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The resonant tunneling device (RTD) has attracted much attention because of its unique negative differential resistance
characteristic and its functional versatility and is more suitable for implementing the threshold logic gate. The universal logic
gate has become an important unit circuit of digital circuit design because of its powerful logic function, while the threshold logic
gate is a suitable unit to design the universal logic gate, but the function synthesis algorithm for the 𝑛-variable logical function
implemented by the RTD-based universal logic gate (UTLG) is relatively deficient. In this paper, three-variable threshold functions
are divided into four categories; based on theReed-Muller expansion, two categories of these are analyzed, and a newdecomposition
algorithmof the three-variable nonthreshold functions is proposed.Theproposed algorithm is simple and the decomposition results
can be obtained by looking up the decomposition table. Then, based on the Reed-Muller algebraic system, the arbitrary 𝑛-variable
function can be decomposed into three-variable functions, and a function synthesis algorithm for the 𝑛-variable logical function
implemented by UTLG and XOR2 is proposed, which is a simple programmable implementation.

1. Introduction

With the improvement in integrated circuit integration, the
complementary metal oxide semiconductor (CMOS) tech-
nology is gradually approaching its physical limitations. The
resonant tunneling device (RTD) has better performance and
features, such as negative differential resistance characteristic,
self-latching, high speed, and functional versatility [1, 2]. The
universal logic gate, which has a powerful logic function, has
become an important unit to implement 𝑛-variable logical
functions [3], and the RTD ismore suitable for implementing
the universal logic gate because of its negative differential
resistance characteristic [4–6]. So, the RTD will probably
become the main electronic device in the next generation of
integrated circuits [7, 8].

Though the circuit of an 𝑛-variable logical function
implemented by the universal logic gate will be simpler,
a different universal logic gate requires its corresponding
synthesis algorithm to implement a function. Some function
synthesis algorithms have been proposed in the literature [9–
12], but these algorithms are not suitable for implementing

an arbitrary 𝑛-variable function by the RTD-based universal
threshold logic gate (UTLG) [13]. And the algorithm [14]
which can implement a three-variable nonthreshold function
by UTLGs is relatively complicated, and the implemented
circuit structure is also complicated.

In this paper, based on the Reed-Muller expansion, the
three-variable nonthreshold functions are classified. Two
categories of these are analyzed, and a new decomposition
algorithm of the three-variable nonthreshold functions is
proposed. Then a function synthesis algorithm which can
implement an arbitrary 𝑛-variable logical function by UTLGs
is proposed. The proposed function synthesis algorithm
provides a new scheme for designing integrated circuits by
RTD devices.

2. Background

2.1. Threshold Logic. A threshold logic gate is defined as a
logic gate with 𝑛 binary input variables and a single binary
output. Its internal parameters are as follows: 𝑛 binary input
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variables, {𝑥
𝑖
} (𝑖 = 1, 2, . . . , 𝑛), a set of integer weights,

{𝑤
𝑖
} (𝑖 = 1, 2, . . . , 𝑛), and a threshold 𝑇 and an output 𝑓, such

that its input-output relationship can be expressed as [15]

𝑓 =

{
{

{
{

{

1, if
𝑛

∑

𝑖=1
𝑤
𝑖
𝑥
𝑖
≥ 𝑇

0, otherwise.
(1)

Formula (1) can also be presented as 𝑓 = ⟨𝑤
1
𝑥
1

+

⋅ ⋅ ⋅ + 𝑤
𝑛
𝑥
𝑛
⟩
𝑇
. If a logic function can be implemented with a

single threshold logic gate, the function is called a threshold
function; otherwise, it is called a nonthreshold function [15].

2.2. Spectral Technique. Spectral technique is a mathematical
transformation method. It can convert binary data from
the Boolean domain into the spectral domain by matrix
transformations, and the information will not be lost [16].
In the spectral domain {−1, +1}, for an 𝑛-variable logical
function 𝑓(𝑥1, . . . , 𝑥

𝑛
), its input and output have 2𝑛 kinds of

states, and the truth vector is
𝑌 = (𝑓 (+1, + 1, . . . , + 1)

⋅ 𝑓 (+1, + 1, . . . , − 1) ⋅ ⋅ ⋅ 𝑓 (−1, − 1, . . . , − 1))
𝑇

.

