). We
have

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) → 𝑏 (𝑢) 𝑇𝑘

(𝑢 − 𝜑)

a.e. 𝑥 ∈ Ω,









𝑇

𝑛
(𝑏 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑)









≤ 𝑘









𝑏 (𝑢

𝑛
)









.

(82)

Now we show that |𝑏(𝑢
𝑛
)| ≤ ‖𝑓‖

1
/meas(Ω). Indeed, let us

denote by

𝐻

𝛿 (
𝑠) = min(𝑠

+

𝛿

; 1) ,

sign+
0
(𝑠) =

{

{

{

1 if 𝑠 > 0,

0 if 𝑠 ≤ 0.

(83)

If 𝜃 is a maximal monotone operator defined onR, we denote
by 𝜃

0
the main section of 𝜃; that is,

𝜃

0 (
𝑠)

=

{

{

{

{

{

{

{

{

{

minimal absolute value of 𝜃 (𝑠) if 𝜃 (𝑠) ̸= 0,

+∞ if [𝑠, +∞) ∩ 𝐷 (𝜃) = 0,

−∞ if (−∞, 𝑠] ∩ 𝐷 (𝜃) = 0.

(84)

Remark that as 𝛿 goes to 0,𝐻
𝛿
(𝑠) goes to sign+

0
(𝑠).

We take 𝜑 = 𝐻

𝛿
(𝑢

𝑛
−𝑀) as a test function in (39) for the

weak solution 𝑢

𝑛
and 𝑀 > 0 (a constant to be chosen later)

to get

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

+ 𝜀∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

+ ∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

+ ∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝜎

= ∫

Ω

𝑓

𝑛
𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥.

(85)
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We have

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

=

1

𝛿

𝑁

∑

𝑖=1

∫

{(𝑢𝑛−𝑀)
+
/𝛿<1}

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢

𝑛
−𝑀)

+
𝑑𝑥

=

1

𝛿

𝑁

∑

𝑖=1

∫

{0<𝑢𝑛−𝑀<𝛿}

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑢

𝑛
𝑑𝑥

≥ 0 according to (7) ,

∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

= ∫

{(𝑢𝑛−𝑀)
+
/𝛿<1}









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛

(𝑢

𝑛
−𝑀)

+

𝛿

𝑑𝑥

+ ∫

{(𝑢𝑛−𝑀)
+
/𝛿≥1}









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑑𝑥

≥

1

𝛿

∫

{𝑀<𝑢𝑛<𝑀+𝛿}









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
(𝑢

𝑛
−𝑀)𝑑𝑥 ≥ 0.

(86)

Note also that since the function 𝛾 is nondecreasing with
𝛾(0) = 0, we have

∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝜎

= ∫

𝜕Ω∩{(𝑢𝑛−𝑀)
+
/𝛿<1}

𝑇

𝑛
(𝛾 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝜎

+ ∫

𝜕Ω∩{(𝑢𝑛−𝑀)
+
/𝛿≥1}

𝑇

𝑛
(𝛾 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝜎

= ∫

𝜕Ω∩{(𝑢𝑛−𝑀)
+
/𝛿<1}

𝑇

𝑛
(𝛾 (𝑢

𝑛
))

(𝑢

𝑛
−𝑀)

+

𝛿

𝑑𝜎

+ ∫

𝜕Ω∩{(𝑢𝑛−𝑀)
+
/𝛿≥1}

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) 𝑑𝜎

=

1

𝛿

∫

𝜕Ω∩{0<𝑢𝑛−𝑀<𝛿}

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) (𝑢

𝑛
−𝑀)𝑑𝜎

+ ∫

𝜕Ω∩{𝑢𝑛−𝑀≥𝛿}

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) 𝑑𝜎 ≥ 0.

(87)

Then, (85) gives

∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
))𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥

≤ ∫

Ω

𝑓

𝑛
𝐻

𝛿
(𝑢

𝑛
−𝑀)𝑑𝑥,

(88)

which is equivalent to saying

∫

Ω

(𝑇

𝑛
(𝑏 (𝑢

𝑛
)) − 𝑇

𝑛 (
𝑏 (𝑀)))𝐻𝛿

(𝑢

𝑛
−𝑀)𝑑𝑥

≤ ∫

Ω

(𝑓

𝑛
− 𝑇

𝑛 (
𝑏 (𝑀)))𝐻𝛿

(𝑢

𝑛
−𝑀)𝑑𝑥.

