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The target of this paper is to establish the bid-ask pricing framework for the American contingent claims against risky assets with
G-asset price systems on the financial market under Knightian uncertainty. First, we prove G-Dooby-Meyer decomposition for
G-supermartingale. Furthermore, we consider bid-ask pricing American contingent claims under Knightian uncertainty, by using
G-Dooby-Meyer decomposition; we construct dynamic superhedge strategies for the optimal stopping problem and prove that the
value functions of the optimal stopping problems are the bid and ask prices of the American contingent claims under Knightian
uncertainty. Finally, we consider a free boundary problem, prove the strong solution existence of the free boundary problem, and
derive that the value function of the optimal stopping problem is equivalent to the strong solution to the free boundary problem.

1. Introduction

The earliest and one of the most penetrating analyses on the
pricing of the American option is by McKean [1]. There the
problem of pricing the American option is transformed into
a Stefan or free boundary problem. Solving the latter,McKean
writes the American option price explicitly up to knowing a
certain function, the optimal stopping boundary.

Bensoussan [2] presents a rigorous treatment for Amer-
ican contingent claims that can be exercised at any time
before or at maturity. He adapts the Black and Scholes
[3] methodology of duplicating the cash flow from such a
claim to this situation by skillfully managing a self-financing
portfolio that contains only the basic instruments of the
market, that is, the stocks and the bond, and that entails
no arbitrage opportunities before exercise. Bensoussan shows
that the pricing of such claims is indeed possible and charac-
terized the exercise time by means of an appropriate optimal
stopping problem. In the study of the latter, Bensoussan
employs the so-called “penalization method,” which forces
rather stringent boundedness and regularity conditions on
the payoff from the contingent claim.

From the theory of optimal stopping, it is well known
that the value process of the optimal stopping problem can
be characterized as the smallest supermartingale majorant to

the stopping reward. Based on the Doob-Meyer decomposi-
tion for the supermartingale, a “martingale” treatment of the
optimal stopping problem is used for handling pricing of the
American option by Karatzas [4] and El Karoui and Karatzas
[5, 6].

The Doob decomposition theorem was proved by and is
named for Doob [7]. The analogous theorem in the contin-
uous time case is the Doob-Meyer decomposition theorem
proved by Meyer in [8, 9]. For the pricing American option
problem in incomplete market, Kramkov [10] constructs the
optional decomposition of supermartingale with respect to
a family of equivalent local martingale measures. He calls
such a representation optional because, in contrast to the
Doob-Meyer decomposition, it generally exists only with an
adapted (optional) process C. He applies this decomposi-
tion to the problem of hedging European and American
style contingent claims in the setting of incomplete security
markets. Using the optional decomposition, Frey [11] con-
siders construction of superreplication strategies via optimal
stopping which is similar to the optimal stopping problem
that arises in the pricing of American-type derivatives on a
family of probability space with equivalent local martingale
measures.

For the realistic financial market, the asset price in the
future is uncertain, the probability distribution of the asset
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price in the future is unknown, which is called Knightian
uncertainty [12]. The probability distribution of the nature
state in the future is unknown; investors have uncertain
subjective belief, which makes their consumption and port-
folio choice decisions uncertain and leads the uncertain
asset price in the future. Pricing contingent claims against
such assets under Knightian uncertainty is an open problem.
Peng in [13, 14] constructs G frame work which is an
analysis tool for nonlinear system and is applied in pricing
European contingent claims under volatility uncertainty
[15, 16].

The target of this paper is to establish the bid-ask pricing
framework for the American contingent claims against risky
assets with G-asset price systems (see [17]) on the financial
market under Knightian uncertainty. Firstly, on sublinear
expectation space, by using potential theory and sublinear
expectation theory we construct G-Doob-Meyer decompo-
sition for G-supermartingale, that is, a right continuous G-
supermartingale could be decomposed as aG-martingale and
a right continuous increasing process and the decomposition
is unique. Second, we define bid and ask prices of the
American contingent claim against the assets with G-asset
price systems and apply the G-Doob-Meyer decomposition
to prove that the bid and ask prices of American contingent
claims under Knightian uncertainty could be described by
the optimal stopping problems. Finally, we present a free
boundary problem, and by using the penalization technique
(see [18]) we derive that if there exists strong supersolution
to the free boundary problem, then the strong solution to the
free boundary problem exists. And by using truncation and
regularization technique, we prove that the strong solution
to the free boundary problem is the value function of
the optimal stopping problem which is corresponding with
pricing problem of the American contingent claim under
Knightian uncertainty.

The rest of this paper is organized as follows. In Section 2,
we give preliminaries for the sublinear expectation theory.
In Section 3 we prove G-Doob-Meyer decomposition for G-
supermartingale. In Section 4, using G-Doob-Meyer decom-
position, we construct dynamic superhedge strategies for the
optimal stopping problem and prove that the solution of the
optimal stopping problem is the bid and ask prices of the
American contingent claims under Knightian uncertainty.
In Section 5, we consider a free boundary problem, prove
the strong solution existence of the free boundary problem,
and derive that the solution of the optimal stopping problem
is equivalent to the strong solution to the free boundary
problem.

2. Preliminaries

LetΩ be a given set and letH be a linear space of real valued
functions defined onΩ containing constants. The spaceH is
also called the space of random variables.

Definition 1. A sublinear expectation 𝐸 is a functional 𝐸 :

H → 𝑅 satisfying

(i) monotonicity:

𝐸 [𝑋] ≥ 𝐸 [𝑌] if 𝑋 ≥ 𝑌, (1)

(ii) constant preserving:

𝐸 [𝑐] = 𝑐 for 𝑐 ∈ 𝑅, (2)

(iii) subadditivity: for each𝑋,𝑌 ∈ H,

𝐸 [𝑋 + 𝑌] ≤ 𝐸 [𝑋] + 𝐸 [𝑌] , (3)

(iv) positive homogeneity:

𝐸 [𝜆𝑋] = 𝜆𝐸 [𝑋] for 𝜆 ≥ 0. (4)

The triple (Ω,H, 𝐸) is called a sublinear expectation space.

In this section, we mainly consider the following type of
sublinear expectation spaces (Ω,H, 𝐸): if 𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
∈

H then 𝜑(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑛
) ∈ H for 𝜑 ∈ 𝐶

𝑏,Lip(𝑅
𝑛
), where

𝐶
𝑏,Lip(𝑅

𝑛
) denotes the linear space of functions 𝜙 satisfying

󵄨󵄨󵄨󵄨𝜙 (𝑥) − 𝜙 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐶 (1 + |𝑥|

𝑚
+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨

𝑚

)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

for 𝑥, 𝑦 ∈ 𝑅, some 𝐶 > 0, 𝑚 ∈ 𝑁 is depending on 𝜙.

(5)

For each fixed 𝑝 ≥ 1, we takeH𝑝

0
= {𝑋 ∈ H, 𝐸[|𝑋|

𝑝
] =

0} as our null space and denote H/H
𝑝

0
as the quotient

space. We set ‖𝑋‖
𝑝
:= (𝐸[|𝑋|

𝑝
])
1/𝑝 and extend H/H

𝑝

0
to

its completion Ĥ
𝑝
under ‖ ⋅ ‖

𝑝
. Under ‖ ⋅ ‖

𝑝
the sublinear

expectation 𝐸 can be continuously extended to the Banach
space (Ĥ

𝑝
, ‖ ⋅ ‖

𝑝
). Without loss generality, we denote the

Banach space (Ĥ
𝑝
, ‖ ⋅ ‖

𝑝
) as 𝐿𝑝

𝐺
(Ω,H, 𝐸). For the G-frame

work, we refer to [13, 14].
In this paper we assume that 𝜇, 𝜇, 𝜎, and 𝜎 are positive

constants such that 𝜇 ≤ 𝜇 and 𝜎 ≤ 𝜎.

Definition 2. Let 𝑋
1
and 𝑋

2
be two random variables in a

sublinear expectation space (Ω,H, 𝐸); 𝑋
1
and 𝑋

2
are called

identically distributed, denoted by𝑋
1

𝑑

= 𝑋
2
if

𝐸 [𝜙 (𝑋
1
)] = 𝐸 [𝜙 (𝑋

2
)] ∀𝜙 ∈ 𝐶

𝑏,Lip (𝑅
𝑛
) . (6)

Definition 3. In a sublinear expectation space (Ω,H, 𝐸), a
random variable 𝑌 is said to be independent of another
random variable𝑋, if

𝐸 [𝜙 (𝑋, 𝑌)] = 𝐸 [𝐸 [𝜙 (𝑥, 𝑌)]
󵄨󵄨󵄨󵄨󵄨𝑥=𝑋

] . (7)

Definition 4 (G-normal distribution). A random variable 𝑋
on a sublinear expectation space (Ω,H, 𝐸) is calledG-normal
distributed if

𝑎𝑋 + 𝑏𝑋 = √𝑎2 + 𝑏2𝑋 for 𝑎, 𝑏 ≥ 0, (8)

where𝑋 is an independent copy of𝑋.
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We denote by 𝑆(𝑑) the collection of all 𝑑 × 𝑑 sym-
metric matrices. Let 𝑋 be G-normal distributed random
vectors on (Ω,H, 𝐸); we define the following sublinear
function:

𝐺 (𝐴) :=
1

2
𝐸 [⟨𝐴𝑋,𝑋⟩] , 𝐴 ∈ 𝑆 (𝑑) . (9)

Remark 5. For a random variable 𝑋 on the sublinear space
(Ω,H, 𝐸), there are four typical parameters to character𝑋:

𝜇
𝑋
= 𝐸𝑋,

𝜇
𝑋
= −𝐸 [−𝑋] ,

𝜎
2

𝑋
= 𝐸𝑋

2
,

𝜎
2

𝑋
= −𝐸 [−𝑋

2
] ,

(10)

where [𝜇
𝑋
, 𝜇

𝑋
] and [𝜎2

𝑋
, 𝜎

2

𝑋
] describe the uncertainty of the

mean and the variance of𝑋, respectively.
It is easy to check that if𝑋 is G-normal distributed, then

𝜇
𝑋
= 𝐸𝑋 = 𝜇

𝑋
= −𝐸 [−𝑋] = 0, (11)

and we denote the G-normal distribution as𝑁({0}, [𝜎2, 𝜎2]).
If𝑋 is maximally distributed, then

𝜎
2

𝑋
= 𝐸𝑋

2
= 𝜎

2

𝑋
= −𝐸 [−𝑋

2
] = 0, (12)

and we denote the maximal distribution (see [14]) as
𝑁([𝜇, 𝜇], {0}).