(2)

The spectral-coefficient vector 𝑅 is given by

𝑅 = (𝑟0 𝑟1 ⋅ ⋅ ⋅ 𝑟
𝑛

𝑟12 ⋅ ⋅ ⋅ 𝑟1,...,𝑛)
𝑇

= 𝑇
𝑛

⋅ 𝑌, (3)

where 𝑇
𝑛 is a 2𝑛 × 𝑛 Rademacher-Walsh matrix.

As for a three-variable function, the spectral-coefficient
vector is 𝑅 = (𝑟0 𝑟3 𝑟2 𝑟23 𝑟1 𝑟13 𝑟12 𝑟123)

𝑇, where 𝑟0
is a zero-order spectral-coefficient, and 𝑟

𝑖
, 𝑟
𝑖𝑗
, and 𝑟

𝑖𝑗𝑘
are

one-order, two-order, and three-order spectral coefficients,
respectively.

2.3. Reed-Muller Expansion. A Reed-Muller expansion is a
standard expansion in the AND/XOR algebraic system. A
given function can be expressed as the XOR of basic entry;
its coefficient is called the RM expansion coefficient [17].
Given an 𝑛-variable function𝑓(𝑥1, . . . , 𝑥

𝑛
), its RM expansion

coefficient vector 𝐵 (0-polarity; in this paper we only use 0-
polarity expansion coefficient) is

𝐵 = [𝑇]
⊗𝑛

⋅ 𝐹, (4)

where [𝑇]
⊗𝑛

= [𝑇] ⊗ [𝑇] ⊗ ⋅ ⋅ ⋅ ⊗ [𝑇]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, [𝑇] = (
1 0

1 1
), ⊗ is the

Kronecker product, and 𝐹 is the truth vector of the function
in the Boolean domain. As for a three-variable function
𝑓(𝑥1, 𝑥2, 𝑥3), its RM expansion is

𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑏0 ⊕ 𝑏1𝑥3 ⊕ 𝑏2𝑥2 ⊕ 𝑏3𝑥2𝑥3 ⊕ 𝑏4𝑥1

⊕ 𝑏5𝑥1𝑥3 ⊕ 𝑏6𝑥1𝑥2 ⊕ 𝑏7𝑥1𝑥2𝑥3.
(5)

3. Decomposition Algorithm of Three-Variable
Nonthreshold Functions

In this section, the three-variable nonthreshold functions are
classified, and a new decomposition algorithm of the three-
variable nonthreshold functions is proposed.

Table 1: Spectral-coefficient |𝑟
𝑖
| classification of all the three-

variable threshold functions.

𝑛 |𝑟
𝑖
| |𝑎

𝑖
|

𝑛 = 3
8 0 0 0 1 0 0 0
6 2 2 2 2 1 1 1
4 4 4 0 1 1 1 0

3.1. Determine the Three-Variable Threshold Function. The
zero-order and one-order spectral-coefficient can determine
whether a function is a threshold function [16]. The spectral-
coefficient classification table of all the three-variable thresh-
old functions is given in Table 1, and some conclusions as
follows [16].

(1) The zero-order and one-order spectral-coefficients of
the given function are calculated and arranged in numerically
descending magnitude order, and this is the |𝑟

𝑖
| of the func-

tion; if the |𝑟
𝑖
| appear in Table 1, the function is a threshold

function. The threshold value of a threshold function and
weights can be obtained by |𝑎

𝑖
| in Table 1. The relationship

between the |𝑤
𝑖
| and listed |𝑎

𝑖
| value is

󵄨
󵄨
󵄨
󵄨
𝑤
𝑖

󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑎
𝑖

󵄨
󵄨
󵄨
󵄨

𝑖 = 1, 2, 3. (6)

The sign of 𝑤
𝑖
is the same as 𝑟

𝑖
. The threshold 𝑇 can be

calculated as

𝑇 =

1
2

(

3
∑

𝑖=0
𝑎
𝑖
+ 1) . (7)

(2) If the function is not a threshold function, the derived
number |𝑟

𝑖
| will not appear in Table 1.

