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An operator mean is a binary operation assigned to each pair of positive operators satisfying monotonicity, continuity from
above, the transformer inequality, and the fixed-point property. It is well known that there are one-to-one correspondences
between operator means, operator monotone functions, and Borel measures. In this paper, we provide various characterizations
for the concepts of positivity, betweenness, and strictness of operator means in terms of operator inequalities, operator monotone
functions, Borel measures, and certain operator equations.

1. Introduction

The concept of means, a natural notion in mathematics,
plays important roles in mathematics itself, computer sci-
ence, statistics, various branches in science, engineering, and
economics. This concept was developed since the ancient
Greeks until the last century by many mathematicians (see
[1]). Nowadays, according to the definition of a mean for
positive real numbers in [1], a mean 𝑀 is defined to be
satisfied by the following properties:

(i) Positivity: 𝑠 > 0 and 𝑡 > 0 ⇒ 𝑀(𝑠, 𝑡) > 0.
(ii) Betweenness: 𝑠 ⩽ 𝑡 ⇒ 𝑠 ⩽ 𝑀(𝑠, 𝑡) ⩽ 𝑡.

A mean𝑀 is said to be

(i) strict at the left if for each 𝑎 > 0 and 𝑏 > 0,

𝑀(𝑎, 𝑏) = 𝑎 ⇒ 𝑎 = 𝑏; (1)

(ii) strict at the right if for each 𝑎 > 0 and 𝑏 > 0,

𝑀(𝑎, 𝑏) = 𝑏 ⇒ 𝑎 = 𝑏; (2)

(iii) strict if it is strict at both the right and the left.

This paper focuses on means for positive operators on
a Hilbert space. Let 𝐵(H) be the algebra of bounded linear
operators on a Hilbert spaceH. The set of positive operators

on H is denoted by 𝐵(H)
+. Denote the spectrum of an

operator𝑋 by Sp(𝑋). For self-adjoint operators,𝐴, 𝐵 ∈ 𝐵(H),
the partial order 𝐴 ⩽ 𝐵 indicates that 𝐵 − 𝐴 ∈ 𝐵(H)

+. If
𝐴 ∈ 𝐵(H)

+ is invertible, then we write 𝐴 > 0.
A starting point for the theory of operator means is the

presence of the notion of parallel sum in electrical network
analysis (see [2]). A connection is a binary operation 𝜎

assigned to each pair of operators in 𝐵(H)
+ such that the

following conditions are satisfied for all 𝐴, 𝐵, 𝐶,𝐷 ∈ 𝐵(H)
+:

(M1) monotonicity: 𝐴 ⩽ 𝐶, 𝐵 ⩽ 𝐷 ⇒ 𝐴𝜎𝐵 ⩽ 𝐶𝜎𝐷;
(M2) transformer inequality: 𝐶(𝐴𝜎𝐵)𝐶 ⩽ (𝐶𝐴𝐶)𝜎(𝐶𝐵𝐶);
(M3) continuity from above: for 𝐴

𝑛
, 𝐵
𝑛

∈ 𝐵(H)
+, if

𝐴
𝑛

↓ 𝐴 and 𝐵
𝑛

↓ 𝐵, then 𝐴
𝑛
𝜎𝐵
𝑛

↓ 𝐴𝜎𝐵. Here,
𝑋
𝑛

↓ 𝑋 indicates that 𝑋
𝑛
is a decreasing sequence

(with respect to the partial order) and 𝑋
𝑛
converges

strongly to𝑋.

This definition was modelled from significant properties of
the parallel sum by Kubo and Ando in [3]. Two trivial
examples are the left-trivial mean 𝜔

𝑙
: (𝐴, 𝐵) 󳨃→ 𝐴 and the

right-trivial mean 𝜔
𝑟
: (𝐴, 𝐵) 󳨃→ 𝐵. See [4, Section 3] and

[5] for more information about operator connections. From
the transformer inequality, every connection is congruence
invariant in the sense that for each 𝐴, 𝐵 ⩾ 0 and 𝐶 > 0 we
have

𝐶 (𝐴𝜎𝐵)𝐶 = (𝐶𝐴𝐶) 𝜎 (𝐶𝐵𝐶) . (3)
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Amean in Kubo-Ando sense is a connection 𝜎with fixed-
point property 𝐴𝜎𝐴 = 𝐴 for all 𝐴 ⩾ 0. The class of Kubo-
Ando means cover many well-known means in practice, for
example,