Let F as Borel field subsets of Ω. We are given a family
{F

𝑡
}
𝑡∈𝑅
+

of Borel subfields ofF, such that

F
𝑠
⊂ F

𝑡
, 𝑠 < 𝑡. (13)

Definition 6. We call (𝑋
𝑡
)
𝑡∈𝑅

a 𝑑-dimensional stochastic pro-
cess on a sublinear expectation space (Ω,H, 𝐸,F, {F}

𝑡∈𝑅
+

),
if, for each 𝑡 ∈ 𝑅, 𝑋

𝑡
is a 𝑑-dimensional random vector in

H.

Definition 7. Let (𝑋
𝑡
)
𝑡∈𝑅

and (𝑌
𝑡
)
𝑡∈𝑅

be 𝑑-dimensional
stochastic processes defined on a sublinear expectation space
(Ω,H, 𝐸,F, {F}

𝑡∈𝑅
+

), for each 𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) ∈ T;

𝐹
𝑋

𝑡
[𝜑] := 𝐸 [𝜑 (𝑋

𝑡
)] , ∀𝜑 ∈ 𝐶

𝑙,Lip (𝑅
𝑛×𝑑

) (14)

is called the finite dimensional distribution of𝑋
𝑡
.𝑋 and𝑌 are

said to be identically distributed, that is,𝑋 𝑑

= 𝑌, if

𝐹
𝑋

𝑡
[𝜑] = 𝐹

𝑌

𝑡
[𝜑] , ∀𝑡 ∈ T, ∀𝜑 ∈ 𝐶

𝑙,Lip (𝑅
𝑛×𝑑

) , (15)

whereT := {𝑡 = (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) : ∀𝑛 ∈ 𝑁, 𝑡

𝑖
∈ 𝑅, 𝑡

𝑖
̸= 𝑡
𝑗
, 0 ≤

𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗}.

Definition 8. A process (𝐵
𝑡
)
𝑡≥0

on the sublinear expectation
space (Ω,H, 𝐸,F, {F}

𝑡∈𝑅
+

) is called a G-Brownianmotion if
the following properties are satisfied:

(i) 𝐵
0
(𝜔) = 0;

(ii) For each 𝑡, 𝑠 > 0, the increment 𝐵
𝑡+𝑠

− 𝐵
𝑡
is G-normal

distributed by𝑁({0}, [𝑠𝜎2, 𝑠𝜎2]) and is independent of
(𝐵

𝑡
1

, 𝐵
𝑡
2

, . . . , 𝐵
𝑡
𝑛

), for each 𝑛 ∈ 𝑁 and 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
∈

(0, 𝑡].

From now on, the stochastic processes we will consider
in the rest of this paper are all in the sublinear space
(Ω,H, 𝐸,F, {F}

𝑡∈𝑅
+

).

3. G-Doob-Meyer Decomposition for
G-Supermartingale

Definition 9. A G-supermartingale (resp., G-submartingale)
is a real valued process {𝑋

𝑡
}, well adapted to the F

𝑡
family,

such that

(i) 𝐸 [󵄨󵄨󵄨󵄨𝑋𝑡

󵄨󵄨󵄨󵄨] < ∞ ∀𝑡 ∈ 𝑅
+
,

(ii) 𝐸 [𝑋
𝑡+𝑠

| F
𝑠
] ≤ (resp.≥)𝑋

𝑠

∀𝑡 ∈ 𝑅
+
, ∀𝑠 ∈ 𝑅

+
.

(16)

If equality holds in (ii), the process is a G-martingale.

We will consider right continuous G-supermartingales;
then if {𝑋

𝑡
} is right continuousG-supermartingale, (ii) in (16)

holds withF
𝑡
replaced byF

𝑡+
.

Definition 10. Let 𝐴 be an event inF
𝑡+
; one defines capacity

of 𝐴 as

𝑐 (𝐴) = 𝐸 [𝐼
𝐴
] , (17)

where 𝐼
𝐴
is indicator function of event 𝐴.

Definition 11. Process 𝑋
𝑡
and 𝑌

𝑡
are adapted to the filtration

F
𝑡
. One calls 𝑌

𝑡
equivalent to𝑋

𝑡
, if and only if

𝑐 (𝑌
𝑡
̸= 𝑋

𝑡
) = 0. (18)

For a right continuous G-supermartingale {𝑋
𝑡
} with

𝐸[𝑋
𝑡
] is right continuous function of 𝑡; we can find a right

continuous G-supermartingale {𝑌
𝑡
} equivalent to {𝑋

𝑡
} by

defining
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𝑌
𝑡
(𝜔) :=

{

{

{

𝑋
𝑡+
(𝜔) = lim

𝑠↓𝑡

𝑋
𝑠
(𝜔) , for any 𝜔 ∈ Ω such that the limit exits

0, otherwise.
(19)

Without loss generality, we denoteF
𝑡
= F

𝑡+
.

Definition 12. For a positive constant𝑇, one defines stop time
𝜏 in [0, 𝑇] as a positive, random variable 𝜏(𝜔) such that {𝜏 ≤
𝑇} ∈ F

𝑇
.

In [19, 20], authors discuss the definition of stop time and
its related theory in G frame work.

Let {𝑋
𝑡
} be a right continuousG-supermartingale, denote

𝑋
∞
as the last element of the process𝑋

𝑡
, and then the process

{𝑋
𝑡
}
0≤𝑡≤∞

is a G-supermartingale.

Definition 13. A right continuous increasing process is a well
adapted stochastic process {𝐴

𝑡
} such that

(i) 𝐴
0
= 0 a.s,

(ii) for almost every 𝜔, the function 𝑡 → 𝐴
𝑡
(𝜔) is posi-

tive, increasing, and right continuous. Let 𝐴
∞
(𝜔) :=

lim
𝑡→∞

𝐴
𝑡
(𝜔); one will say that the right continuous

increasing process is integrable if 𝐸[𝐴
∞
] < ∞.

Definition 14. An increasing process 𝐴 is called natural if for
every bounded, right continuousG-martingale {𝑀

𝑡
}
0≤𝑡<∞

we
have

𝐸[∫
(0,𝑡]

𝑀
𝑠
𝑑𝐴

𝑠
] = 𝐸[∫

(0,𝑡]

𝑀
𝑠−
𝑑𝐴

𝑠
] ,

for every 0 < 𝑡 < ∞.

(20)

Lemma 15. If 𝐴 is an increasing process and {𝑀
𝑡
}
0≤𝑡<∞

is
bounded, right continuous G-martingale, then

𝐸 [𝑀
𝑡
𝐴
𝑡
] = 𝐸 [∫

(0,𝑡]

𝑀
𝑠
𝑑𝐴

𝑠
] . (21)

In particular, condition (20) in Definition 14 is equivalent to

𝐸 [𝑀
𝑡
𝐴
𝑡
] = 𝐸 [∫

(0,𝑡]

𝑀
𝑠−
𝑑𝐴

𝑠
] . (22)

Proof. For a partition Π = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑛
} of [0, 𝑡], with 0 =

𝑡
0
≤ 𝑡

1
≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑛
= 𝑡, we define

𝑀
Π

𝑠
=

𝑛

∑

𝑘=1

𝑀
𝑡
𝑛

𝐼
(𝑡
𝑘−1
,𝑡
𝑘
]
(𝑠) . (23)

Since𝑀 is G-martingale

𝐸[∫
(0,𝑡]

𝑀
Π

𝑠
𝑑𝐴

𝑠
] = 𝐸[

𝑛

∑

𝑘=1

𝑀
𝑡
𝑘

(𝐴
𝑡
𝑘

− 𝐴
𝑡
𝑘−1

)]

= 𝐸[

𝑛

∑

𝑘=1

𝑀
𝑡
𝑘

𝐴
𝑡
𝑘

−

𝑛−1

∑

𝑘=1

𝑀
𝑡
𝑘+1

𝐴
𝑡
𝑘

]

= 𝐸[𝑀
𝑡
𝐴
𝑡
−

𝑛−1

∑

𝑘=1

(𝑀
𝑡
𝑘+1

−𝑀
𝑡
𝑘

)𝐴
𝑡
𝑘

]

= 𝐸[𝑀
𝑡
𝐴
𝑡
−

𝑛−1

∑

𝑘=1

(𝑀
𝑡
𝑘+1

−𝑀
𝑡
𝑘

)𝐴
𝑡
𝑘

]

= 𝐸 [𝑀
𝑡
𝐴
𝑡
] ,

(24)

and we finish the proof of the Lemma.

Definition 16. Apositive right continuousG-supermartingale
{𝑌
𝑡
} with lim

𝑡→∞
𝑌
𝑡
(𝜔) = 0 is called a potential.

Definition 17. For 𝑎 ∈ [0,∞], a process {𝑋
𝑡
, 𝑡 ∈ [0, 𝑎]} is said

to be uniformly integrable on [0, 𝑎] if

sup
𝑡∈[0,𝑎]

𝐸 [
󵄨󵄨󵄨󵄨𝑋𝑡

󵄨󵄨󵄨󵄨 𝐼|𝑋𝑡|>𝑥
] 󳨀→ 0, as 𝑥 󳨀→ 0. (25)

Definition 18. Let 𝑎 ∈ [0,∞], and let {𝑋
𝑡
} be a right

continuous process; we will say that it belongs to the class
(GD) on this interval, if all the random variables 𝑋

𝑇
are

uniformly integrable and 𝑇 is stop time bounded by 𝑎. If {𝑋
𝑡
}

belongs to the class (GD) on every interval [0, 𝑎], 𝑎 < ∞, it
will be said to belong locally to the class (GD).

If {𝐴
𝑡
} is an integrable right continuous, increasing

process, then process {−𝐴
𝑡
} is a negative G-supermartingale,

and {𝐸[𝐴
∞
| F

𝑡
]−𝐴

𝑡
} is a potential of the class (GD), which

we will call the potential generated by {𝐴
𝑡
}.

Proposition 19. (1) Any right continuous G-martingale {𝑋
𝑡
}

belongs locally to class (GD).
(2) Any right continuous G-supermartingale {𝑋

𝑡
}, which is

bounded from above, belongs locally to class (GD).
(3) Any right continuous supermartingale {𝑋

𝑡
}, which

belongs locally to class (GD) and is uniformly integrable,
belongs to class (GD).