(89)

We now let 𝛿 go to 0 in the above inequality to obtain

∫

Ω

(𝑇

𝑛
(𝑏 (𝑢

𝑛
)) − 𝑇

𝑛 (
𝑏 (𝑀)))

+
𝑑𝑥

≤ ∫

Ω

(𝑓

𝑛
− 𝑇

𝑛 (
𝑏 (𝑀))) sign+

0
(𝑢

𝑛
−𝑀)𝑑𝑥.

(90)

Choosing𝑀 = 𝑏

−1

0
(‖𝑓

𝑛
‖

∞
) in the above inequality (since 𝑏 is

surjective), we obtain

∫

Ω

(𝑇

𝑛
(𝑏 (𝑢

𝑛
)) − 𝑇

𝑛
(









𝑓

𝑛







∞
))

+
𝑑𝑥

≤ ∫

Ω

(𝑓

𝑛
− 𝑇

𝑛
(









𝑓

𝑛







∞
))

⋅ sign+
0
(𝑢

𝑛
− 𝑏

−1

0
(









𝑓

𝑛







∞
)) 𝑑𝑥.

(91)

For any 𝑛 > ‖𝑓‖

1
/meas(Ω), we have

∫

Ω

(𝑓

𝑛
− 𝑇

𝑛
(









𝑓

𝑛







∞
)) sign+

0
(𝑢

𝑛
− 𝑏

−1

0
(









𝑓

𝑛







∞
)) 𝑑𝑥

= ∫

Ω

(𝑓

𝑛
−









𝑓

𝑛







∞
) sign+

0
(𝑢

𝑛
− 𝑏

−1

0
(









𝑓

𝑛







∞
)) 𝑑𝑥

≤ 0.

(92)

Then, (91) gives

∫

Ω

(𝑇

𝑛
(𝑏 (𝑢

𝑛
)) −









𝑓

𝑛







∞
)

+
𝑑𝑥 ≤ 0, ∀𝑛 >









𝑓







1

meas (Ω)

.

(93)

Hence, for all 𝑛 > ‖𝑓‖

1
/meas(Ω), we have (𝑇

𝑛
(𝑏(𝑢

𝑛
)) −

‖𝑓

𝑛
‖

∞
)

+
= 0 a.e. inΩ, which implies that

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) ≤









𝑓

𝑛







∞
∀𝑛 >









𝑓







1

meas (Ω)

.

(94)



10 International Journal of Differential Equations

Let us remark that as 𝑢
𝑛
is a weak solution of (39), then (−𝑢

𝑛
)

is a weak solution to the following problem:

(

̃

𝑃

𝑛
)

{

{

{

{

{

{

{

{

{

{

{

−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥

𝑖

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

) + 𝑇

𝑛
(

̃

𝑏 (𝑢

𝑛
)) + 𝜀









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
=

̃

𝑓

𝑛
in Ω,

𝑁

∑

𝑖=1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝑛

𝜕𝑥

𝑖

) 𝜂

𝑖
= −𝛾 (𝑢

𝑛
) on 𝜕Ω,

(95)

where 𝑎
𝑖
(𝑥, 𝜉) = −𝑎

𝑖
(𝑥, −𝜉), ̃𝑏(𝑠) = −𝑏(−𝑠), and ̃

𝑓

𝑛
= −𝑓

𝑛
.

According to (94) we deduce that

𝑇

𝑛
(−𝑏 (𝑢

𝑛
)) ≤









𝑓

𝑛







∞
∀𝑛 >









𝑓







1

meas (Ω)

.

(96)

Therefore

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) ≥ −









𝑓

𝑛







∞
∀𝑛 >









𝑓







1

meas (Ω)

.