(i) 𝛼-weighted arithmetic means:𝐴∇
𝛼
𝐵 = (1−𝛼)𝐴+𝛼𝐵;

(ii) 𝛼-weighted geometric means:

𝐴#
𝛼
𝐵 = 𝐴

1/2
(𝐴
−1/2

𝐵𝐴
−1/2

)
𝛼

𝐴
1/2

; (4)

(iii) 𝛼-weighted harmonic means:

𝐴!
𝛼
𝐵 = [(1−𝛼)𝐴

−1
+𝛼𝐵
−1
]
−1

; (5)

(iv) logarithmic mean: (𝐴, 𝐵) 󳨃→ 𝐴
1/2

𝑓(𝐴
−1/2

𝐵𝐴
−1/2

)𝐴
1/2

where the function 𝑓 is given by 𝑓(𝑥) = (𝑥− 1)/ log𝑥
for each 𝑥 ∈ R+ ≡ [0,∞), 𝑓(0) ≡ 0, and 𝑓(1) ≡ 1.

A summary of Kubo-Ando theory is given in terms of
one-to-one correspondences between operator connections
on 𝐵(H)

+, operator monotone functions from R+ to R+,
and finite Borel measures on [0, 1]. Recall that a continuous
function 𝑓 : R+ → R+ is said to be operator monotone if

𝐴 ⩽ 𝐵 󳨐⇒ 𝑓 (𝐴) ⩽ 𝑓 (𝐵) (6)

for all positive operators 𝐴, 𝐵 ∈ 𝐵(H) and for all Hilbert
spaces H. This concept was introduced in [6]; see also [7,
Chapter V], [4, Section 2], and [8]. A connection 𝜎 on 𝐵(H)

+

can be characterized via operator monotone functions as
follows.

Theorem 1 (see [3,Theorem 3.2]). Given a connection 𝜎, there
is a unique operator monotone function 𝑓 : R+ → R+ satis-
fying

𝑓 (𝑥) 𝐼 = 𝐼𝜎 (𝑥𝐼) , 𝑥 ⩾ 0. (7)

Moreover, the map 𝜎 󳨃→ 𝑓 is a bijection.

We call 𝑓 the representing function of 𝜎. A connection
also has a canonical characterization with respect to a Borel
measure via a meaningful integral representation as follows.

Theorem 2. Given a finite Borel measure 𝜇 on [0, 1], the
binary operation

𝐴𝜎𝐵 = ∫
[0,1]

𝐴!
𝑡
𝐵𝑑𝜇 (𝑡) , 𝐴, 𝐵 ⩾ 0 (8)

is a connection on 𝐵(H)
+. Moreover, the map 𝜇 󳨃→ 𝜎 is

bijective, in which case the representing function of 𝜎 is given
by

𝑓 (𝑥) = ∫
[0,1]

(1!
𝑡
𝑥) 𝑑𝜇 (𝑡) , 𝑥 ⩾ 0. (9)

Theorem 2 is a modification of Kubo-Ando theorem ([3,
Theorem 3.4]). We call 𝜇 the associated measure of 𝜎.

Theorem 3 (see [3, Theorem 3.3]). Let 𝜎 be a connection on
𝐵(H)

+ with representing function𝑓 and associatedmeasure 𝜇.
Then the following statements are equivalent:

(1) 𝐼𝜎𝐼 = 𝐼;
(2) 𝐴𝜎𝐴 = 𝐴 for all 𝐴 ∈ 𝐵(H)

+;
(3) 𝑓 is normalized; that is, 𝑓(1) = 1;
(4) 𝜇 is normalized; that is, 𝜇 is a probability measure.

Hence every mean can be regarded as an average of
weighted harmonic means. From (8) and (9) in Theorem 2,
𝜎 and 𝑓 are related by

𝑓 (𝐴) = 𝐼𝜎𝐴, 𝐴 ⩾ 0. (10)

In this paper, we provide various characterizations for the
concepts of positivity, betweenness, and strictness of operator
means in terms of operator inequalities, operator monotone
functions, Borel measures, and certain operator equations.
It turns out that every mean satisfies the positivity property.
The betweenness is a necessary and sufficient condition for a
connection to be a mean. A mean is strict at the left (right)
if and only if it is not the left-trivial mean (the right-trivial
mean, resp.).