Proof. (1) If 𝑎 < ∞ and 𝑇 is a stop time, 𝑇 ≤ 𝑎, then G-
martingale process {𝑋

𝑡
} has𝑋

𝑇
= 𝐸[𝑋

𝑎
| F

𝑇
]. Hence

𝐸 [
󵄨󵄨󵄨󵄨𝑋𝑇

󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑇|>𝑛}
] ≤ 𝐸 [

󵄨󵄨󵄨󵄨𝑋𝑎

󵄨󵄨󵄨󵄨 𝐼{|𝑋𝑇|>𝑛}
] . (26)



Journal of Applied Mathematics 5

As 𝑛 ⋅ 𝑐(|𝑋
𝑇
| > 𝑛) ≤ 𝐸[|𝑋

𝑇
|] ≤ 𝐸[|𝑋

𝑎
|], we have

𝑐(|𝑋
𝑇
| > 𝑛) → 0 as 𝑛 → ∞; then 𝐸[|𝑋

𝑎
|𝐼
{|𝑋
𝑇
|>𝑛}

] ≤

(𝐸[|𝑋
𝑑
|
2
])
1/2
(𝑐(𝐼

{|𝑋
𝑇
|>𝑛}

))
1/2

→ 0 as 𝑛 → ∞, from which
we prove (1).

(2) If 𝑎 < ∞ and 𝑇 is a stop time, 𝑇 ≤ 𝑎, then G-super-
martingale process {𝑋

𝑡
} has 𝑋

𝑇
≥ 𝐸[𝑋

𝑎
| F

𝑇
]. Suppose that

{𝑋
𝑡
} is negative; then

𝐸 [−𝑋
𝑇
𝐼
{𝑋
𝑇
<−𝑛}

] ≤ 𝐸 [−𝑋
𝑎
𝐼
{𝑋
𝑇
<−𝑛}

] ; (27)

we complete the proof of (2) by using similar argument in
proof (1).

(3) {𝑋
𝑡
} is uniformly integrable; we set

𝑋
𝑡
= 𝐸 [𝑋

∞
| F

𝑡
] + (𝑋

𝑡
− 𝐸 [𝑋

∞
| F

𝑡
]) . (28)

The first part on the right-hand of the above equation
𝐸[𝑋

∞
| F

𝑡
] is a G-martingale and equivalent to a right

continuous process, and from (1) we know that it belongs to
class (GD). We denote the second part in the above equation
as {𝑌

𝑡
}; it is a potential, that is, a positive right continuous

G-supermartingale, and lim
𝑡→∞

𝑌
𝑡
(𝜔) = 0 a.s. Next we will

prove that {𝑌
𝑡
} belongs to class (GD). Since both inf(𝑇, 𝑎) and

sup(𝑇, 𝑎) are stop times

𝐸 [𝑌
𝑇
𝐼
{𝑌
𝑇
>𝑛}
] ≤ 𝐸 [𝑌

𝑇
𝐼
{𝑇≤𝑎, 𝑌

𝑇
>𝑛}
] + 𝐸 [𝑌

𝑇
𝐼
{𝑇>𝑎}

]

≤ 𝐸 [𝑌
𝑇
𝐼
{𝑇≤𝑎, 𝑌

𝑇
>𝑛}
] + 𝐸 [𝑌

𝑎
] .

(29)

Consider that lim
𝑎→∞

𝐸[𝑌
𝑎
] = 0 and {𝑌

𝑡
} locally belongs to

(GD); that is, lim
𝑛→∞

𝐸[𝑌
𝑇
𝐼
{𝑇≤𝑎, 𝑌

𝑇
>𝑛}
] = 0, which prove that

lim
𝑛→∞

𝐸 [𝑌
𝑇
𝐼
{𝑌
𝑇
>𝑛}
] = 0. (30)

We complete the proof.

Lemma 20. Let {𝑋
𝑡
} be a right continuous G-supermartingale

and {𝑋
𝑛

𝑡
} a sequence of decomposed right continuous G-

supermartingale:

𝑋
𝑛

𝑡
= 𝑀

𝑛

𝑡
− 𝐴

𝑛

𝑡
, (31)

where {𝑀
𝑛

𝑡
} is G-martingale and {𝐴

𝑛

𝑡
} is right continuous

increasing process. Suppose that, for each 𝑡, 𝑋𝑛

𝑡
converge to

𝑋
𝑡
in the 𝐿1

𝐺
(Ω) topology, and 𝐴

𝑛

𝑡
are uniformly integrable

in 𝑛. Then the decomposition problem is solvable for the
G-supermartingale {𝑋

𝑡
}; more precisely, there are a right

continuous increasing process {𝐴
𝑡
} and a G-martingale {𝑀

𝑡
},

such that 𝑋
𝑡
= 𝑀

𝑡
− 𝐴

𝑡
.

Proof. We denote by𝑤 the weak topology𝑤(𝐿1
𝐺
(Ω), 𝐿

∞

𝐺
(Ω));

a sequence of integrable random variables 𝑓
𝑛
converges to

a random variable 𝑓 in the 𝑤-topology, if and only if 𝑓 is
integrable, and

lim
𝑛→∞

𝐸 [𝑓
𝑛
𝑔] = 𝐸 [𝑓𝑔] , ∀𝑔 ∈ 𝐿

∞

𝐺
(Ω) . (32)

Since 𝐴𝑛
𝑡
are uniformly integrable in 𝑛, by the properties of

the sublinear expectation 𝐸[⋅] there exists a 𝑤-convergent

subsequence𝐴𝑛𝑘
𝑡
converging in the𝑤-topology to the random

variables 𝐴
󸀠

𝑡
, for all rational values of 𝑡. To simplify the

notations, we will use𝐴𝑛
𝑡
converging to𝐴󸀠

𝑡
in the𝑤-topology

for all rational values of 𝑡. An integrable random variable 𝑓 is
F

𝑡
-measurable if and only if it is orthogonal to all bounded

random variables 𝑔 such that 𝐸[𝑔 | F
𝑡
] = 0; it follows that

𝐴
󸀠

𝑡
isF

𝑡
-measurable. For 𝑠 < 𝑡, 𝑠 and 𝑡 rational,

𝐸 [(𝐴
𝑛

𝑡
− 𝐴

𝑛

𝑠
) 𝐼

𝐵
] ≥ 0, (33)

where 𝐵 denote anyF set.
As 𝑋𝑛

𝑡
converge to 𝑋

𝑡
in 𝐿

1

𝐺
(Ω) topology, which is in

a stronger topology than 𝑤, the 𝑀
𝑛

𝑡
converge to random

variables 𝑀
󸀠

𝑡
for 𝑡 rational, and the process {𝑀

󸀠

𝑡
} is G-

martingale; then there is a right continuous G-martingale
{𝑀

𝑡
}, defined for all values of 𝑡, such that 𝑐(𝑀

𝑡
̸= 𝑀

󸀠

𝑡
) = 0

for each rational 𝑡. We define 𝐴
𝑡
= 𝑋

𝑡
+ 𝑀

𝑡
; {𝐴

𝑡
} is a right

continuous increasing process or at least becomes so after
a modification on a set of measure zero. We complete the
proof.

Lemma 21. Let {𝑋
𝑡
} be a potential and belong to class (GD).

One considers the measurable, positive, and well-adapted
processes𝐻 = {𝐻

𝑡
} with the property that the right continuous

increasing processes

𝐴 (𝐻) = {𝐴
𝑡
(𝐻, 𝜔)} = {∫

𝑡

0

𝐻
𝑠
(𝜔) 𝑑𝑠} (34)

are integrable, and the potentials 𝑌(𝐻) = {𝑌
𝑡
(𝐻, 𝜔)} they

generate are majorized by 𝑋
𝑡
. Then, for each 𝑡, the random

variables 𝐴
𝑡
(𝐻) of all such processes 𝐴(𝐻) are uniformly

integrable.

Proof. It is sufficient to prove that the 𝐴
∞
(𝐻) are uniformly

integrable.
(1) First we assume that 𝑋

𝑡
is bounded by some positive

constant 𝐶; then 𝐸[𝐴
2

∞
(𝐻)] ≤ 2𝐶

2, and the uniform
integrability follows.

We have that

𝐴
2

∞
(𝐻, 𝜔)

= 2∫

∞

0

[𝐴
∞
(𝐻, 𝜔) − 𝐴

𝑢
(𝐻, 𝜔)] 𝑑𝐴

𝑢
(𝐻, 𝜔)

= 2∫

∞

0

[𝐴
∞
(𝐻, 𝜔) − 𝐴

𝑢
(𝐻, 𝜔)]𝐻

𝑢
(𝜔) 𝑑𝑢.

(35)

By using the subadditive property of the sublinear expecta-
tion 𝐸, we derive that

𝐸 [𝐴
2

∞
(𝐻, 𝜔)] = 𝐸 [𝐸 [𝐴

2

∞
(𝐻, 𝜔) | F

𝑡
]]

≤ 2𝐸 [∫

∞

0

𝐻
𝑢
𝐸 [𝐴

∞
(𝐻, 𝜔) − 𝐴

𝑢
(𝐻, 𝜔) | F

𝑢
] 𝑑𝑢]

= 2𝐸 [∫

∞

0

𝐻
𝑢
𝑌
𝑢
(𝐻) 𝑑𝑢] ≤ 2𝐶𝐸[∫

∞

0

𝐻
𝑢
𝑑𝑢]

= 2𝐶𝐸 [𝑌
0
(𝐻)] ≤ 2𝐶

2
.

(36)
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(2) In order to prove the general case, it will be enough
to prove that any 𝐻 such that 𝑌(𝐻) is majorized by {𝑋

𝑡
}

is equal to a sum 𝐻
𝑐
+ 𝐻

𝑐
, where (i) 𝐴(𝐻𝑐

) generates a
potential bounded by 𝑐, and (ii) 𝐸[𝐴

∞
[𝐻

𝑐
]] is smaller than

some number 𝜀
𝑐
, independent of 𝐻, such that 𝜀

𝑐
→ 0 as

𝑐 → 0. Define

𝐻
𝑐

𝑡
(𝜔) = 𝐻

𝑡
(𝜔) 𝐼

{𝑋
𝑡
(𝜔)∈[0,𝑐]}

,

𝐻
𝑐𝑡
= 𝐻

𝑡
− 𝐻

𝑐

𝑡
.