(97)

It follows from (94) and (97) that, for all 𝑛 > ‖𝑓‖

1
/meas(Ω),

|𝑇

𝑛
(𝑏(𝑢

𝑛
))| ≤ ‖𝑓

𝑛
‖

∞
which implies









𝑏 (𝑢

𝑛
)









≤









𝑓

𝑛







∞
≤









𝑓







1

meas (Ω)

a.e. in Ω.

(98)

We can now use the Lebesgue dominated convergence
theorem to get

lim
𝑛→+∞

∫

Ω

𝑇

𝑛
(𝑏 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(99)

By using again the Lebesgue dominated convergence theo-
rem, we obtain

∫

𝜕Ω

𝑇

𝑛
(𝛾 (𝑢

𝑛
)) 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝜎

→ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝜎.

(100)

For the third term of (79), let us prove that

lim inf
𝑛→+∞

𝜀 ∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥 ≥ 0

for 𝜀 → 0.

(101)

We have

∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫

Ω

(









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
−









𝜑









𝑝𝑀(𝑥)−2
𝜑)𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

+ ∫

Ω









𝜑









𝑝𝑀(𝑥)−2
𝜑𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥.

(102)

Since the quantity (|𝑢
𝑛
|

𝑝𝑀(𝑥)−2
𝑢

𝑛
− |𝜑|

𝑝𝑀(𝑥)−2
𝜑)𝑇

𝑘
(𝑢

𝑛
− 𝜑) is

nonnegative and since for all 𝑥 in Ω, the application 𝜉 →

|𝜉|

𝑝𝑀(𝑥)−2
𝜉 is continuous, we have

(









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
−









𝜑









𝑝𝑀(𝑥)−2
𝜑)𝑇

𝑘
(𝑢

𝑛
− 𝜑)

→ (|𝑢|

𝑝𝑀(𝑥)−2
𝑢 −









𝜑









𝑝𝑀(𝑥)−2
𝜑)𝑇

𝑘
(𝑢 − 𝜑)

a.e. in Ω

(103)

and by Fatou’s lemma, it follows that

lim inf
𝑛→+∞

∫

Ω

(









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
−









𝜑









𝑝𝑀(𝑥)−2
𝜑)

⋅ 𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥 ≥ ∫

Ω

(|𝑢|

𝑝𝑀(𝑥)−2
𝑢

−









𝜑









𝑝𝑀(𝑥)−2
𝜑)𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(104)

We have

∫

Ω





















𝜑









𝑝𝑀(𝑥)−2
𝜑













𝑑𝑥 = ∫

Ω









𝜑









𝑝𝑀(𝑥)−1
𝜑𝑑𝑥

≤ ∫

Ω

(









𝜑







∞
)

𝑝𝑀(𝑥)−1
𝑑𝑥

≤ ∫

{‖𝜑‖∞≤1}

(









𝜑







∞
)

𝑝𝑀(𝑥)−1
𝑑𝑥

+ ∫

{‖𝜑‖∞>1}

(









𝜑







∞
)

𝑝𝑀(𝑥)−1
𝑑𝑥

≤ meas (Ω)

+ (









𝜑







∞
)

𝑝
+

𝑀
−1meas (Ω)

< +∞.

(105)

Hence, |𝜑|𝑝𝑀(𝑥)−2𝜑 ∈ 𝐿

1
(Ω).

Since𝑇
𝑘
(𝑢

𝑛
−𝜑) converges weakly-∗ to𝑇

𝑘
(𝑢−𝜑) in 𝐿∞(Ω)

and |𝜑|

𝑝𝑀(𝑥)−2
𝜑 ∈ 𝐿

1
(Ω), it follows that

lim
𝑛→+∞

∫

Ω









𝜑









𝑝𝑀(𝑥)−2
𝜑𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

= ∫

Ω









𝜑









𝑝𝑀(𝑥)−2
𝜑𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(106)



International Journal of Differential Equations 11

By adding (104) and (106), we get

lim inf
𝑛→+∞

∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥

≥ ∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(107)

Since

∫

Ω

|𝑢|

𝑝𝑀(𝑥)−2
𝑢𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥 ≤ 𝑘∫

Ω

|𝑢|

𝑝𝑀(𝑥)−1
𝑑𝑥

< +∞,

(108)

thus we get

lim inf
𝑛→+∞

𝜀 ∫

Ω









𝑢

𝑛









𝑝𝑀(𝑥)−2
𝑢

𝑛
𝑇

𝑘
(𝑢

𝑛
− 𝜑) 𝑑𝑥 ≥ 0

for 𝜀 → 0.