3.2. New Decomposition Algorithm of Three-Variable Non-
threshold Functions. According to the properties of the spec-
tral coefficient, the three-variable nonthreshold function can
be decomposed into three-variable threshold functions by
a series of conversions [14], but for some three-variable
nonthreshold functions, this algorithm [14] is relatively com-
plex. So, we will propose a simpler algorithm which can
decompose those three-variable nonthreshold functions into
three-variable threshold functions.

For all the three-variable functions, there are 104 thresh-
old functions and 152 nonthreshold functions [16].

First, according to Table 1, the 104 threshold functions are
divided into three categories [16].

(1) Among the absolute values of all the zero-order and
one-order spectral-coefficients, there is one number
equal to 8 and three numbers equal to 0.

(2) Among the absolute values of all the zero- and one-
order spectral-coefficients, there is one number equal
to 6 and three numbers equal to 2.

(3) Among the absolute values of all the zero-order and
one-order spectral-coefficients, there is one number
equal to 0 and three numbers equal to 4.
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Then, the 152 nonthreshold functions can be divided into
four categories.

(1) Among the absolute values of all the spectral coeffi-
cients, the maximum number is from the two-order
spectral coefficient.

(2) Among the absolute values of all the spectral coeffi-
cients, the maximum number is from the three-order
spectral coefficient.

(3) Among the absolute values of all the zero-order and
one-order spectral-coefficients, there is one number
equal to 4.

(4) Among the absolute values of all the zero-order
and one-order spectral-coefficients, there are two
numbers equal to 4.

The numbers of these four categories of three-variable
nonthreshold functions are 54, 18, 33, and 47, respectively. If
the function belongs to the second and third categories of
the three-variable nonthreshold functions, the algorithm [14]
which decomposes the function will be relatively complex.
A nonthreshold function is decomposed into the threshold
function by the conversion of𝑓(𝑥)⊕𝑥

𝑖
and𝑥
𝑖
↔ 𝑥
𝑖
⊕𝑥
𝑗
, so we

propose a new decomposition algorithm of the three-variable
nonthreshold functions based on the Reed-Muller algebraic
system, and the decomposition process is as follows.

(1) The RM expansion coefficient vectors of all the
three-variable threshold functions are calculated as a
reference table.

(2) The RM expansion coefficient vector of the given
function is calculated.

(3) Search the reference table and find two threshold
functions in which the XOR result of their RM expan-
sion coefficient vectors just equals the calculated RM
expansion coefficient vector in step 2.

(4) The three-variable nonthreshold function can be
expressed as the XOR of the found threshold func-
tions of step 3.

After applying the process to the second and third cat-
egories of the three-variable nonthreshold functions, except
two special functions, 𝑓 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 and 𝑓 =

𝑥1 ⊕ 𝑥2 ⊕ 𝑥3, the others can be presented by the XOR of two
threshold functions; that is, 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑓1(𝑥1, 𝑥2, 𝑥3) ⊕

𝑓2(𝑥1, 𝑥2, 𝑥3), where 𝑓1 and 𝑓2 are threshold functions. The
decomposition results of the second and third categories
of the three-variable nonthreshold functions are shown in
Tables 2 and 3. In the tables, each vector of the columns
is the output of the three-variable function for an 8-input
combination from 000 to 111. Taking the first column of the
first vector (0 0 0 1 0 1 1 0) as an example in Table 2, it
expresses the three-variable function 𝑓 = ∑ 𝑚

𝑖
(𝑖 = 3, 4),

where 𝑚
𝑖
is the minterm of the function, and 𝑓 can be

expressed as 𝑓 = 𝑓1 ⊕ 𝑓2, where 𝑓1 = ∑ 𝑚
𝑖

(𝑖 = 3, 4, 5, 6, 7)

and 𝑓2 = ∑ 𝑚
𝑖

(𝑖 = 5, 6, 7), and they are the three-variable
threshold functions denoted by the second and third columns
of the first row in Table 2.