2. Positivity

We say that a connection 𝜎 satisfies the positivity property if

𝐴 > 0, 𝐵 > 0 󳨐⇒ 𝐴𝜎𝐵 > 0. (11)

Recall that the transpose of a connection 𝜎 is the connection

(𝐴, 𝐵) 󳨃󳨀→ 𝐵𝜎𝐴. (12)

If 𝑓 is the representing function of 𝜎, then the representing
function of its transpose is given by

𝑔 (𝑥) = 𝑥𝑓(
1
𝑥
) , 𝑥 > 0, (13)

and 𝑔(0) is defined by continuity (see [3, Corollary 4.2]).

Theorem4. Let 𝜎 be a connection on𝐵(H)
+ with representing

function 𝑓 and associated measure 𝜇. Then the following
statements are equivalent:

(1) 𝜎 satisfies the positivity property;
(2) 𝐼𝜎𝐼 > 0;
(3) 𝜎 ̸= 0 (here, 0 is the zero connection (𝐴, 𝐵) 󳨃→ 0);
(4) for all𝐴 ⩾ 0,𝐴𝜎𝐴 = 0 ⇒ 𝐴 = 0 (positive definiteness);
(5) for all 𝐴 ⩾ 0, 𝐴𝜎𝐼 = 0 ⇒ 𝐴 = 0;
(6) for all 𝐴 ⩾ 0, 𝐼𝜎𝐴 = 0 ⇒ 𝐴 = 0;
(7) for all 𝐴 ⩾ 0 and 𝐵 > 0, 𝐴𝜎𝐵 = 0 ⇒ 𝐴 = 0;
(8) for all 𝐴 > 0 and 𝐵 ⩾ 0, 𝐴𝜎𝐵 = 0 ⇒ 𝐵 = 0;
(9) 𝑓 ̸= 0 (here, 0 is the function 𝑥 󳨃→ 0);
(10) 𝑥 > 0 ⇒ 𝑓(𝑥) > 0;
(11) 𝜇([0, 1]) > 0.
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Proof. Implications (1) ⇒ (2) ⇒ (3), (4) ⇒ (3), (7) ⇒

(5) ⇒ (3), (8) ⇒ (6) ⇒ (3), and (10) ⇒ (9) are
clear. Using the integral representations in Theorem 2, it is
straightforward to verify that the representing function of the
zero connection 0 : (𝐴, 𝐵) 󳨃→ 0 is the constant function𝑓 ≡ 0
and its associated measure is the zero measure. Hence, we
have the equivalences (3) ⇔ (9) ⇔ (11).

(9) ⇒ (10). Assume 𝑓 ̸= 0. Suppose that there is 𝑎 > 0
such that𝑓(𝑎) = 0.Then𝑓(𝑥) = 0 for all 𝑥 ⩽ 𝑎.The concavity
of 𝑓 implies that 𝑓(𝑥) = 0 for all 𝑥 ⩾ 𝑎. Hence 𝑓 = 0, a
contradiction.

(5) ⇒ (7). Assume (5). Let 𝐴 ⩾ 0 and 𝐵 > 0 be such that
𝐴𝜎𝐵 = 0. Then

0 = 𝐵
1/2

(𝐵
−1/2

𝐴𝐵
−1/2

𝜎𝐼) 𝐵
1/2 (14)

and 𝐵
−1/2

𝐴𝐵
−1/2

𝜎𝐼 = 0. Now, (5) yields 𝐵−1/2𝐴𝐵
−1/2

= 0; that
is, 𝐴 = 0.

(6) ⇒ (8). It is similar to (5) ⇒ (7).
(10) ⇒ (1). Assume that 𝑓(𝑥) > 0 for all 𝑥 > 0. Since

Sp(𝑓(𝐴)) = 𝑓(Sp(𝐴)) by spectral mapping theorem, we have
𝑓(𝐴) > 0 for all 𝐴 > 0. Hence, for each 𝐴 > 0 and 𝐵 > 0,

𝐴𝜎𝐵 = 𝐴
1/2

𝑓 (𝐴
−1/2

𝐵𝐴
−1/2

)𝐴
1/2

> 0. (15)

(10) ⇒ (4). Assume (10). Let𝐴 ⩾ 0 be such that𝐴𝜎𝐴 = 0.
Note that

𝐴𝜎𝐴 = lim
𝜖↓0

𝐴
𝜖
𝜎𝐴
𝜖
= lim
𝜖↓0

𝐴
1/2
𝜖

(𝐼𝜎𝐼) 𝐴
1/2
𝜖

= lim
𝜖↓0

𝑓 (1) 𝐴
𝜖
= 𝑓 (1) 𝐴;

(16)

here 𝐴
𝜖
≡ 𝐴 + 𝜖𝐼. Since 𝑓(1) > 0, we have 𝐴 = 0.