(109)

Combining (80), (81), (99), (100), and (109) we obtain
𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝜑) 𝑑𝜎 ≤ ∫

Ω

𝑓𝑇

𝑘
(𝑢 − 𝜑) 𝑑𝑥.

(110)

Then, 𝑢 is an entropy solution of problem (1). That completes
the proof of Theorem 6.

We now state the uniqueness result of entropy solution.

Theorem 12. Assume that (4)–(12) hold true and let 𝑢 be an
entropy solution of (1). Then, 𝑢 is unique.

Proof. The proof is done in two steps.

Step 1 (a priori estimates). We consider the following.

Lemma 13. Assume (4)–(12) and 𝑓 ∈ 𝐿

1
(Ω). Let 𝑢 be an

entropy solution of (1). Then
𝑁

∑

𝑖=1

∫

{|𝑢|≤𝑘}

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 ≤

𝑘

𝐶

3









𝑓







1
(111)

and there exists a positive constant 𝐶
9
such that

‖𝑏 (𝑢)‖1
≤ 𝐶

9
⋅meas (Ω) +









𝑓







1
. (112)

Proof. Let us take 𝜑 = 0 in the entropy inequality (36).

(i) By the fact that ∫
Ω
𝑏(𝑢)𝑇

𝑘
(𝑢)𝑑𝑥 + ∫

𝜕Ω
𝛾(𝑢)𝑇

𝑘
(𝑢)𝑑𝜎 ≥

0, using (7), we get (111).
(ii) Also, using the fact that ∑

𝑁

𝑖=1
∫

Ω
𝑎

𝑖
(𝑥, 𝜕𝑢/𝜕𝑥

𝑖
)(𝜕/

𝜕𝑥

𝑖
)𝑇

𝑘
(𝑢)𝑑𝑥+∫

𝜕Ω
𝛾(𝑢)𝑇

𝑘
(𝑢)𝑑𝜎 ≥ 0, relation (36) gives

∫

Ω

𝑏 (𝑢) 𝑇𝑘 (
𝑢) 𝑑𝑥 ≤ ∫

Ω

𝑓 (𝑥) 𝑇𝑘 (
𝑢) 𝑑𝑥. (113)

By (113), we deduce that

∫

{|𝑢|≤𝑘}

𝑏 (𝑢) 𝑇𝑘 (
𝑢) 𝑑𝑥 + ∫

{|𝑢|>𝑘}

𝑏 (𝑢) 𝑇𝑘 (
𝑢) 𝑑𝑥

≤ 𝑘









𝑓







1

(114)

which imply that

∫

{|𝑢|>𝑘}

𝑏 (𝑢) 𝑇𝑘 (
𝑢) 𝑑𝑥 ≤ 𝑘









𝑓







1
(115)

or

∫

{𝑢>𝑘}

𝑏 (𝑢) 𝑑𝑥 + ∫

{𝑢<−𝑘}

−𝑏 (𝑢) 𝑑𝑥 ≤









𝑓







1
. (116)

Therefore,

∫

{|𝑢|>𝑘}

|𝑏 (𝑢)| 𝑑𝑥 ≤









𝑓







1
. (117)

So, we obtain

∫

Ω

|𝑏 (𝑢)| 𝑑𝑥 = ∫

{|𝑢|≤𝑘}

|𝑏 (𝑢)| 𝑑𝑥 + ∫

{|𝑢|>𝑘}

|𝑏 (𝑢)| 𝑑𝑥

≤ ∫

{|𝑢|≤𝑘}

|𝑏 (𝑢)| 𝑑𝑥 +









𝑓







1
.