4. The Synthesis Algorithm of 𝑛-Variable
Function Based on UTLG

The literature [13] proposed an RTD-based universal logic
gate (UTLG) which can implement an arbitrary three-
variable threshold function with a single UTLG. Figure 1
shows the schematic and symbol of UTLG; its input-output
relationship can be expressed as

𝑓 =

{

{

{

1, 2𝑐1 + 𝑐2 + 𝑐3 − 2𝑐4 − 𝑐5 − 𝑐6 ≥ 1

0, otherwise.
(8)

The first and fourth categories of the three-variable
nonthreshold functions can be implemented by 3 UTLGs,
and the second and third categories of the three-variable
nonthreshold functions can be implemented by 7UTLGs [13].
In our proposed decomposition algorithm of three-variable
nonthreshold functions we introduced a bivariate XOR func-
tion, which cannot be implemented by a single UTLG, so
according to the structure of MOBILE circuit [18], we design
anRTD-based bivariateXORgate (XOR2). Figure 2 shows the
schematic and symbol of XOR2. Thus, the second and third
categories of the three-variable nonthreshold functions can
be implemented by 2 UTLGs and 1 XOR2, and it simplifies
the circuit. Figure 3 shows the simulation results of XOR2
circuit by HSPICE; the parameters of RTD and HFET are the
same as UTLG circuit [13], and as observed from Figure 3, the
proposed XOR2 has the correct logic functionality.

Currently, there is no algorithm which can implement
arbitrary 𝑛-variable functions by the UTLG. Therefore, we
proposed an 𝑛-variable function synthesis algorithm based
on UTLG.

First, we analyze the RM expansion of a four-variable
function 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) [17]; 𝑓 = 𝑏0 ⊕ 𝑏1𝑥4 ⊕ 𝑏2𝑥3 ⊕ 𝑏3𝑥3𝑥4 ⊕

𝑏4𝑥2 ⊕ 𝑏5𝑥2𝑥4 ⊕ 𝑏6𝑥2𝑥3 ⊕ 𝑏7𝑥2𝑥3𝑥4 ⊕ 𝑏8𝑥1 ⊕ 𝑏9𝑥1𝑥4 ⊕ 𝑏10𝑥1𝑥3 ⊕

𝑏11𝑥1𝑥3𝑥4 ⊕ 𝑏12𝑥1𝑥2 ⊕ 𝑏13𝑥1𝑥2𝑥4 ⊕ 𝑏14𝑥1𝑥2𝑥3 ⊕ 𝑏15𝑥1𝑥2𝑥3𝑥4.
By observation, the last eight terms of the RM expansion

are equal to the first eight terms of the RM expansion by
multiplying 𝑥1, respectively, and the operations of terms in
the RM expansion function are XOR, so the four-variable
function can be expressed as 𝑓 = 𝑓11 ⊕ 𝑥1𝑓12, the variables of
𝑓11 are 𝑥2, 𝑥3 and 𝑥4, and the RM expansion coefficient vector
of 𝑓11 is equal to the first eight elements of the RM expansion
coefficient vector of𝑓.The variables of𝑓12 are also 𝑥2, 𝑥3, and
𝑥4, and the RM expansion coefficient vector of 𝑓12 is equal to
the last eight elements of the RM expansion coefficient vector
of 𝑓.

For an 𝑛-variable function, based on the Reed-Muller
algebraic system [17], it can also be expressed as 𝑓 = 𝑓11 ⊕

𝑥1𝑓12, so we propose the synthesis algorithm of 𝑛-variable
functions based on UTLG; its process is as follows.

(1) Calculate theRMexpansion coefficient vector𝐵 of the
given 𝑛-variable function 𝑓.