(10) ⇒ (5). Assume (10). Let𝐴 ⩾ 0 be such that𝐴𝜎𝐼 = 0.
Then 𝑔(𝐴) = 0 where 𝑔 is the representing function of the
transpose of 𝜎. We see that 𝑔(𝑥) > 0 for 𝑥 > 0.The injectivity
of functional calculus implies that 𝑔(𝜆) = 0 for all 𝜆 ∈ Sp(𝐴).
We conclude that Sp(𝐴) = 0; that is, 𝐴 = 0.

(10) ⇒ (6). Assume (10). Let 𝐴 ⩾ 0 be such that 𝐼𝜎𝐴 = 0.
Then 𝑓(𝐴) = 0. By the injectivity of functional calculus, we
have𝑓(𝜆) = 0 for all 𝜆 ∈ Sp(𝐴). Assumption (10) implies that
Sp(𝐴) = {0}. Thus, 𝐴 = 0.

Remark 5. It is not true that 𝜎 ̸= 0 implies the condition that
for all 𝐴 ⩾ 0 and 𝐵 ⩾ 0, 𝐴𝜎𝐵 = 0 implies 𝐴 = 0 or 𝐵 = 0.
Indeed, take 𝜎 to be the geometric mean and

𝐴 = (

1 0
0 0

) ,

𝐵 = (

0 0
0 1

) .

(17)

3. Betweenness

We say that a connection 𝜎 satisfies the betweenness property
if for each 𝐴 ⩾ 0 and 𝐵 ⩾ 0,

𝐴 ⩽ 𝐵 󳨐⇒ 𝐴 ⩽ 𝐴𝜎𝐵 ⩽ 𝐵. (18)

ByTheorem 4, every mean enjoys the positivity property.
In fact, the betweenness property is a necessary and sufficient
condition for a connection to be a mean.

Theorem 6. The following statements are equivalent for a
connection 𝜎 with representing function 𝑓:

(1) 𝜎 is a mean;
(2) 𝜎 satisfies the betweenness property;
(3) for all 𝐴 ⩾ 0, 𝐴 ⩽ 𝐼 ⇒ 𝐴 ⩽ 𝐴𝜎𝐼 ⩽ 𝐼;
(4) for all 𝐴 ⩾ 0, 𝐼 ⩽ 𝐴 ⇒ 𝐼 ⩽ 𝐼𝜎𝐴 ⩽ 𝐴;
(5) for all 𝑡 ⩾ 0, 1 ⩽ 𝑡 ⇒ 1 ⩽ 𝑓(𝑡) ⩽ 𝑡;
(6) for all 𝑡 ⩾ 0, 𝑡 ⩽ 1 ⇒ 𝑡 ⩽ 𝑓(𝑡) ⩽ 1;
(7) for all 𝐴 ⩾ 0 and 𝐵 ⩾ 0, 𝐴 ⩽ 𝐵 ⇒ ‖𝐴‖ ⩽ ‖𝐴𝜎𝐵‖ ⩽

‖𝐵‖;
(8) for all 𝐴 ⩾ 0, 𝐴 ⩽ 𝐼 ⇒ ‖𝐴‖ ⩽ ‖𝐴𝜎𝐼‖ ⩽ 1;
(9) for all 𝐴 ⩾ 0, 𝐼 ⩽ 𝐴 ⇒ 1 ⩽ ‖𝐼𝜎𝐴‖ ⩽ ‖𝐴‖;
(10) the only solution 𝑋 > 0 to the equation 𝑋𝜎𝑋 = 𝐼 is

𝑋 = 𝐼;
(11) for all 𝐴 > 0, the only solution 𝑋 > 0 to the equation

𝑋𝜎𝑋 = 𝐴 is 𝑋 = 𝐴.