(37)

Set

𝑇
𝑐
(𝜔) = inf {𝑡 : such that 𝑋

𝑡
(𝜔) ≥ 𝑐} , (38)

as 𝑐 goes to infinity lim
𝑐→∞

𝑇
𝑐
(𝜔) = ∞; therefore 𝑋

𝑇
𝑐 → 0,

and class (GD) property implies that 𝐸[𝑋
𝑇
𝑐] → 0. 𝑇𝑐 is a

stop time, and 𝐼
{𝑋
𝑡
(𝜔)∈[0,𝑐]}

= 1 before time 𝑇𝑐. Hence

𝐸 [𝐴
∞
(𝐻

𝑐
)] = 𝐸 [∫

∞

0

𝐻
𝑢
(1 − 𝐼

{𝑋
𝑢
(𝜔)∈[0,𝑐]}

)] 𝑑𝑢

≤ 𝐸[∫

∞

0

𝐻
𝑢
𝑑𝑢]

= 𝐸 [𝐴
∞
(𝐻) − 𝐴

𝑇
𝑐 (𝐻)]

= 𝐸 [𝐸 [𝐴
∞
(𝐻) − 𝐴

𝑇
𝑐 (𝐻) | F

𝑡
]]

= 𝐸 [𝑌
𝑇
𝑐 (𝐻)] ≤ 𝐸 [𝑋

𝑇
𝑐 (𝐻)] ≤ 𝜀

𝑐
,

for large enough 𝑐,

(39)

fromwhich we prove (ii).We will prove (i); first we prove that
𝑌(𝐻

𝑐
) is bounded by 𝑐:

𝑌
𝑡
(𝐻

𝑐
) = 𝐸 [𝐴

∞
(𝐻

𝑐
) − 𝐴

𝑡
(𝐻

𝑐
) | F

𝑡
]

= 𝐸 [∫

∞

𝑡

𝐻
𝑢
𝐼
{𝑋
𝑢
(𝜔)∈[0,𝑐]}

𝑑𝑢 | F
𝑡
]

≤ 𝐸[∫

∞

𝑆
𝑐

𝐻
𝑢
𝐼
{𝑋
𝑢
(𝜔)∈[0,𝑐]}

𝑑𝑢 | F
𝑡
]

= 𝐸[𝐸[∫

∞

𝑆
𝑐

𝐻
𝑢
𝐼
{𝑋
𝑢
(𝜔)∈[0,𝑐]}

𝑑𝑢 | F
𝑆
𝑐] | F

𝑡
]

= 𝐸 [𝑌
𝑆
𝑐 | F

𝑡
] ≤ 𝑐,

(40)

where we set

𝑆
𝑐
(𝜔) = inf {𝑡 : such that 𝑋

𝑡
(𝜔) ≤ 𝑐} (41)

and use

∫

𝑆
𝑐
(𝜔)

𝑡

𝐻
𝑢
𝐼
{𝑋
𝑢
(𝜔)∈[0,𝑐]}

𝑑𝑢 = 0. (42)

Inequality (40) holds for each 𝑡, for every rational 𝑡 and
for every 𝑡 in consideration of the right continuity, which
complete the proof.

Lemma 22. Let {𝑋
𝑡
} be a potential and belong to class (GD),

𝑘 is a positive number, define 𝑌
𝑡
= 𝐸[𝑋

𝑡+𝑘
| F

𝑡
], and then {𝑌

𝑡
}

is a G-supermartingale. Denote by {𝑝
𝑘
𝑋
𝑡
} a right continuous

version of {𝑌
𝑡
}; then {𝑝

𝑘
𝑋
𝑡
} is potential.

Use the same notations as in Lemma 21. Let 𝑘 be a positive
number, and 𝐻

𝑡,𝑘
(𝜔) = (𝑋

𝑡
(𝜔) − 𝑝

𝑘
𝑋
𝑡
(𝜔))/𝑘. The process

𝐻
𝑘
= {𝐻

𝑡,𝑘
} verifies the assumptions of Lemma 21, and their

potentials increase to {𝑋
𝑡
} as 𝑘 → 0.

Proof. If 𝑡 < 𝑢

𝐸 [
1

𝑘
(∫

𝑢

0

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 − ∫

𝑡

0

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠) |

F
𝑡
] = 𝐸[

1

𝑘
∫

𝑢

𝑡

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 | F

𝑡
] .

(43)

For 𝑠 ≥ 𝑡, 𝐸[𝑝
𝑘
𝑋
𝑠
| F

𝑡
] = 𝐸[𝐸[𝑋

𝑠+𝑘
| F

𝑠
] | F

𝑡
] = 𝐸[𝑋

𝑠+𝑘
|

F
𝑡
].We have that

𝐸[
1

𝑘
∫

𝑢

𝑡

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 | F

𝑡
]

≥ 𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
]

− 𝐸[
1

𝑘
∫

𝑢+𝑘

𝑢

𝑋
𝑠
𝑑𝑠 | F

𝑡
] ,

(44)

and, by the subadditive property of the sublinear expectation
𝐸, we derive that

𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
] − 𝐸[

1

𝑘
∫

𝑢+𝑘

𝑢

𝑋
𝑠
𝑑𝑠 | F

𝑡
]

≥ 𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
] −

1

𝑘
∫

𝑢+𝑘

𝑢

𝐸 [𝑋
𝑠
| F

𝑡
] 𝑑𝑠

≥ 𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
] − 𝑋

𝑡

≥ −𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

(𝑋
𝑡
− 𝑋

𝑠
) 𝑑𝑠 | F

𝑡
]

≥ −
1

𝑘
∫

𝑡+𝑘

𝑡

𝐸 [𝑋
𝑡
− 𝑋

𝑠
| F

𝑡
] 𝑑𝑠 ≥ 0.

(45)

Hence, we derive that for any 𝑢, 𝑡 such that 𝑢 > 𝑡

𝐸 [
1

𝑘
∫

𝑢

𝑡

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 | F

𝑡
] ≥ 0. (46)

If there exits 𝑠
0
≥ 0 such that (1/𝑘)[𝑋

𝑠
0

−𝑝
𝑘
𝑋
𝑠
0

] < 0, the right
continuous of {𝑋

𝑡
} implies that there exists 𝛿 > 0 such that

(1/𝑘)[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] < 0 on the interval [𝑠

0
, 𝑠
0
+ 𝛿]. Thus

𝐸[
1

𝑘
∫

𝑠
0
+𝛿

𝑠
0

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 | F

𝑠
0

] < 0, (47)

which is contradiction; we prove that (𝑋
𝑡
(𝜔) − 𝑝

𝑘
𝑋
𝑡
(𝜔))/𝑘 is

a positive, measurable, and well-adapted process.
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Since {𝑋
𝑡
} is right continuous G-supermartingale

lim
𝑠↓𝑡

𝑋
𝑠
= 𝑋

𝑡
,

lim
𝑘↓0

𝑌
𝑡
(𝐻

𝑘
) = lim

𝑘↓0

𝐸[
1

𝑘
∫

∞

𝑡

[𝑋
𝑠
− 𝑝

𝑘
𝑋
𝑠
] 𝑑𝑠 | F

𝑡
]

= lim
𝑘↓0

𝐸[
1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
]

= 𝐸[lim
𝑘↓0

1

𝑘
∫

𝑡+𝑘

𝑡

𝑋
𝑠
𝑑𝑠 | F

𝑡
] = 𝑋

𝑡
;

(48)

we finish the proof.

From Lemmas 20, 21, and 22 we can prove the following
theorem.

Theorem23. Apotential {𝑋
𝑡
} belongs to class (GD) if and only

if it is generated by some integrable right continuous increasing
process.

Theorem 24 (G-Doob-Meyer’s decomposition). (1) {𝑋
𝑡
} is a

right continuous G-supermartingale if and only if it belongs
to class (GD) on every finite interval. More precisely, {𝑋

𝑡
} is

then equal to the difference of a G-martingal 𝑀
𝑡
and a right

continuous increasing process 𝐴
𝑡
:

𝑋
𝑡
= 𝑀

𝑡
− 𝐴

𝑡
. (49)

(2) If the right continuous increasing process 𝐴 is natural,
the decomposition is unique.

Proof. (1) The necessity is obvious. We will prove the suffi-
ciency; we choose a positive number 𝑎 and define

𝑋
󸀠

𝑡
(𝜔) := 𝑋

𝑡
(𝜔) , 𝑡 ∈ [0, 𝑎] ,

𝑋
󸀠

𝑡
(𝜔) := 𝑋

𝑎
(𝜔) , 𝑡 > 𝑎;

(50)

the {𝑋
󸀠

𝑡
} is a right continuous G-supermartingale of the

class (GD), and by Theorem 23 there exists the following
decomposition

𝑋
󸀠

𝑡
= 𝑀

󸀠

𝑡
− 𝐴

󸀠

𝑡
, (51)

where {𝑀󸀠

𝑡
} is a G-martingal and {𝐴󸀠

𝑡
} is a right continuous

increasing process.
Let 𝑎 → ∞, as in Lemma 22 the expression of 𝑌

𝑡
(𝐻

𝑘
)

that𝐴󸀠
𝑡
depend only on the values of {𝑋󸀠

𝑡
} on intervals [0, 𝑡+𝜀],

with 𝜀 small enough. As 𝑎 → ∞, they do not vary anymore
once 𝑎 has reached values greater than 𝑡, as again Lemma 20;
we finish the proof of the Theorem.

(2) Assume that𝑋 admits both decompositions:

𝑋
𝑡
= 𝑀

󸀠

𝑡
− 𝐴

󸀠

𝑡
= 𝑀

󸀠󸀠

𝑡
− 𝐴

󸀠󸀠

𝑡
, (52)

where𝑀󸀠

𝑡
and𝑀󸀠󸀠

𝑡
are G-martingale and 𝐴󸀠

𝑡
, 𝐴󸀠󸀠

𝑡
are natural

increasing process. We define

{𝐶
𝑡
:= 𝐴

󸀠

𝑡
− 𝐴

󸀠󸀠

𝑡
=𝑀

󸀠

𝑡
−𝑀

󸀠󸀠

𝑡
} . (53)

Then {𝐶
𝑡
} is a G-martingale, and, for every bounded and right

continuous G-martingale {𝜉
𝑡
}, from Lemma 15 we have

𝐸 [𝜉
𝑡
(𝐴

󸀠

𝑡
− 𝐴

󸀠󸀠

𝑡
)] = 𝐸 [∫

(0,𝑡]

𝜉
𝑠−
𝑑𝐶

𝑠
]

= lim
𝑛→∞

𝑚
𝑛

∑

𝑘=1

𝜉
𝑡
𝑛

𝑗−1

[𝐶
𝑡
(𝑛)

𝑗

− 𝐶
𝑡
(𝑛)

𝑗−1

] ,

(54)

where Π
𝑛
= {𝑡

(𝑛)

0
, . . . , 𝑡

(𝑛)

𝑚
𝑛

}, 𝑛 ≥ 1 is a sequence of partitions
of [0, 𝑡]with max

1≤𝑗≤𝑚
𝑛

(𝑡
(𝑛)

𝑗
−𝑡

(𝑛)

𝑗−1
) converging to zero as 𝑛 →

∞. Since 𝜉 and 𝐶 are both G-martingale, we have

𝐸 [𝜉
𝑡
(𝑛)

𝑗−1

(𝐶
𝑡
(𝑛)

𝑗

− 𝐶
𝑡
(𝑛)

𝑗−1

)] = 0,

and thus 𝐸 [𝜉
𝑡
𝑗−1

(𝐴
󸀠

𝑡
− 𝐴

󸀠󸀠

𝑡
)] = 0.