(2) In the first decomposition, 𝑓 = 𝑓11 ⊕ 𝑥1𝑓12, the
subfunction 𝑓11 is the 𝑛 − 1 variable of the function
except 𝑥1, and its RM expansion coefficient vector 𝐵1
is equal to the first 𝑛/2 elements of 𝐵; the subfunction
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Table 2: The second category of the three-variable nonthreshold functions.

𝑓 = ∑ 𝑚
𝑖

𝑓1 = ∑ 𝑚
𝑖

𝑓2 = ∑ 𝑚
𝑖

𝑓 = ∑ 𝑚
𝑖

𝑓1 = ∑ 𝑚
𝑖

𝑓2 = ∑ 𝑚
𝑖

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0

0 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1 0

0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1

0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1

0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1

0 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1

0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0

Table 3: The third category of the three-variable nonthreshold functions.

𝑓 = ∑ 𝑚
𝑖

𝑓1 = ∑ 𝑚
𝑖

𝑓2 = ∑ 𝑚
𝑖

𝑓 = ∑ 𝑚
𝑖

𝑓1 = ∑ 𝑚
𝑖

𝑓2 = ∑ 𝑚
𝑖

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 1 1 0 0 0

0 0 0 1 1 1 1 0

0 0 1 0 0 1 0 0

0 0 1 0 1 1 0 1

0 0 1 1 0 1 1 0

0 0 1 1 1 0 0 1

0 1 0 0 0 0 1 0

0 1 0 0 1 0 1 0

0 1 0 1 0 1 1 0

0 1 0 1 1 0 0 1

0 1 1 0 0 0 1 1

0 1 1 0 0 1 0 1

0 1 1 0 1 0 1 0

0 1 1 0 1 1 0 0

0 1 1 1 1 0 0 0

0 1 1 1 1 1 1 0

1 0 0 0 0 0 0 1

0 0 0 1 1 1 1 1

0 0 1 0 0 0 0 0

0 0 1 0 0 0 1 1

0 0 1 0 1 1 1 1

0 0 1 1 0 1 1 1

0 0 1 1 1 0 1 1

0 1 0 0 0 1 0 1

0 1 0 0 1 1 0 0

0 1 0 1 0 1 0 0

0 1 0 1 0 1 0 1

0 1 1 1 0 0 1 1

0 1 1 1 0 1 0 1

0 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 1

0 0 0 1 0 0 1 1

0 1 1 1 0 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

1 0 0 0 0 1 0 0

1 0 0 0 0 1 1 1

1 0 0 1 0 0 1 1

1 0 0 1 0 1 0 1

1 0 0 1 1 0 1 0

1 0 0 1 1 1 0 0

1 0 1 0 0 1 1 0

1 0 1 0 1 0 0 1

1 0 1 1 0 1 0 0

1 0 1 1 1 1 0 1

1 1 0 0 0 1 1 0

1 1 0 0 1 0 0 1

1 1 0 1 0 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 0 0 0 1

1 1 1 0 0 1 1 1

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 1 0

1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1

1 0 1 0 0 0 1 0

1 0 1 0 1 0 1 1

1 0 1 1 0 0 0 0

1 0 1 1 1 0 1 0

1 1 0 0 0 1 0 0

1 1 0 0 1 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 1 1 0 0

1 1 1 0 0 0 0 0

1 1 1 0 1 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 1

0 0 1 1 0 0 0 0

1 0 1 0 1 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

𝑓12 is also the 𝑛 − 1 variable of the function except 𝑥1,
and its RM expansion coefficient vector 𝐵2 is equal to
the last 𝑛/2 elements of 𝐵.

(3) In the second decomposition, 𝑓11 = 𝑓21 ⊕ 𝑥2𝑓22,
𝑓12 = 𝑓23 ⊕ 𝑥2𝑓24, the subfunctions 𝑓21, 𝑓22, 𝑓23, and
𝑓24 are the 𝑛−2 variables of functions except𝑥1 and𝑥2,
and their RM expansion coefficient vectors are equal
to the first (𝑛 − 1)/2 elements of 𝐵1, the last (𝑛 − 1)/2
elements of 𝐵1, the first (𝑛 − 1)/2 elements of 𝐵2, and
the last (𝑛 − 1)/2 elements of 𝐵2, respectively.