Proof. Implications (2) ⇒ (3), (2) ⇒ (4), (2) ⇒ (7) ⇒ (8),
and (11) ⇒ (10) ⇒ (1) are clear.

(1) ⇒ (2). Let 𝐴, 𝐵 ⩾ 0 be such that 𝐴 ⩽ 𝐵. The fixed-
point property and the monotonicity of 𝜎 yield

𝐴 = 𝐴𝜎𝐴 ⩽ 𝐴𝜎𝐵 ⩽ 𝐵𝜎𝐵 = 𝐵. (19)

(3) ⇒ (1). Since 𝐼 ⩽ 𝐼, we have 𝐼 ⩽ 𝐼𝜎𝐼 ⩽ 𝐼; that is,
𝐼𝜎𝐼 = 𝐼. Hence 𝜎 is a mean byTheorem 3.

(4) ⇒ (1). It is similar to (3) ⇒ (1).
(8) ⇒ (1). We have 1 = ‖𝐼‖ ⩽ ‖𝐼𝜎𝐼‖ ⩽ 1. Hence,

𝑓 (1) = 󵄩󵄩󵄩󵄩𝑓 (1) 𝐼󵄩󵄩󵄩󵄩 = ‖𝐼𝜎𝐼‖ = 1. (20)

Therefore, 𝜎 is a mean byTheorem 3.
(7) ⇒ (9) ⇒ (1). It is similar to (7) ⇒ (8) ⇒ (1).
(1) ⇒ (11). Let 𝐴 > 0. Consider 𝑋 > 0 such that 𝑋𝜎𝑋 =

𝐴. Then by the congruence invariance of 𝜎, we have

𝑋 = 𝑋
1/2

(𝐼𝜎𝐼)𝑋
1/2

= 𝑋𝜎𝑋 = 𝐴. (21)

(2) ⇒ (5). If 𝑡 ⩾ 1, then 𝐼 ⩽ 𝐼𝜎(𝑡𝐼) ⩽ 𝑡𝐼 which is 𝐼 ⩽

𝑓(𝑡)𝐼 ⩽ 𝑡𝐼; that is, 1 ⩽ 𝑓(𝑡) ⩽ 𝑡.
(5) ⇒ (1). We have 𝑓(1) = 1.
(2) ⇒ (6) ⇒ (1). It is similar to (2) ⇒ (5) ⇒ (1).

Remark 7. For a connection 𝜎 and 𝐴, 𝐵 ⩾ 0, the operators
𝐴, 𝐵 and𝐴𝜎𝐵 need not be comparable.The previous theorem
tells us that if 𝜎 is a mean, then the condition 0 ⩽ 𝐴 ⩽ 𝐵

guarantees the comparability between 𝐴, 𝐵 and 𝐴𝜎𝐵.

4. Strictness

We consider the strictness of Kubo-Ando means as that for
scalar means in [1].
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Definition 8. A mean 𝜎 on 𝐵(H)
+ is said to be

(i) strict at the left if for each 𝐴 > 0 and 𝐵 > 0,

𝐴𝜎𝐵 = 𝐴 ⇒ 𝐴 = 𝐵; (22)

(ii) strict at the right if for each 𝐴 > 0 and 𝐵 > 0,

𝐴𝜎𝐵 = 𝐵 ⇒ 𝐴 = 𝐵; (23)

(iii) strict if it is strict at both the right and the left.

In order to prove the next two lemmas, recall the
following facts: if 𝑓 : R+ → R+ is operator monotone, then

(i) 𝑓 is operator concave and hence concave in usual
sense (see [9] or [4, Corollary 2.5.4]);

(ii) 𝑔(𝑥) = 𝑥𝑓(𝑥) is convex in usual sense (see [3, Lemma
5.2]);

(iii) ℎ(𝑥) = 𝑥/𝑓(𝑥) is operator monotone on (0,∞) (see
[9] or [4, Corollary 2.5.6]).

Lemma 9. If 𝑓 : R+ → R+ is an operator monotone function
such that 𝑓 is a constant on an interval [𝑎, 𝑏] with 𝑎 < 𝑏, then
𝑓 is a constant on R+.