(55)

For an arbitrary bonded random variable 𝜉, we can select {𝜉
𝑡
}

to be a right continuous equivalent process of {𝐸[𝜉 | F
𝑡
]},

and we obtain that 𝐸[𝜉(𝐴󸀠
𝑡
− 𝐴

󸀠󸀠

𝑡
)] = 0. We set 𝜉 = 𝐼

𝐴
󸀠

𝑡
̸=𝐴
󸀠󸀠

𝑡

;
therefore 𝑐(𝐴󸀠

𝑡
̸= 𝐴

󸀠󸀠

𝑡
) = 0.

By Theorem 24 and G-martingale decomposition the-
orem in [14, 21], we have the following G-Doob-Meyer
theorem.

Theorem 25. {𝑋
𝑡
} is a right continuous G-supermartingale;

there exists a right continuous increasing process 𝐴
𝑡
and

adapted process 𝜂
𝑡
, such that

𝑋
𝑡
= ∫

𝑡

0

𝜂
𝑠
𝑑𝐵

𝑠
− 𝐴

𝑡
, (56)

where 𝐵
𝑡
is G-Brownian motion.

4. Superhedging Strategies and
Optimal Stopping

4.1. Financial Model and G-Asset Price System. We consider
a financial market with a nonrisky asset (bond) and a risky
asset (stock) continuously trading in market. The price 𝑃(𝑡)
of the bond is given by

𝑑𝑃 (𝑡) = 𝑟𝑃 (𝑡) 𝑑𝑡 𝑃 (0) = 1, (57)

where 𝑟 is the short interest rate; we assume a constant
nonnegative short interest rate. We assume the risk asset with
the G-asset price system ((𝑆

𝑢
)
𝑢≥𝑡
, 𝐸) (see [17]) on sublinear

expectation space (Ω,H, 𝐸,F, (F
𝑡
))underKnightian uncer-

tainty, for given 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝑅

𝑑𝑆
𝑡,𝑥

𝑢
= 𝑆

𝑡,𝑥

𝑢
𝑑𝐵

𝑡
= 𝑆

𝑡,𝑥

𝑢
(𝑑𝑏

𝑡
+ 𝑑𝐵

𝑡
) ,

𝑆
𝑡,𝑥

𝑡
= 𝑥,

(58)

where 𝐵
𝑡
is the generalized G-Brownian motion. The uncer-

tain volatility is described by the G-Brownian motion 𝐵
𝑡
. The

uncertain drift 𝑏
𝑡
can be rewritten as

𝑏
𝑡
= ∫

𝑡

0

𝜇
𝑢
𝑑𝑢, (59)
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where 𝜇
𝑡
is the asset return rate [22]. Then the uncertain risk

premium of the G-asset price system

𝜃
𝑡
= 𝜇

𝑡
− 𝑟, (60)

is uncertain and distributed by𝑁([𝜇−𝑟, 𝜇−𝑟], {0}) [22], where
𝑟 is the interest rate of the bond.

Define

𝐵
𝑡
:= 𝐵

𝑡
− 𝑟𝑡 = 𝑏

𝑡
+ 𝐵

𝑡
− 𝑟𝑡; (61)

we have the following G-Girsanov theorem (presented in [17,
23]).

Theorem 26 (G-Girsanov theorem). Assume that (𝐵
𝑡
)
𝑡≥0

is generalized G-Brownian motion on (Ω,H, 𝐸,F
𝑡
), and

𝐵
𝑡
is defined by (61); there exists G-expectation space

(Ω,H, 𝐸
𝐺
,F

𝑡
) such that 𝐵

𝑡
is G-Brownian motion under the

G-expectation 𝐸𝐺, and

𝐸 [𝐵
2

𝑡
] = 𝐸

𝐺
[𝐵

2

𝑡
] ,

−𝐸 [−𝐵
2

𝑡
] = −𝐸

𝐺
[−𝐵

2

𝑡
] .

(62)

By the G-Girsanov theorem, the G-asset price system
(58) of the risky asset can be rewritten on (Ω,H, 𝐸

𝐺
,F

𝑡
) as

follows:

𝑑𝑆
𝑡,𝑥

𝑢
= 𝑆

𝑡,𝑥

𝑢
(𝑟𝑑𝑡 + 𝑑𝐵

𝑡
) ,

𝑆
𝑡,𝑥

𝑡
= 𝑥;

(63)

then by G-Itô formula we have

𝑆
𝑡,𝑥

𝑢
= 𝑥 exp (𝑟 (𝑢 − 𝑡) + 𝐵

𝑢−𝑡
−
1

2
(⟨𝐵

𝑢
⟩ − ⟨𝐵

𝑡
⟩)) ,

𝑢 > 𝑡.

(64)

4.2. Construction of Superreplication Strategies via Optimal
Stopping. We consider the following class of contingent
claims.

Definition 27. One defines a class of contingent claims with
the nonnegative payoff 𝜉 ∈ 𝐿

2

𝐺
(Ω

𝑇
) having the following

form:

𝜉 = 𝑓 (𝑆
𝑡,𝑥

𝑇
) (65)

for some function 𝑓 : Ω → 𝑅 such that the process

𝑓
𝑢
:= 𝑓 (𝑆

𝑡,𝑥

𝑢
) (66)

is bounded below and càdlàg.

We consider a contingent claim 𝜉 with payoff defined in
Definition 27 written on the stockes 𝑆

𝑡
with maturity 𝑇. We

give definitions of superhedging (resp., subhedging) strategy
and ask (resp., bid) price of the claim 𝜉.

Definition 28. (1) A self-financing superstrategy (resp. sub-
strategy) is a vector process (𝑌, 𝜋, 𝐶) (resp., (−𝑌, 𝜋, 𝐶)), where
𝑌 is the wealth process, 𝜋 is the portfolio process, and𝐶 is the
cumulative consumption process, such that

𝑑𝑌
𝑡
= 𝑟𝑌

𝑡
𝑑𝑡 + 𝜋

𝑡
𝑑𝐵

𝑡
− 𝑑𝐶

𝑡
,

(resp. − 𝑑𝑌
𝑡
= −𝑟𝑌

𝑡
𝑑𝑡 + 𝜋

𝑡
𝑑𝐵

𝑡
− 𝑑𝐶

𝑡
) ,

(67)

where 𝐶 is an increasing, right continuous process with 𝐶
0
=

0.The superstrategy (resp., substrategy) is called feasible if the
constraint of nonnegative wealth holds

𝑌
𝑡
≥ 0, 𝑡 ∈ [0, 𝑇] . (68)

(2) A superhedging (resp. subhedging) strategy against
the contingent claim 𝜉 is a feasible self-financing superstrat-
egy (𝑌, 𝜋, 𝐶) (resp., substrategy (−𝑌, 𝜋, 𝐶)) such that 𝑌

𝑇
= 𝜉

(resp., −𝑌
𝑇
= −𝜉). We denote by H(𝜉) (resp., H󸀠

(−𝜉)) the
class of superhedging (resp., subhedging) strategies against
𝜉, and if H(𝜉) (resp., H󸀠

(−𝜉)) is nonempty, 𝜉 is called
superhedgeable (resp., subhedgeable).

(3) The ask-price 𝑋(𝑡) at time 𝑡 of the superhedgeable
claim 𝜉 is defined as

𝑋 (𝑡) = inf {𝑥 ≥ 0 : ∃ (𝑌
𝑡
, 𝜋

𝑡
, 𝐶

𝑡
)

∈H (𝜉) such that 𝑌
𝑡
= 𝑥} ,

(69)

and bid-price 𝑋󸀠
(𝑡) at time 𝑡 of the subhedgeable claim 𝜉 is

defined as

𝑋
󸀠
(𝑡) = sup {𝑥 ≥ 0 : ∃ (−𝑌

𝑡
, 𝜋

𝑡
, 𝐶

𝑡
)

∈H
󸀠
(−𝜉) such that − 𝑌

𝑡
= −𝑥} .

(70)

Under uncertainty, the market is incomplete and the
superhedging (resp., subhedging) strategy of the claim is not
unique. The definition of the ask-price 𝑋(𝑡) implies that the
ask-price 𝑋(𝑡) is the minimum amount of risk for the buyer
to superhedging the claim; then it is coherent measure of
risk of all superstrategies against the claim for the buyer. The
coherent risk measure of all superstrategies against the claim
can be regarded as the sublinear expectation of the claim; we
have the following representation of bid-ask price of the claim
via optimal stopping (Theorem 31).

Let (G
𝑡
) be a filtration on G-expectation space (Ω,H,

𝐸
𝐺
,F, (F

𝑡
)
𝑡≥0
), and 𝜏

1
and 𝜏

2
be (G

𝑡
)-stopping times such

that 𝜏
1
≤ 𝜏

2
a.s. We denote by G

𝜏
1
,𝜏
2

the set of all finite (G
𝑡
)-

stopping times 𝜏 with 𝜏
1
≤ 𝜏 ≤ 𝜏

2
.

For given 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ 𝑅
+
, we define the function

𝑉
𝐴𝑚

: [0, 𝑇] × Ω → 𝑅 as the value function of the following
optimal-stopping problem:

𝑉
𝐴𝑚

(𝑡, 𝑆
𝑡
) := sup

]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓]]

= sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆])] .