(118)

Since the function 𝑏 is nondecreasing, then

∫

{|𝑢|≤𝑘}

|𝑏 (𝑢)| 𝑑𝑥 ≤ max {𝑏 (𝑘) ; |𝑏 (−𝑘)|} ⋅meas (Ω) . (119)

Consequently, there exists a constant𝐶
9
= max{𝑏(𝑘); |𝑏(−𝑘)|}

such that

‖𝑏 (𝑢)‖1
≤ 𝐶

9
⋅meas (Ω) +









𝑓







1
. (120)

Lemma 14. Assume (4)–(12) and let 𝑓 ∈ 𝐿

1
(Ω). If 𝑢 is an

entropy solution of (1), then there exists a constant 𝐷 which
depends on 𝑓 and Ω such that

meas ({|𝑢| > 𝑘}) ≤

𝐷

min {𝑏 (𝑘) , |𝑏 (−𝑘)|}
, ∀𝑘 > 0 (121)

and a constant𝐷
> 0 which depends on 𝑓 and Ω such that

meas({
















𝜕𝑢

𝜕𝑥

𝑖

















> 𝑘}) ≤

𝐷



𝑘

1/(𝑝
−

𝑀
)

, ∀𝑘 ≥ 1.

(122)

Proof. (i) For any 𝑘 > 0, relation (112) gives

∫

{|𝑢|>𝑘}

min {𝑏 (𝑘) , |𝑏 (−𝑘)|} 𝑑𝑥 ≤ ∫

{|𝑢|>𝑘}

|𝑏 (𝑢)| 𝑑𝑥

≤ 𝐶

9
⋅meas (Ω) +









𝑓







1
.

(123)

Therefore,

min {𝑏 (𝑘) , |𝑏 (−𝑘)|} ⋅meas ({|𝑢| > 𝑘})

≤ 𝐶

9
⋅meas (Ω) +









𝑓







1
= 𝐷;

(124)
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that is,

meas ({|𝑢| > 𝑘}) ≤

𝐷

min {𝑏 (𝑘) , |𝑏 (−𝑘)|}
. (125)

(ii) See [7] for the poof of (122).

Lemma 15. Assume (4)–(12) and let 𝑓 ∈ 𝐿

1
(Ω). If 𝑢 is an

entropy solution of (1), then

lim
ℎ→+∞

∫

Ω









𝑓









𝜒

{|𝑢|>ℎ−𝑡}
𝑑𝑥 = 0, (126)

where ℎ > 0 and 𝑡 > 0.

Proof. Since the function 𝑏 is surjective, according to
Lemma 14-(121), we have

lim
ℎ→+∞

meas ({|𝑢| > ℎ − 𝑡}) = 0 (127)

and as𝑓 ∈ 𝐿

1
(Ω), it follows by using the Lebesgue dominated

convergence theorem that

lim
ℎ→+∞

∫

Ω









𝑓









𝜒

{|𝑢|>ℎ−𝑡}
𝑑𝑥 = 0. (128)

Lemma 16. Assume (4)–(12) and let 𝑓 ∈ 𝐿

1
(Ω). If 𝑢 is an

entropy solution of (1), then there exists a positive constant 𝐾
such that

𝜌

𝑝


𝑖
(⋅)
(

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1

𝜒

𝐹
) ≤ 𝐾, ∀𝑖 = 1, . . . , 𝑁,

(129)

where 𝐹 = {ℎ < |𝑢| ≤ ℎ + 𝑘}, ℎ > 0, 𝑘 > 0.

Proof. Let𝜑 = 𝑇

ℎ
(𝑢) as test function in the entropy inequality

(36). We get

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
𝑢)) 𝑑𝜎

≤ ∫

Ω

𝑓𝑇

𝑘
(𝑢 − 𝑇

ℎ (
𝑢)) 𝑑𝑥.

(130)

Thus,

𝑁

∑

𝑖=1

∫

{ℎ<|𝑢|≤ℎ+𝑘}

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕𝑢

𝜕𝑥

𝑖

𝑑𝑥 ≤ 𝑘









𝑓







1
(131)

and using (7), we have

∫

𝐹

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)

𝑑𝑥 ≤

𝑘

𝐶

3









𝑓







1
, ∀𝑖 = 1, . . . , 𝑁.