(4) Repeat step 3, until the subfunctions are the three-
variable functions.

(5) Judging all the three-variable subfunctions, if the
function is a threshold function, it can directly be
implemented by 1 UTLG; if the function belongs to
the first and fourth categories of the three-variable
nonthreshold functions, it can be implemented by 3
UTLGs [14]; if the function belongs to the second and
third categories of the three-variable nonthreshold
functions, looking up the decomposition results from
Tables 2 and 3, it can be implemented by 2 UTLGs
and 1 XOR2; if the function is 𝑓 = 𝑥

1
⊕ 𝑥
2

⊕ 𝑥
3
or

𝑓 = 𝑥
1

⊕ 𝑥
2

⊕ 𝑥
3
, it can be implemented by 1 UTLG

and 2 XOR2s.

(6) The 𝑥
𝑖+1𝑓(𝑖+1)𝑙 of each decomposition equation 𝑓

𝑖𝑗
=

𝑓
(𝑖+1)𝑘 ⊕ 𝑥

𝑖+1𝑓(𝑖+1)𝑙 can be regarded as the bivariate
function, which can be implemented by 1 UTLG. And
the bivariate XOR operation of the decomposition
equations can be implemented by 1 XOR2.

Example 1. Implement the four-variable function:

𝑓 = 𝑥1 𝑥3 𝑥4 + 𝑥2 𝑥3 𝑥4 + 𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥2𝑥4

+ 𝑥1 𝑥2𝑥3𝑥4.
(9)

The RM expansion coefficient vector 𝐵 of 𝑓 is 𝐵 =

[1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0], the 𝑓 can be
decomposed as 𝑓 = 𝑓11 ⊕ 𝑥1𝑓12, 𝑓11 is a three-variable func-
tion, and its RM expansion coefficient vector 𝐵1 is equal to
the first 8 elements of 𝐵; that is, 𝐵

1
= [1 1 1 0 0 1 1 1],

𝑓11 = 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3 𝑥4 + 𝑥2𝑥3𝑥4. 𝑓12 is a three-variable
function, and its RM expansion coefficient vector 𝐵

2
is equal

to the last 8 elements of𝐵; that is,𝐵
2

= [0 0 0 1 1 1 0 0],
𝑓12 = 𝑥2𝑥4 + 𝑥3𝑥4.
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Figure 1: The universal threshold logic gate (UTLG), (a) schematic (b) symbol.
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Figure 2: The bivariate XOR gate (XOR2), (a) schematic (b) symbol.
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Figure 3: Transient waveforms of the proposed XOR2.

𝑓11 belongs to the second category of the three-variable
nonthreshold functions; looking up Table 2, 𝑓11 = 𝑓

󸀠

11 ⊕ 𝑓
󸀠

12,
𝑓
󸀠

11 = ⟨𝑥3 + 𝑥4⟩2, 𝑓
󸀠

12 = ⟨2𝑥2 − 𝑥3 − 𝑥4⟩0. 𝑓12 belongs to the
fourth category of the three-variable nonthreshold functions,
and it can be decomposed as [14] 𝑓12 = 𝑓

󸀠

21 + 𝑓
󸀠

22, 𝑓
󸀠

21 = 𝑥2𝑥4,
𝑓
󸀠

22 = 𝑥3𝑥4. Then 𝑓 can be implemented by 6 UTLGs and 2
XOR2s. Figure 4 shows theUTLG andXOR2 implementation
of this function.

Example 2. Implement the five-variable function:

𝑓 = 𝑥1𝑥2𝑥3 𝑥4𝑥5 + 𝑥1𝑥2 𝑥3𝑥4𝑥5 + 𝑥1 𝑥3𝑥4𝑥5

+ 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥2𝑥3𝑥4 + 𝑥1𝑥3𝑥4𝑥5

+ 𝑥2𝑥3𝑥4 𝑥5 + 𝑥1 𝑥2𝑥3.