(71)
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Proposition 29. Consider two stopping times 𝜏 ≤ 𝜏 on
filtration F. Let (𝑓

𝑡
)
𝑡≥0

denote some adapted and RCLL-
stochastic process, which is bounded below. Then we have for
two points 𝑠, 𝑡 ∈ [0, 𝜏] and 𝑠 < 𝑡

ess sup
𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑠
[𝑓
𝜏
]} = 𝐸

𝐺

𝑠
[ess sup

𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑡
[𝑓
𝜏
]}] . (72)

Proof. By the consistent property of the conditional G-
expectation, for 𝜏 ∈ F

𝜏,𝜏
, 𝑠, 𝑡 ∈ [0, 𝜏], and 𝑠 < 𝑡

𝐸
𝐺

𝑠
[𝑓
𝜏
] = 𝐸

𝐺

𝑠
[𝐸

𝐺

𝑡
[𝑓
𝜏
]] ≤ 𝐸

𝐺

𝑠
[ess sup

𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑡
[𝑓
𝜏
]}] ; (73)

thus we have

ess sup
𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑠
[𝑓
𝜏
]} ≤ 𝐸

𝐺

𝑠
[ess sup

𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑡
[𝑓
𝜏
]}] . (74)

There exists a sequence {𝜏
𝑛
} → 𝜏

∗
∈ [𝜏, 𝜏] as 𝑛 → ∞, such

that

lim
𝑛→∞

𝐸
𝐺

𝑡
[𝑓

𝜏
𝑛

] = 𝐸
𝐺

𝑡
[𝑓
𝜏
∗] = ess sup

𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑡
[𝑓
𝜏
]} ; (75)

notice that

𝐸
𝐺

𝑠
[ess sup

𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑡
[𝑓
𝜏
]}] = 𝐸

𝐺

𝑠
[𝐸

𝐺

𝑡
[𝑓
𝜏
∗]] = 𝐸

𝐺

𝑠
[𝑓
𝜏
∗]

≤ ess sup
𝜏∈F
𝜏,𝜏

{𝐸
𝐺

𝑠
[𝑓
𝜏
]} ;

(76)

we prove the Proposition.

Proposition 30. The process 𝑉
𝐴𝑚
(𝑡, 𝑆

𝑡
)
0≤𝑡≤𝑇

is a G-
supermartingale in (Ω,H, 𝐸

𝐺
,F,F

𝑡
).

Proof. By Proposition 29, for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇

𝐸
𝐺

𝑠
[ sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆])]] = sup

]∈F
𝑡,𝑇

𝐸
𝐺

𝑠
[𝑓 (𝑆])] . (77)

SinceF
𝑡,𝑇

⊆ F
𝑠,𝑇
, we have

sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑠
[𝑓 (𝑆])] ≤ sup

]∈F
𝑠,𝑇

𝐸
𝐺

𝑠
[𝑓 (𝑆])] . (78)

Thus, we derive that

𝐸
𝐺

𝑠
[ sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆])]] ≤ sup

]∈F
𝑠,𝑇

𝐸
𝐺

𝑠
[𝑓 (𝑆])] . (79)

We prove the Proposition.

Theorem 31. Assume that the financial market under uncer-
tainty consists of the bond which has the price process satisfying
(57) and risky assets with the price processes as the G-asset price
systems (58) and can trade freely; the contingent claim 𝜉 which

is written on the risky assets with the maturity 𝑇 > 0 has the
class of the payoff defined in Definition 27, and the function
𝑉
𝐴𝑚
(𝑡, 𝑆

𝑡
) is defined in (71). Then there exists a superhedging

(resp., subhedging) strategy for 𝜉, such that the process 𝑉 =

(𝑉
𝑡
)
0≤𝑡≤𝑇

defined by

𝑉
𝑡
:= 𝑒

−𝑟(𝑇−𝑡)
𝑉
𝐴𝑚

(𝑡, 𝑆
𝑡
) ,

(𝑟𝑒𝑠𝑝. − 𝑒
−𝑟(𝑇−𝑡)ess sup

]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[−𝑓]])

(80)

is the ask (resp., bid) price process against 𝜉.

Proof. Thevalue function for the optimal stop time𝑉𝐴𝑚
(𝑡, 𝑆

𝑡
)

is a G-supermartingale; it is easily to check that 𝑒
−𝑟𝑡
𝑉
𝑡

is G-supermartingale. By G-Doob-Meyer decomposition
Theorem 24

𝑒
−𝑟𝑡
𝑉
𝑡
= 𝑀

𝑡
− 𝐶

𝑡
, (81)

where 𝑀
𝑡
is a G-martingale and 𝐶

𝑡
is an increasing process

with𝐶
0
= 0. By G-martingale representation theorem [14, 21]

𝑀
𝑡
= 𝐸

𝐺
[𝑀

𝑇
] + ∫

𝑡

0

𝜂
𝑠
𝑑𝐵

𝑡
− 𝐾

𝑡
, (82)

where 𝜂
𝑠
∈ 𝐻

1

𝐺
(0, 𝑇), −𝐾

𝑡
is a G-martingale, and 𝐾

𝑡
is an

increasing process with 𝐾
0
= 0. From the above equation,

we have

𝑒
−𝑟𝑡
𝑉
𝑡
= 𝐸

𝐺
[𝑀

𝑇
] + ∫

𝑡

0

𝜂
𝑠
𝑑𝐵

𝑡
− (𝐾

𝑡
+ 𝐶

𝑡
) ; (83)

hence (𝑉
𝑡
, 𝑒
𝑟𝑡
𝜂
𝑡
, ∫

𝑡

0
𝑒
𝑟𝑠
𝑑(𝐶

𝑠
+𝐾

𝑠
)𝑑𝑠) is a superhedging strategy.

Assume that (𝑌
𝑡
, 𝜋

𝑡
, 𝐶

𝑡
) is a superhedging strategy against

𝜉; then

𝑒
−𝑟𝑡
𝑌
𝑡
= 𝑒

−𝑟𝑇
𝜉 − ∫

𝑇

𝑡

𝜋
𝑡
𝑑𝐵

𝑡
+ 𝐶

𝑡
. (84)

Taking conditional G-expectation on the both sides of (84)
and noticing that the process 𝐶

𝑡
is an increasing process with

𝐶
0
= 0, we derive

𝑒
−𝑟𝑡
𝑌
𝑡
≥ 𝐸

𝐺

𝑡
[𝑒
−𝑟𝑇

𝜉] , (85)

which implies that

𝑌
𝑡
≥ 𝐸

𝐺

𝑡
[𝑒
−𝑟(𝑇−𝑡)

𝜉] ≥ 𝐸
𝐺

𝑡
[𝑒

−𝑟(𝑇−𝑡)ess sup
]∈F
𝑇,𝑇

[𝑓]]]

≥ 𝑒
−𝑟(𝑇−𝑡)ess sup

]∈F
𝑇,𝑇

𝐸
𝐺

𝑡
[𝑓]] ≥ 𝑒

−𝑟(𝑇−𝑡)ess sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓]]

= 𝑉
𝑡

(86)

from which we prove that 𝑉
𝑡
= 𝑒

−𝑟(𝑇−𝑡)
𝑉
𝐴𝑚
(𝑡, 𝑆

𝑡
) is the ask

price against the claim 𝜉 at time 𝑡. Similarly we can prove
that −𝑒−𝑟(𝑇−𝑡) ess sup]∈F

𝑡,𝑇

𝐸
𝐺

𝑡
[−𝑓]] is the bid price against the

claim 𝜉 at time 𝑡.
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5. Free Boundary and Optimal
Stopping Problems

For given 𝑡 ∈ [0, 𝑇], 𝑥 ∈ 𝑅
𝑑, and 𝑑 = 1, the G-asset price

system (58) of the risky asset can be rewritten as follows:

𝑑𝑆
𝑡,𝑥

𝑢
= 𝑆

𝑡,𝑥

𝑢
(𝑟𝑑𝑡 + 𝑑𝐵

𝑡
) ,

𝑆
𝑡,𝑥

𝑡
= 𝑥.

(87)

We define the following deterministic function:

𝑢
𝑎
(𝑡, 𝑥) := 𝑒

−𝑟(𝑇−𝑡)
𝑉
𝐴𝑚

(𝑡, 𝑆
𝑡,𝑥

𝑡
) , (88)

where

𝑉
𝐴𝑚

(𝑡, 𝑆
𝑡,𝑥

𝑡
) = ess sup

]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆

𝑡,𝑥

] )] . (89)

From Theorem 31 the price of an American option with
expiry date 𝑇 and payoff function 𝑓 is the value function of
the optimal stopping problem:

𝑢
𝑎
(𝑡, 𝑥) := 𝑒

−𝑟(𝑇−𝑡)ess sup
]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆])] . (90)

We define operator 𝐿 as follows:

𝐿𝑢 = 𝐺 (𝐷
2
𝑢) + 𝑟𝐷𝑢 + 𝜕

𝑡
𝑢, (91)

where 𝐺(⋅) is the sublinear function defined by (9). We
consider the free boundary problem

L𝑢 := max {𝐿𝑢 − 𝑟𝑢, 𝑓 − 𝑢} = 0, in [0, 𝑇] × 𝑅,

𝑢 (𝑇, ⋅) = 𝑓 (𝑇, ⋅) , in 𝑅.

(92)

Denote

S
𝑇
:= [0, 𝑇] × 𝑅, (93)

for 𝑝 ≥ 1

S
𝑝
(S

𝑇
) := {𝑢 ∈ 𝐿

𝑝
(S

𝑇
) : 𝐷

2
𝑢,𝐷𝑢, 𝜕

𝑡
𝑢 ∈ 𝐿

𝑝
(S

𝑇
)} . (94)

And, for any compact subset 𝐷 of S
𝑇
, we denote S𝑝

loc (𝐷) as
the space of functions 𝑢 ∈ S𝑝

(𝐷).

Definition 32. A function 𝑢 ∈ S1

loc(S𝑇
) ∩ 𝐶(𝑅 × [0, 𝑇]) is a

strong solution of problem (92) ifL𝑢 = 0 almost everywhere
in S

𝑇
and it attains the final datum pointwisely. A function

𝑢 ∈ S1

loc(S𝑇
) ∩ 𝐶(𝑅 × [0, 𝑇]) is a strong supersolution of

problem (92) ifL𝑢 ≤ 0.

We will prove the following existence results.

Theorem33. If there exists a strong supersolution 𝑢 of problem
(92) then there also exists a strong solution 𝑢 of (92) such
that 𝑢 ≤ 𝑢 in S

𝑇
. Moreover 𝑢 ∈ S

𝑝

𝑙𝑜𝑐
(S

𝑇
) for any 𝑝 ≥ 1

and consequently, by the embedding theorem we have 𝑢 ∈

𝐶
1,𝛼

𝐵,𝑙𝑜𝑐
(S

𝑇
) for any 𝛼 ∈ [0, 1].