(132)

Consequently,

𝜌

𝑝


𝑖
(⋅)
(

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1

𝜒

𝐹
) ≤ 𝐾, ∀𝑖 = 1, . . . , 𝑁.

(133)

Step 2 (uniqueness of entropy solution). Let ℎ > 0 and 𝑢, V be
two entropy solutions of (1). We write the entropy inequality
corresponding to the solution 𝑢, with 𝑇

ℎ
(V) as test function,

and to the solution V, with 𝑇

ℎ
(𝑢) as test function to get

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝜎

≤ ∫

Ω

𝑓𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥,

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

Ω

𝑏 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝜎

≤ ∫

Ω

𝑓𝑇

𝑘
(V − 𝑇

ℎ (
𝑢)) 𝑑𝑥.

(134)

Upon addition, we get

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+

𝑁

∑

𝑖=1

∫

Ω

𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+ ∫

Ω

𝑏 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

+ ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝜎

+ ∫

𝜕Ω

𝛾 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝜎

≤ ∫

Ω

𝑓 [𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) + 𝑇

𝑘
(V − 𝑇

ℎ (
𝑢))] 𝑑𝑥.

(135)
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Define the following sets:

𝐸

1 {|
𝑢 − V| ≤ 𝑘; |V| ≤ ℎ} ;

𝐸

2
𝐸

1
∩ {|𝑢| ≤ ℎ} ,

𝐸

3
𝐸

1
∩ {|𝑢| > ℎ} .

(136)

We start with the first integral in (135). We have

𝑁

∑

𝑖=1

∫

{|𝑢−𝑇ℎ(V)|≤𝑘}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

=

𝑁

∑

𝑖=1

∫

{|𝑢−𝑇ℎ(V)|≤𝑘}∩{|V|≤ℎ}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+

𝑁

∑

𝑖=1

∫

{|𝑢−𝑇ℎ(V)|≤𝑘}∩{|V|>ℎ}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

=

𝑁

∑

𝑖=1

∫

{|𝑢−V|≤𝑘}∩{|V|≤ℎ}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕 (𝑢 − V)
𝜕𝑥

𝑖

𝑑𝑥

+

𝑁

∑

𝑖=1

∫

{|𝑢−ℎ sign(V)|≤𝑘}∩{|V|>ℎ}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕𝑢

𝜕𝑥

𝑖

𝑑𝑥

≥

𝑁

∑

𝑖=1

∫

𝐸1

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥 ≥

𝑁

∑

𝑖=1

∫

𝐸2

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥

+

𝑁

∑

𝑖=1

∫

𝐸3

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥.

(137)

Then, we obtain

𝑁

∑

𝑖=1

∫

{|𝑢−𝑇ℎ(V)|≤𝑘}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

≥

𝑁

∑

𝑖=1

∫

𝐸2

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥

−

𝑁

∑

𝑖=1

∫

𝐸3

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕V
𝜕𝑥

𝑖

𝑑𝑥.

(138)

According to (5) and the Hölder type inequality, we have




















𝑁

∑

𝑖=1

∫

𝐸3

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕V
𝜕𝑥

𝑖

𝑑𝑥





















≤ 𝐶

1

𝑁

∑

𝑖=1

∫

𝐸3

(𝑗

𝑖 (
𝑥) +

















𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1

)

















𝜕V
𝜕𝑥

𝑖

















𝑑𝑥

≤ 𝐶

1

𝑁

∑

𝑖=1

(









𝑗

𝑖







𝑝


𝑖
(⋅)
+



































𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1
















𝑝


𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑘}

)

⋅

















𝜕V
𝜕𝑥

𝑖















𝑝𝑖(⋅),{ℎ−𝑘<|V|≤ℎ}
,

(139)

where


































𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1
















𝑝


𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑘}

=



































𝜕𝑢

𝜕𝑥

𝑖

















𝑝𝑖(𝑥)−1
















𝐿
𝑝


𝑖
(⋅)
({ℎ<|𝑢|≤ℎ+𝑘})

.