Proof. Assume that 𝑓(𝑥) = 𝑘 for all 𝑎 ⩽ 𝑥 ⩽ 𝑏. The case
𝑎 = 0 is done by using the monotonicity and concavity of 𝑓.
Consider the case 𝑎 > 0. The monotonicity and concavity of
𝑓 imply that 𝑓(𝑥) = 𝑘 for all 𝑥 ⩾ 𝑏. If 𝑘 = 0, then 𝑓(𝑥) = 𝑘

on [0, 𝑎] by the monotonicity of 𝑓. Consider the case 𝑘 > 0
and suppose there is an 𝑥0 ∈ [0, 𝑎) such that 𝑓(𝑥0) < 𝑘. Then
the slope of the line segment joining the point (𝑥0, 𝑥0𝑓(𝑥0))
and the point (𝑎, 𝑎𝑓(𝑎)) is greater than 𝑘. This contradicts the
convexity of the function 𝑥𝑓(𝑥).

Lemma 10. If 𝑓 : R+ → R+ is an operator monotone func-
tion such that 𝑓(𝑥) = 𝑚𝑥 + 𝑐 for some 𝑚 > 0 and 𝑐 ⩾ 0 on an
interval [𝑎, 𝑏] with 𝑎 < 𝑏, then 𝑓(𝑥) = 𝑚𝑥 + 𝑐 on R+.

Proof. If there is 𝑥0 > 0 such that 𝑓(𝑥0) = 0, then 𝑓 ≡ 0 by
Lemma 9. Suppose that 𝑓(𝑥) > 0 for all 𝑥 > 0. For simplicity,
assume that 𝑓(𝑥) = 𝑥 for all 𝑎 ⩽ 𝑥 ⩽ 𝑏. Then the function
ℎ(𝑥) = 𝑥/𝑓(𝑥) is operator monotone on (0,∞) and hence
on R+ by continuity. Note that ℎ(𝑥) = 1 on [𝑎, 𝑏]. Lemma 9
implies that ℎ(𝑥) = 1 on R+; that is, 𝑓(𝑥) = 𝑥 on R+.

Theorem 11. Let 𝜎 be a mean with representing function 𝑓

and associated measure 𝜇. Then the following statements are
equivalent:

(1) 𝜎 is strict at the left;
(2) 𝜎 is not the left-trivial mean;
(3) for all 𝐴 ⩾ 0, 𝐼𝜎𝐴 = 𝐼 ⇒ 𝐴 = 𝐼;
(4) for all 𝐴 > 0, 𝐴𝜎𝐼 = 𝐴 ⇒ 𝐴 = 𝐼;
(5) for all 𝐴 > 0 and 𝐵 ⩾ 0, 𝐴𝜎𝐵 = 𝐴 ⇒ 𝐴 = 𝐵;
(6) for all 𝐴 ⩾ 0, 𝐼 ⩽ 𝐼𝜎𝐴 ⇒ 𝐼 ⩽ 𝐴;
(7) for all 𝐴 ⩾ 0, 𝐼𝜎𝐴 ⩽ 𝐼 ⇒ 𝐴 ⩽ 𝐼;

(8) for all 𝐴 > 0, 𝐴 ⩽ 𝐴𝜎𝐼 ⇒ 𝐴 ⩽ 𝐼;
(9) for all 𝐴 > 0, 𝐴𝜎𝐼 ⩽ 𝐴 ⇒ 𝐼 ⩽ 𝐴;
(10) for all 𝐴 > 0 and 𝐵 ⩾ 0, 𝐴 ⩽ 𝐴𝜎𝐵 ⇒ 𝐴 ⩽ 𝐵;
(11) for all 𝐴 > 0 and 𝐵 ⩾ 0, 𝐴𝜎𝐵 ⩽ 𝐴 ⇒ 𝐵 ⩽ 𝐴;
(12) 𝑓 is not the constant function 𝑥 󳨃→ 1;
(13) for all 𝑥 ⩾ 0, 𝑓(𝑥) = 1 ⇒ 𝑥 = 1;
(14) for all 𝑥 ⩾ 0, 𝑓(𝑥) ⩾ 1 ⇒ 𝑥 ⩾ 1;
(15) for all 𝑥 ⩾ 0, 𝑓(𝑥) ⩽ 1 ⇒ 𝑥 ⩽ 1;
(16) 𝜇 is not the Dirac measure at 0.