Theorem 34. Let 𝑢 be a strong solution to the free boundary
problem (92) such that

|𝑢 (𝑡, 𝑥)| ≤ 𝐶𝑒
𝜆|𝑥|
2

, (𝑡, 𝑥) ∈ S
𝑇

(95)

form some constants 𝐶, 𝜆 with 𝜆 sufficiently small so that

𝐸
𝐺
[exp(𝜆 sup

𝑡≤𝑢≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑡,𝑥

𝑢

󵄨󵄨󵄨󵄨󵄨

2

)] < ∞ (96)

holds. Then we have

𝑢 (𝑡, 𝑥) = 𝑒
−𝑟(𝑇−𝑡)ess sup

]∈F
𝑡,𝑇

𝐸
𝐺

𝑡
[𝑓 (𝑆])] ; (97)

that is, the solution of the free boundary problem is the value
function of the optimal stopping problem. In particular such a
solution is unique.

5.1. Proof of Theorem 34. We employ a truncation and reg-
ularization technique to exploit the weak interior regularity
properties of 𝑢; for 𝑅 > 0 we set for 𝑅 > 0, 𝐵

𝑅
:= {𝑥 ∈ 𝑅

𝑑
|

|𝑥| < 𝑅}, and, for 𝑥 ∈ 𝐵
𝑅
denoting by 𝜏

𝑅
the first exit time of

𝑆
𝑡,𝑥

𝑢
from𝐵

𝑅
, it is easy check that𝐸𝐺[𝜏

𝑅
] is finite. As a first step

we prove the following result: for every (𝑡, 𝑥) ∈ [0, 𝑇]×𝐵
𝑅
and

𝜏 ∈ F
𝑡,𝑇

such that 𝜏 ∈ [𝑡, 𝜏
𝑅
], it holds that

𝑢 (𝑡, 𝑥) = 𝐸
𝐺
[𝑢 (𝜏, 𝑆

𝑡,𝑥

𝜏
)] − 𝐸

𝐺
[∫

𝜏

𝑡

𝐿𝑢 (𝑠, 𝑆
𝑡,𝑥

𝑠
) 𝑑𝑠] . (98)

For fixed, positive, and small enough 𝜀, we consider a function
𝑢
𝜀,𝑅 on 𝑅

𝑑+1
= 𝑅

2 with compact support and such that
𝑢
𝜀,𝑅

= 𝑢 on [𝑡, 𝑇 − 𝜀] × 𝐵
𝑅
. Moreover we denote by (𝑢𝜀,𝑅,𝑛)

𝑛∈𝑁

a regularizing sequence obtained by convolution of 𝑢𝜀,𝑅 with
the usual mollifiers; then for any 𝑝 ≥ 1 we have 𝑢𝜀,𝑅,𝑛 ∈

S𝑝
(𝑅

2
) and

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐿𝑢

𝜀,𝑅,𝑛
− 𝐿𝑢

𝜀,𝑅󵄩󵄩󵄩󵄩󵄩𝐿𝑝([𝑡,𝑇−𝜀]×𝐵
𝑅
)
= 0. (99)

By G-Itô formula we have

𝑢
𝜀,𝑅,𝑛

(𝜏, 𝑆
𝑡,𝑥

𝜏
) = 𝑢

𝜀,𝑅,𝑛
(𝑡, 𝑥) +

1

2
∫

𝜏

𝑡

𝐷
2
𝑢
𝜀,𝑅,𝑛

𝑑 ⟨𝐵⟩𝑠

+ ∫

𝜏

𝑡

𝑟𝐷𝑢
𝜀,𝑅,𝑛

𝑑𝑠 + ∫

𝜏

𝑡

𝜕
𝑠
𝑢
𝜀,𝑅,𝑛

𝑑𝑠

+ ∫

𝜏

𝑡

𝐷𝑢
𝜀,𝑅,𝑛

𝑑𝐵
𝑠
,

(100)

which implies that

𝐸
𝐺
[𝑢

𝜀,𝑅,𝑛
(𝜏, 𝑆

𝑡,𝑥

𝜏
)] = 𝑢

𝜀,𝑅,𝑛
(𝑡, 𝑥) + ∫

𝜏

𝑡

𝐿𝑢
𝜀,𝑅,𝑛

𝑑𝑠. (101)

We have

lim
𝑛→∞

𝑢
𝜀,𝑅,𝑛

(𝑡, 𝑥) = 𝑢
𝜀,𝑅
(𝑡, 𝑥) (102)

and, by dominated convergence,

lim
𝑛→∞

𝐸
𝐺
[𝑢

𝜀,𝑅,𝑛
(𝜏, 𝑆

𝑡,𝑥

𝜏
)] = 𝐸

𝐺
[𝑢

𝜀,𝑅
(𝜏, 𝑆

𝑡,𝑥

𝜏
)] . (103)
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We have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
𝐺
[∫

𝜏

𝑡

𝐿𝑢
𝜀,𝑅,𝑛

(𝑠, 𝑆
𝑡,𝑥

𝑠
) 𝑑𝑠]

− 𝐸
𝐺
[∫

𝜏

𝑡

𝐿𝑢
𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
) 𝑑𝑠]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸
𝐺
[∫

𝜏

𝑡

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑆

𝑡,𝑥

𝑠
) − 𝐿𝑢

𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠] ;

(104)

by sublinear expectation representation theorem (see [14])
there exists a family of probability space 𝑄, such that

𝐸
𝐺
[∫

𝜏

𝑡

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑆

𝑡,𝑥

𝑠
) − 𝐿𝑢

𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠]

= ess sup
𝑃∈𝑄

𝐸
𝑃
[∫

𝜏

𝑡

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑆

𝑡,𝑥

𝑠
)

− 𝐿𝑢
𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠] .

(105)

Since 𝜏 ≤ 𝜏
𝑅

ess sup
𝑃∈𝑄

𝐸
𝑃
[∫

𝜏

𝑡

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑆

𝑡,𝑥

𝑠
) − 𝐿𝑢

𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠]

≤ ess sup
𝑃∈𝑄

𝐸
𝑃
[∫

𝑇−𝜀

𝑡

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑦) − 𝐿𝑢

𝜀,𝑅
(𝑠, 𝑦)

󵄨󵄨󵄨󵄨󵄨

⋅𝐼
|𝑆
𝑡,𝑥

𝑠
|≤𝐵
𝑅

𝑑𝑠] ≤ ess sup
𝑃∈𝑄

∫

𝑇−𝜀

𝑡

∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑦)

− 𝐿𝑢
𝜀,𝑅
(𝑠, 𝑦)

󵄨󵄨󵄨󵄨󵄨
Γ
𝑃
(𝑡, 𝑥; 𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

(106)

where Γ
𝑃
(𝑡, 𝑥; ⋅, ⋅) ∈ 𝐿

𝑞
([𝑡, 𝑇] × 𝐵

𝑅
), for some 𝑞 > 1, is the

transition density of the solution of

𝑑𝑋
𝑡,𝑥

𝑠
= 𝑋

𝑡,𝑥

𝑠
(𝑟𝑑𝑠 + 𝜎

𝑠,𝑃
𝑑𝑊

𝑠,𝑃
) , (107)

where 𝑊
𝑠,𝑃

is Wiener process in probability space (Ω
𝑡
, 𝑃,

F𝑃
,F𝑃

𝑡
) and 𝜎

𝑠,𝑃
is adapted process such that 𝜎

𝑠,𝑃
∈ [𝜎, 𝜎].

By Hölder inequality, we have (1/𝑝 + 1/𝑞 = 1)

∫

𝑇−𝜀

𝑡

∫
𝐵
𝑅

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑦) − 𝐿𝑢

𝜀,𝑅
(𝑠, 𝑦)

󵄨󵄨󵄨󵄨󵄨

⋅ Γ
𝑃
(𝑡, 𝑥; 𝑠, 𝑦) 𝑑𝑦 𝑑𝑠 ≤

󵄩󵄩󵄩󵄩󵄩
𝐿𝑢

𝜀,𝑅,𝑛
(𝑠, 𝑦)

− 𝐿𝑢
𝜀,𝑅
(𝑠, 𝑦)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞([𝑡,𝑇]×𝐵
𝑅
)

󵄩󵄩󵄩󵄩Γ𝑃 (𝑡, 𝑥; 𝑠, 𝑦)
󵄩󵄩󵄩󵄩𝐿𝑝([𝑡,𝑇]×𝐵

𝑅
)
,

(108)

and then we obtain that

lim
𝑛→∞

𝐸
𝐺
[∫

𝜏

𝑡

𝐿𝑢
𝜀,𝑅,𝑛

(𝑠, 𝑆
𝑡,𝑥

𝑠
)]

= 𝐸
𝐺
[∫

𝜏

𝑡

𝐿𝑢
𝜀,𝑅
(𝑠, 𝑆

𝑡,𝑥

𝑠
)] .

(109)

This concludes the proof of (98), since 𝑢𝜀,𝑅 = 𝑢 on [𝑡, 𝑇 − 𝜀] ×
𝐵
𝑅
and 𝜀 > 0 is arbitrary.