(140)

Thanks to relation (18) and Lemma 16, the quantity (|𝑗
𝑖
|

𝑝


𝑖
(⋅)
+

||𝜕𝑢/𝜕𝑥

𝑖
|

𝑝𝑖(𝑥)−1
|

𝑝


𝑖
(⋅),{ℎ<|𝑢|≤ℎ+𝑘}

) is finite for all 𝑖 = 1, . . . , 𝑁.
According to Lemma 15, the quantity |𝜕V/

𝜕𝑥

𝑖
|

𝑝𝑖(⋅),{ℎ−𝑘<|V|≤ℎ} converges to zero as ℎ goes to infinity.
Consequently, the last integral of (138) converges to zero as ℎ
goes to infinity. Then,

𝑁

∑

𝑖=1

∫

{|𝑢−𝑇ℎ(V)|≤𝑘}
𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

≥ 𝐼

ℎ
+

𝑁

∑

𝑖=1

∫

𝐸2

𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥,

(141)

with lim
ℎ→+∞

𝐼

ℎ
= 0.

We may adopt the same procedure to treat the second
term in (135) to obtain

𝑁

∑

𝑖=1

∫

{|V−𝑇ℎ(𝑢)|≤𝑘}
𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

𝑇

𝑘
(V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

≥ 𝐽

ℎ
−

𝑁

∑

𝑖=1

∫

𝐸2

𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

)

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥,

(142)

with lim
ℎ→+∞

𝐽

ℎ
= 0.

For the other terms in the left-hand side of (135), we
denote

𝐾

ℎ
= ∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

+ ∫

Ω

𝑏 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝑥,

𝐿

ℎ
= ∫

𝜕Ω

𝛾 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝜎

+ ∫

𝜕Ω

𝛾 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝜎.

(143)
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We have

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) → 𝑏 (𝑢) 𝑇𝑘 (

𝑢 − V)

a.e. in Ω since ℎ → +∞,









𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V))





≤ 𝑘 |𝑏 (𝑢)| ∈ 𝐿

1
(Ω) .

(144)

Then, by the Lebesgue dominated convergence theorem, we
obtain

lim
ℎ→+∞

∫

Ω

𝑏 (𝑢) 𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) 𝑑𝑥

= ∫

Ω

𝑏 (𝑢) 𝑇𝑘 (
𝑢 − V) 𝑑𝑥,

lim
ℎ→+∞

∫

Ω

𝑏 (V) 𝑇𝑘 (V − 𝑇

ℎ (
𝑢)) 𝑑𝑥

= ∫

Ω

𝑏 (V) 𝑇𝑘 (V − 𝑢) 𝑑𝑥.

(145)

Then,

lim
ℎ→+∞

𝐾

ℎ
= ∫

Ω

(𝑏 (𝑢) − 𝑏 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝑥. (146)

In the same way, we get

lim
ℎ→+∞

𝐿

ℎ
= ∫

𝜕Ω

(𝛾 (𝑢) − 𝛾 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝜎. (147)

Now, consider the right-hand side of inequality (135).Wehave

lim
ℎ→+∞

𝑓 (𝑇

𝑘
(𝑢 − 𝑇

ℎ (
V)) + 𝑇

𝑘
(V − 𝑇

ℎ (
𝑢))) = 0

a.e. in Ω,









𝑓 (𝑥) (𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) + 𝑇

𝑘
(V − 𝑇

ℎ (
𝑢)))









≤ 2𝑘









𝑓









∈ 𝐿

1
(Ω) .

(148)

By the Lebesgue dominated convergence theorem, we obtain

lim
ℎ→+∞

∫

Ω

𝑓 (𝑥) (𝑇𝑘
(𝑢 − 𝑇

ℎ (
V)) + 𝑇

𝑘
(V − 𝑇

ℎ (
𝑢))) 𝑑𝑥

= 0.