Proof. It is clear that (5) ⇒ (1) and each of (1),
(4) and (6)–(11) implies (2). Also, each of (13)–(15) implies
(12).

(2) ⇒ (3). Let𝐴 ⩾ 0 be such that 𝐼𝜎𝐴 = 𝐼.Then 𝑓(𝐴) = 𝐼

and hence 𝑓(𝜆) = 1 for all 𝜆 ∈ Sp(𝐴). Suppose that 𝛼 ≡

inf Sp(𝐴) < 𝑟(𝐴) where 𝑟(𝐴) is the spectral radius of𝐴. Then
𝑓(𝑥) = 1 for all 𝑥 ∈ [𝛼, 𝑟(𝐴)]. It follows that 𝑓 ≡ 1 on R+ by
Lemma 9.This contradicts assumption (2). We conclude that
𝛼 = 𝑟(𝐴); that is, Sp(𝐴) = {𝜆} for some 𝜆 ⩾ 0. Suppose now
that 𝜆 < 1. Since 𝑓(1) = 1, we have that 𝑓 is a constant on
the interval [𝜆, 1]. Again, Lemma 9 implies that 𝑓 ≡ 1 onR+,
a contradiction. Similarly, 𝜆 > 1 gives a contradiction. Thus
𝜆 = 1, which implies 𝐴 = 𝐼.

(2) ⇒ (4). Let 𝐴 > 0 be such that 𝐴𝜎𝐼 = 𝐴. Then
𝑔(𝐴) = 𝐴 where 𝑔 is the representing function of the
transpose of 𝜎. Hence, 𝑔(𝑥) = 𝑥 for all 𝑥 ∈ Sp(𝐴). Suppose
that 𝛼 ≡ inf Sp(𝐴) < 𝑟(𝐴). Then 𝑔(𝑥) = 𝑥 for all 𝑥 ∈

[𝛼, 𝑟(𝐴)]. It follows that𝑔(𝑥) = 𝑥 onR+ by Lemma 10. Hence,
the transpose of 𝜎 is the right-trivial mean. This contradicts
assumption (2). We conclude that 𝛼 = 𝑟(𝐴); that is, Sp(𝐴) =

{𝜆} for some 𝜆 ⩾ 0.The same argument as in (2) ⇒ (3) yields
𝐴 = 𝐼.

(3) ⇒ (5). Use the congruence invariance of 𝜎.
(2) ⇒ (6). Assume that 𝜎 is not the left-trivial mean. Let

𝐴 ⩾ 0 be such that 𝐼𝜎𝐴 ⩽ 𝐼. Then 𝑓(𝐴) ⩾ 𝐼. The spectral
mapping theorem implies that 𝑓(𝜆) ⩾ 1 for all 𝜆 ∈ Sp(𝐴).
Suppose that there exists 𝑡 ∈ Sp(𝐴) such that 𝑡 < 1. Since
𝑓(𝑡) ⩽ 𝑓(1) = 1, we have 𝑓(𝑡) = 1. It follows that 𝑓(𝑥) = 1
for 𝑡 ⩽ 𝑥 ⩽ 1. By Lemma 9, 𝑓 ≡ 1 onR+, a contradiction. We
conclude that 𝜆 ⩾ 1 for all 𝜆 ∈ Sp(𝐴); that is, 𝐴 ⩾ 𝐼.

(2) ⇒ (7). It is similar to (2) ⇒ (6).
(6) ⇒ (8). Assume (6). Let 𝐴 > 0 be such that 𝐴 ⩽ 𝐴𝜎𝐼.

Then

𝐴 ⩽ 𝐴
1/2

(𝐼𝜎𝐴
−1
)𝐴

1/2
, (24)

which implies 𝐼 ⩽ 𝐼𝜎𝐴
−1. By (6), we have I ⩽ 𝐴

−1 or 𝐴 ⩽ 𝐼.
(7) ⇒ (9). It is similar to (6) ⇒ (8).
(6) ⇒ (10). Use the congruence invariance of 𝜎.
(7) ⇒ (11). Use the congruence invariance of 𝜎.
(2) ⇔ (12) ⇔ (16). Note that the representing function

of the left-trivial mean is the constant function 𝑓 ≡ 1. Its
associated measure is the Dirac measure at 0.