Since 𝐿𝑢 ≤ 0, we have for any 𝜏 ∈ F
𝑡,𝑇

𝐸
𝐺
∫

𝜏

𝑡

𝐿𝑢 (𝑠, 𝑆
𝑡,𝑥

𝑠
) 𝑑𝑠 ≤ 0; (110)

we infer from (98) that

𝑢 (𝑡, 𝑥) ≥ 𝐸
𝐺
[𝑢 (𝜏 ∧ 𝜏

𝑅
, 𝑆
𝑡,𝑥

𝜏∧𝜏
𝑅

)] . (111)

Next we pass to the limit as 𝑅 → +∞: we have

lim
𝑅→+∞

𝜏 ∧ 𝜏
𝑅
= 𝜏, (112)

and by the growth assumption (95)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝜏 ∧ 𝜏

𝑅
, 𝑆
𝑡,𝑥

𝜏∧𝜏
𝑅

)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 exp(𝜆 sup

𝑡≤𝑠≤𝑇

󵄨󵄨󵄨󵄨󵄨
𝑆
𝑡,𝑥

𝑠

󵄨󵄨󵄨󵄨󵄨

2

) . (113)

As 𝑅 → +∞

𝑢 (𝑡, 𝑥) ≥ 𝐸
𝐺
[𝑢 (𝜏, 𝑆

𝑡,𝑥

𝜏
)] ≥ 𝐸

𝐺
[𝑓 (𝜏, 𝑆

𝑡,𝑥

𝜏
)] . (114)

This shows that

𝑢 (𝑡, 𝑥) ≥ sup
𝜏∈F
𝑡,𝑇

𝐸
𝐺
[𝑓 (𝜏, 𝑆

𝑡,𝑥

𝜏
)] . (115)

We conclude the proof by putting

𝜏
0
= inf {𝑠 ∈ [𝑡, 𝑇] | 𝑢 (𝑠, 𝑆𝑡,𝑥

𝑠
) = 𝑓 (𝑠, 𝑆

𝑡,𝑥

𝑠
)} . (116)

Since 𝐿𝑢 = 0 a.e., where 𝑢 > 𝜙, it holds

𝐸
𝐺
[∫

𝜏
0
∧𝜏
𝑅

𝑡

𝐿𝑢 (𝑠, 𝑆
𝑡,𝑥

𝑠
) 𝑑𝑠] = 0 (117)

and from (98) we derive that

𝑢 (𝑡, 𝑥) = 𝐸
𝐺
[𝑢 (𝜏

0
∧ 𝜏

𝑅
, 𝑆
𝑡,𝑥

𝜏
0
∧𝜏
𝑅

)] . (118)

Repeating the previous argument to pass to the limit in 𝑅, we
obtain

𝑢 (𝑡, 𝑥) = 𝐸
𝐺
[𝑢 (𝜏

0
, 𝑆
𝑡,𝑥

𝜏
0

)] = 𝐸
𝐺
[𝑓 (𝜏

0
, 𝑆
𝑡,𝑥

𝜏
0

)] . (119)

Therefore, we finish the proof.

5.2. Free Boundary Problem. Here we consider the free
boundary problem on a bounded cylinder. We denote the
bounded cylinders as the form [0, 𝑇] × 𝐻

𝑛
, where (𝐻

𝑛
) is an

increasing covering of𝑅𝑑 (𝑑 = 1).Wewill prove the existence
of a strong solution to problem

max {𝐿𝑢, 𝑓 − 𝑢} = 0, in 𝐻(𝑇) := [0, 𝑇] × 𝐻,

𝑢|𝜕
𝑃
𝐻(𝑇)

= 𝑓,

(120)

where𝐻 is a bounded domain of 𝑅𝑑 and

𝜕
𝑃
𝐻(𝑇) := 𝜕𝐻 (𝑇) \ ({𝑇} × 𝐻) (121)

is the parabolic boundary of𝐻(𝑇).
We assume the following condition on the payoff func-

tion.
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Assumption 35. The payoff function 𝜉 = 𝑓(𝑆
𝑡,𝑥

𝑢
) has the

following assumption expressed by the sublinear function:

−𝐺 (−𝐷
2
𝑓) ≥ 𝑐 in 𝐻, (122)

where 𝐺(⋅) is the sublinear function defined by (9).

Theorem 36. One assumes assumption 5.1 holds. Problem
(120) has a strong solution 𝑢 ∈ S1

𝑙𝑜𝑐
(𝐻(𝑇)) ∩ 𝐶(𝐻(𝑇)).

Moreover 𝑢 ∈ S
𝑝

𝑙𝑜𝑐
(𝐻(𝑇)) for any 𝑝 > 1.

Proof. The proof is based on a standard penalization tech-
nique (see [18]). We consider a family (𝛽

𝜀
)
𝜀∈[0,1]

of smooth
functions such that, for any 𝜀, function 𝛽

𝜀
is increasing

bounded on 𝑅 and has bounded first order derivative, such
that

𝛽
𝜀
(𝑠) ≤ 𝜀, 𝑠 > 0,

lim
𝜀→0

𝛽
𝜀
(s) = −∞, 𝑠 < 0.

(123)

We denote by 𝑓𝛿 the regularization of 𝑓 and consider the
following penalized and regularized problem and denote the
solution as 𝑢

𝜀,𝛿

𝐿𝑢 = 𝛽
𝜀
(𝑢 − 𝑓

𝛿
) , in 𝐻(𝑇) ,

𝑢|𝜕
𝑃
𝐻(𝑇)

= 𝑓
𝛿
;

(124)

Lions [24], Krylov [25], and Nisio [26] prove that problem
(124) has a unique viscosity solution 𝑢

(𝜀,𝛿)
∈ 𝐶

2,𝛼
(𝐻(𝑇)) ∩

𝐶(𝐻(𝑇)) with 𝛼 ∈ [0, 1].
Next, we firstly prove the uniform boundedness of the

penalization term:

󵄨󵄨󵄨󵄨󵄨
𝛽
𝜀
(𝑢

𝜀,𝛿
− 𝑓

𝛿
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐, in 𝐻(𝑇) , (125)

with 𝑐 independent of 𝜀 and 𝛿.
By construction 𝛽

𝜀
≤ 𝜀, it suffices to prove the lower

bound in (125). By continuity, 𝛽
𝜀
(𝑢
𝜀,𝛿
−𝑓

𝛿
) has a minimum 𝜁

in𝐻(𝑇) and we may suppose

𝛽
𝜀
(𝑢

𝜀,𝛿
(𝜁) − 𝑓

𝛿
(𝜁)) ≤ 0; (126)

otherwise we prove the lower bound. If 𝜁 ∈ 𝜕
𝑃
𝐻(𝑇) then

𝛽
𝜀
(𝑢

𝜀,𝛿
(𝜁) − 𝑓

𝛿
(𝜁)) = 𝛽

𝜀
(0) = 0. (127)

On the other hand, if 𝜁 ∈ 𝐻(𝑇), then we recall that 𝛽
𝜀
is

increasing and consequently 𝑢
(𝜀,𝛿)

− 𝑓
𝛿 also has a (negative)

minimum in 𝜁. Thus, we have

𝐿𝑢
𝜀,𝛿
(𝜁) − 𝐿𝑓

𝛿
(𝜁) ≥ 0 ≥ 𝑢

𝜀,𝛿
(𝜁) − 𝑓

𝛿
(𝜁) . (128)

By Assumption 35 on 𝑓, we have that 𝐿𝑓𝛿(𝜁) is bounded
uniformly in 𝛿. Therefore, by (128), we deduce

𝛽
𝜀
(𝑢

(𝜀,𝛿)
(𝜁) − 𝑓

𝛿
(𝜁)) = 𝐿𝑢

(𝜀,𝛿)
(𝜁) ≥ 𝐿𝑓

𝛿
(𝜁) ≥ 𝑐, (129)

where 𝑐 is a constant independent of 𝜀, 𝛿 and this proves (125).
Secondly, we use theS𝑝 interior estimate combined with

(125), to infer that, for every compact subset 𝐷 in 𝐻(𝑇) and
𝑝 ≥ 1, the norm ‖𝑢

𝜀,𝛿
‖S𝑝(𝐷) is bounded uniformly in 𝜀 and 𝛿.

It follows that (𝑢
𝜀,𝛿
) converges as 𝜀, 𝛿 → 0 weakly in S𝑝 on

compact subsets of𝐻(𝑇) to a function 𝑢. Moreover

lim sup
𝜀,𝛿

𝛽
𝜀
(𝑢

𝜀,𝛿
− 𝑓

𝛿
) ≤ 0, (130)

so that 𝐿𝑢 ≤ 𝑓 a.e. in 𝐻(𝑇). On the other hand, 𝐿𝑢 = 𝑓 a.e.
in set {𝑢 > 𝑓}.

Finally, it is straightforward to verify that 𝑢 ∈ 𝐶(𝐻(𝑇))

and assumes the initial-boundary conditions, by using stan-
dard arguments based on themaximumprinciple and barrier
functions.

Proof ofTheorem 33. Theproof ofTheorem 33 about the exis-
tence theorem for the free boundary problem on unbounded
domains is similar to [27] by using Theorem 36 about the
existence theorem for the free boundary problem on the
regular bounded cylindrical domain.
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Probabilités XXIII, vol. 1372 of Lecture Notes inMathematics, pp.
405–420, Springer, Berlin, Germany, 1989.

[6] N. EL Karoui and I. Karatzas, “A new approach to the Skorohod
problem and its applications,” Stochastics and Stochastic Reports,
vol. 34, pp. 57–82, 1991.

[7] J. L. Doob, Stochastic Processes, John Wiley & Sons, New York,
NY, USA, 1953.

[8] P. A. Meyer, “A decomposition theorem for supermartingales,”
Illinois Journal of Mathematics, vol. 6, pp. 193–205, 1962.

[9] P.-A. Meyer, “Decomposition of supermartingales: the unique-
ness theorem,” Illinois Journal of Mathematics, vol. 7, pp. 1–17,
1963.



Journal of Applied Mathematics 13

[10] D. O. Kramkov, “Optional decomposition of supermartingales
and hedging contingent claims in incomplete security markets,”
Probability Theory and Related Fields, vol. 105, no. 4, pp. 459–
479, 1996.

[11] R. Frey, “Superreplication in stochastic volatility models and
optimal stopping,” Finance and Stochastics, vol. 4, no. 2, pp. 161–
187, 2000.

[12] F. Knight, Risk, Uncertainty, and Profit, Houghton Mifflin
Harcourt, Boston, Mass, USA, 1921.

[13] S. G. Peng, “Survey on normal distributions, central limit theo-
rem, Brownianmotion and the related stochastic calculus under
sublinear expectations,” Science in China, Series A:Mathematics,
vol. 52, no. 7, pp. 1391–1411, 2009.

[14] S. G. Peng, “Nonlinear expectations and stochastic calculus
underuncertainty,” http://arxiv.org/abs/1002.4546.

[15] L. G. Epstein and S. Ji, “Ambiguous volatility and asset pricing
in continuous time,” Review of Financial Studies, vol. 26, no. 7,
pp. 1740–1786, 2013.

[16] J. Vorbrink, “Financial markets with volatility uncertainty,”
Journal of Mathematical Economics, vol. 53, pp. 64–78, 2014.

[17] W. Chen, “G-consistent price system and bid-ask pricing
for European contingent claims underKnightian uncertainty,”
http://arxiv.org/abs/1308.6256.

[18] A. Friedman, Variational Principles and Free-Boundary Prob-
lems, Pure and Applied Mathematics, John Wiley & Sons, New
York, NY, USA, 1982.

[19] X. P. Li and S. G. Peng, “Stopping times and related Itô’s
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