(10)

The RM expansion coefficient vector 𝐵 of 𝑓 is 𝐵 =

[0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 0 0 1 0 0 1

0 1 0 1 0 1 0 1 0 1], 𝑓 can be decomposed as 𝑓 =

𝑓11 ⊕ 𝑥1𝑓12, 𝑓11 is a four-variable function, its RM expansion
coefficient vector 𝐵

1
is equal to the first 16 elements of 𝐵, that

is, 𝐵1 = [0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0], 𝑓12 is
a four-variable function, and its RM expansion coefficient
vector 𝐵

2
is equal to the last 16 elements of 𝐵, that is,

𝐵
2

= [0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1].
Continue to decompose 𝑓11. 𝑓11 = 𝑓21 ⊕ 𝑥2𝑓22, 𝑓21

is a three-variable function, its RM expansion coefficient
vector 𝐵

3
is equal to the first 8 elements of 𝐵1, that is, 𝐵

3
=

[0 0 0 1 1 0 0 1], 𝑓22 is also a three-variable function,
and its RM expansion coefficient vector 𝐵

4
is equal to the last

8 elements of 𝐵1, that is, 𝐵
4

= [0 0 1 1 1 1 1 0].
Continue to decompose 𝑓12. 𝑓12 = 𝑓23 ⊕ 𝑥2𝑓24, 𝑓23

is a three-variable function, its RM expansion coefficient
vector 𝐵

5
is equal to the first 8 elements of 𝐵2, that is,
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Figure 4: UTLG and XOR2 implementation of Example 1.
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Figure 5: UTLG and XOR2 implementation of Example 2.

𝐵
5

= [0 0 1 0 0 1 0 1], 𝑓24 is a three-variable function,
and its RM expansion coefficient vector 𝐵

6
is equal to the last

8 elements of 𝐵2, that is, 𝐵
6

= [0 1 0 1 0 1 0 1].
𝑓21, 𝑓22, 𝑓23, and 𝑓24 are the three-variable threshold

functions, and 𝑓 can be implemented by 7 UTLGs and 3
XOR2s. Figure 5 shows theUTLG andXOR2 implementation
of this function.

The proposed synthesis algorithm of the 𝑛-variable
function based on UTLG can decompose the arbitrary 𝑛-
variable function into three-variable functions, and all the
three-variable nonthreshold functions are divided into four
categories, and two categories of them can be implemented
by UTLG and XOR2. Thus, arbitrary 𝑛-variable functions
can be implemented by UTLG and XOR2, and if the given
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function is decomposed into the threshold functions, the
circuit structure will be simple.

Up to now, there is no algorithm which can implement
arbitrary 𝑛-variable function by UTLG. Reference [13] just
proposed the algorithm which can implement arbitrary
three-variable function. So, we provided new logic units
UTLG and XOR2 and a new algorithm to implement RTD-
based arbitrary 𝑛-variable function.

5. Conclusion

In this paper, the 152 three-variable nonthreshold functions
are divided into four categories, and a new decomposition
algorithm of the three-variable nonthreshold functions is
proposed. If the function belongs to the second and third
categories of the three-variable nonthreshold functions, it can
be implemented by 2 UTLGs and 1 XOR2, and it simplifies
the implemented circuit structure. Based on the Reed-Muller
algebraic system, the arbitrary 𝑛-variable function can be
decomposed into three-variable functions, and the function
synthesis algorithm for the 𝑛-variable function which can be
implemented by UTLG and XOR2 is proposed; that is, the
arbitrary 𝑛-variable function can be implemented by UTLG
and XOR2, and if the given function is decomposed into
three-variable threshold functions, the circuit structure will
be much simpler. The proposed logic units and algorithm
present a new method to implement the arbitrary 𝑛-variable
function by RTD-based devices.
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