(2) ⇒ (13). Assume (2). Let 𝑥 ⩾ 0 be such that 𝑓(𝑥) = 1.
Suppose that 𝑥 ̸= 1. It follows that 𝑓(𝑥) = 1 for all 𝑥

lying between 𝑥 and 1. Lemma 9 implies that 𝑓 ≡ 1 on R+,
contradicting assumption (2).
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(2) ⇒ (14), (15). Modify the argument in the proof (2) ⇒
(13).

Theorem 12. Let 𝜎 be a mean with representing function 𝑓

and associated measure 𝜇. Then the following statements are
equivalent:

(1) 𝜎 is strict at the right;
(2) 𝜎 is not the right-trivial mean;
(3) for all 𝐴 ⩾ 0, 𝐴𝜎𝐼 = 𝐼 ⇒ 𝐴 = 𝐼;
(4) for all 𝐴 > 0, 𝐼𝜎𝐴 = 𝐴 ⇒ 𝐴 = 𝐼;
(5) for all 𝐴 ⩾ 0 and 𝐵 > 0, 𝐴𝜎𝐵 = 𝐵 ⇒ 𝐴 = 𝐵;
(6) for all 𝐴 ⩾ 0, 𝐼 ⩽ 𝐴𝜎𝐼 ⇒ 𝐼 ⩽ 𝐴;
(7) for all 𝐴 ⩾ 0, 𝐴𝜎𝐼 ⩽ 𝐼 ⇒ 𝐴 ⩽ 𝐼;
(8) for all 𝐴 > 0, 𝐴 ⩽ 𝐼𝜎𝐴 ⇒ 𝐴 ⩽ 𝐼;
(9) for all 𝐴 > 0, 𝐼𝜎𝐴 ⩽ 𝐴 ⇒ 𝐼 ⩽ 𝐴;
(10) for all 𝐴 ⩾ 0 and 𝐵 > 0, 𝐵 ⩽ 𝐴𝜎𝐵 ⇒ 𝐵 ⩽ 𝐴;
(11) for all 𝐴 ⩾ 0 and 𝐵 > 0, 𝐴𝜎𝐵 ⩽ 𝐵 ⇒ 𝐴 ⩽ 𝐵;
(12) 𝑓 is not the identity function 𝑥 󳨃→ 𝑥;
(13) 𝜇 is not the associated measure at 1.

Proof. Replace 𝜎 by its transpose in the previous theo-
rem.

We immediately get the following corollaries.

Corollary 13. A mean is strict if and only if it is nontrivial.

Corollary 14. Let 𝜎 be a nontrivial mean. For each𝐴 > 0 and
𝐵 > 0, the following statements are equivalent:

(i) 𝐴 = 𝐵;
(ii) 𝐴𝜎𝐵 = 𝐴;
(iii) 𝐴𝜎𝐵 = 𝐵;
(iv) 𝐵𝜎𝐴 = 𝐴;
(v) 𝐵𝜎𝐴 = 𝐵.

The next result is a generalization of [10, Theorem 4.7] in
which the mean 𝜎 is the geometric mean.

Corollary 15. Let 𝜎 be a nontrivial mean. For each𝐴 > 0 and
𝐵 > 0, the following statements are equivalent:

(i) 𝐴 ⩽ 𝐵;
(ii) 𝐴 ⩽ 𝐴𝜎𝐵;
(iii) 𝐴𝜎𝐵 ⩽ 𝐵;
(iv) 𝐴 ⩽ 𝐵𝜎𝐴;
(v) 𝐵𝜎𝐴 ⩽ 𝐵.

Remark 16. (i) It is not true that if𝜎 is not the left-trivialmean
then, for all 𝐴 ⩾ 0 and 𝐵 ⩾ 0, 𝐴𝜎𝐵 = 𝐴 ⇒ 𝐴 = 𝐵. Indeed,
take 𝜎 to be the geometric mean, 𝐴 = 0, and

𝐵 = (

0 0
0 1

) . (25)

The case of right-trivial mean is just the same.

(ii) The assumption of invertibility of 𝐴 or 𝐵 in
Corollary 14 cannot be omitted, as a counter example in (i)
shows. Also, the invertibility of𝐴 or 𝐵 in Corollary 15 cannot
be omitted. Consider the geometric mean and

𝐴 = (

1 0
0 0

) ,

𝐵 = (

0 0
0 1

) .

(26)
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