(149)

After passing to the limit as ℎ goes to +∞ in (135), we get

𝑁

∑

𝑖=1

∫

{|𝑢−V|≤𝑘}
(𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

− 𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

))

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥

+ ∫

Ω

(𝑏 (𝑢) − 𝑏 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝑥 + ∫

𝜕Ω

(𝛾 (𝑢)

− 𝛾 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝜎 ≤ 0.

(150)

Since 𝑏, 𝛾, and 𝑎

𝑖
(𝑥, ⋅) are monotone, then

∫

Ω

(𝑏 (𝑢) − 𝑏 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝑥 = 0, (151)

∫

𝜕Ω

(𝛾 (𝑢) − 𝛾 (V)) 𝑇𝑘 (𝑢 − V) 𝑑𝜎 = 0, (152)

∫

{|𝑢−V|≤𝑘}

𝑁

∑

𝑖=1

(𝑎

𝑖
(𝑥,

𝜕𝑢

𝜕𝑥

𝑖

)

− 𝑎

𝑖
(𝑥,

𝜕V
𝜕𝑥

𝑖

))

𝜕

𝜕𝑥

𝑖

(𝑢 − V) 𝑑𝑥

= 0.

(153)

According to (6), we deduce from (153) that

𝑢 − V = 𝑐 a.e. 𝑥 ∈ Ω, where 𝑐 is a real constant. (154)

For 𝑥 fixed in 𝜕Ω, 𝑠 → |𝑠|

𝑝(𝑥)−2
𝑠 is nondecreasing and

vanishes at 0. Then,

(𝛾 (𝑢 (𝑥)) − 𝛾 (V (𝑥))) 𝑇𝑘 (𝑢 (𝑥) − V (𝑥)) ≥ 0,

∀𝑥 ∈ 𝜕Ω, ∀𝑘 > 0.

(155)

Now, by inequality above and (152), we deduce that for all 𝑘 ∈

N∗ there exists 𝐶
𝑘
⊂ 𝜕Ω with meas(𝐶

𝑘
) = 0 such that, for all

𝑥 ∈ 𝜕Ω \ 𝐶

𝑘
,

(𝛾 (𝑢 (𝑥)) − 𝛾 (V (𝑥))) 𝑇𝑘 (𝑢 (𝑥) − V (𝑥)) = 0. (156)

Therefore,

(𝛾 (𝑢 (𝑥)) − 𝛾 (V (𝑥))) (𝑢 (𝑥) − V (𝑥)) = 0,

∀𝑥 ∈ 𝜕Ω \ ⋃

𝑘∈N∗

𝐶

𝑘
.

(157)

As𝑝− > 1, the following relation is true for any 𝜉, 𝜂 ∈ R, 𝜉 ̸= 𝜂

(cf. [14]):

(









𝜉









𝑝(𝑥)−2
𝜉 −









𝜂









𝑝(𝑥)−2
𝜂) (𝜉 − 𝜂) > 0. (158)

From inequality above and (157), we get

𝑢 − V = 0 a.e. on 𝜕Ω. (159)

Finally as

𝑢 − V = 𝑐 a.e. in Ω,

𝑢 − V = 0 a.e. on 𝜕Ω,

(160)

it follows that

𝑢 = V a.e. in Ω. (161)

That completes the proof of Theorem 12.
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lems for anisotropic quasilinear elliptic equations with variable
exponent,” Journal of Mathematical Analysis and Applications,
vol. 340, no. 1, pp. 687–698, 2008.

[3] M.-M. Boureanu and V. D. Radulescu, “Anisotropic Neumann
problems in Sobolev spaces with variable exponent,” Nonlinear
Analysis, Theory, Methods and Applications, vol. 75, no. 12, pp.
4471–4482, 2012.

[4] B. Kon, S. Ouaro, and S. Traor, “Weak solutions for anisotropic
nonlinear elliptic equations with variable exponents,” Electronic
Journal of Differential Equations, vol. 2009, no. 144, pp. 1–11,
2009.

[5] S. Ouaro, “Well-posedness results for anisotropic nonlinear
elliptic equations with variable exponent and 𝐿

1-data,” Cubo
Journal, vol. 12, no. 1, pp. 133–148, 2010.

[6] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, and
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