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We generalize the regularized sampling method introduced in 2005 by the author to compute the eigenvalues of scalar Sturm-
Liouville problems (SLPs) to the case of vectorial SLP with parameter dependent boundary conditions. A few problems are worked
out to illustrate the effectiveness of the method and show by the same token that we have indeed a general method capable of
handling with ease very broad classes of SLPs, whether scalar or vectorial.

1. Introduction

In [1] we introduced the regularized sampling method, a
method to compute the eigenvalues of scalar Sturm-Liouville
problems (SLPs) with parameter dependent boundary con-
ditions. We subsequently used this method to compute the
eigenvalues of singular and non-self-adjoint Sturm-Liouville
problems. The scope of the method was further extended to
include the computation of the eigenvalues of discontinu-
ous/impulsive, nonlocal ([2] and the references therein), and
two-parameter SLPs [3]. Continuing our effort we will tackle
in this paper vectorial SLP with parameter dependent non-
separated boundary conditions. Vectorial Sturm-Liouville
problems have been considered in [4–13] and the references
therein while corresponding inverse problems appeared in
[14–17].

2. The Characteristic Function

Consider the vectorial Sturm-Liouville problem,

−𝑦

󸀠󸀠
+ 𝑄 (𝑥) 𝑦 = 𝜇

2
𝑦, 0 < 𝑥 < 1

𝐴 (𝜇) (

𝑦 (0, 𝜇)

𝑦

󸀠
(0, 𝜇)

) + 𝐵 (𝜇) (

𝑦 (1, 𝜇)

𝑦

󸀠
(1, 𝜇)

) = 0,

(1)

where 𝑄 is an 𝑛 × 𝑛 matrix function, 𝐴 and 𝐵 are real 2𝑛 ×
2𝑛 matrix functions of the parameter 𝜇 such that the matrix
[𝐴(𝜇) | 𝐵(𝜇)] has full rank.

Let 𝑌
𝑐
, 𝑌
𝑠
be the solutions of the Sturm-Liouville matrix

equation −𝑌󸀠󸀠+𝑄(𝑥)𝑌 = 𝜇2𝑌 subject to the initial conditions
𝑌(0, 𝜇) = 𝐼, 𝑌󸀠(0, 𝜇) = 0 and 𝑌(0, 𝜇) = 0, 𝑌󸀠(0, 𝜇) = 𝐼,
respectively, 𝐼 being the 𝑛 × 𝑛 identity matrix and 0 being the
𝑛 × 𝑛 zero matrix.

The general solution of the Sturm-Liouville equation

−𝑌

󸀠󸀠
+ 𝑄 (𝑥) 𝑌 = 𝜇

2
𝑌

(2)

is given by 𝑌 = 𝑌
𝑐
𝑎 + 𝑌

𝑠
𝑏 with arbitrary constant vectors 𝑎

and 𝑏. Replacing in the boundary conditions, we get

𝐴 (𝜇) (

𝑎

𝑏

) + 𝐵 (𝜇) (

𝑌

𝑐
(1, 𝜇) 𝑎 + 𝑌

𝑠
(1, 𝜇) 𝑏

𝑌

󸀠

𝑐
(1, 𝜇) 𝑎 + 𝑌

󸀠

𝑠
(1, 𝜇) 𝑏

) = 0,

{𝐴 (𝜇) + 𝐵 (𝜇) (

𝑌

𝑐
(1, 𝜇) 𝑌

𝑠
(1, 𝜇)

𝑌

󸀠

𝑐
(1, 𝜇) 𝑌

󸀠

𝑠
(1, 𝜇)

)}(

𝑎

𝑏

) = 0.

(3)

To have a nontrivial solution ( 𝑎
𝑏
) a necessary and sufficient

condition is that 𝐹(𝜇) = 0 where the characteristic function
is

𝐹 (𝜇) = det {𝐹mat (𝜇)} , (4)
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where

𝐹mat (𝜇) = 𝐴 (𝜇) + 𝐵 (𝜇) (𝑌𝑐 (1, 𝜇) 𝑌𝑠 (1, 𝜇)
𝑌

󸀠

𝑐
(1, 𝜇) 𝑌

󸀠

𝑠
(1, 𝜇)

) . (5)

The eigenvalues of (1) are the square of the zeroes of 𝐹. It
is well known that the multiplicities of these eigenvalues are
at most 𝑛.

3. Main Results

Let PW
𝜎
be the Paley-Wiener space

PW
𝜎
= {𝑓 entire, 󵄨󵄨

󵄨

󵄨

𝑓 (𝜇)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶𝑒

𝜎|Im 𝜇|
, ∫

∞

−∞

󵄨

󵄨

󵄨

󵄨

𝑓 (𝜇)

󵄨

󵄨

󵄨

󵄨

2

𝑑𝜇 < ∞} ,

(6)

and recall the celebrated Whittaker-Shannon-Kotel’nikov
theorem [18].

Theorem 1. Let 𝑓 ∈ 𝑃𝑊
𝜎
; then

𝑓 (𝜇) =

∞

∑

𝑘=−∞

𝑓(

𝑘𝜋

𝜎

)

sin𝜎 (𝜇 − 𝑘)
𝜎 (𝜇 − 𝑘)

, (7)

where the series converges uniformly on compact subset of 𝐶
and in 𝐿2(𝑅).

It is known that, in the case of scalar Sturm-Liouville
problems, 𝑦(𝑥, 𝜇) is an entire function of 𝜇 for each fixed
𝑥 ∈ (0, 1]. 𝑦(𝑥, 𝜇) is in a Paley-Wiener space as a function
of 𝜇 for each 𝑥 only in the Dirichlet case. So, we had to
subtract some terms from 𝑦(𝑥, 𝜇) to make the difference fall
in an appropriate PW

𝜎
space. We had even to subtract terms

involving multiple integrals to get sharper results when it
comes to computing of the eigenvalues.The regularized sam-
pling method has been introduced recently [1] to overcome
this problem; we do not have to subtract any term involving
any (multiple) integration. In fact we multiplied 𝑦(𝑥, 𝜇) −
𝜙(𝑥, 𝜇) and 𝑦󸀠(𝑥, 𝜇) − 𝜓(𝑥, 𝜇) by an appropriate function of
𝜇 and got the eigenvalues with much greater precision at a
reduced cost. Here 𝜙 and 𝜓 are known simple functions.

For the vectorial Sturm-Liouville problemat hand,wewill
use the regularized sampling method to recover the matrices
𝑌

𝑐
(1, 𝜇), 𝑌󸀠

𝑐
(1, 𝜇), 𝑌

𝑠
(1, 𝜇), and 𝑌󸀠

𝑠
(1, 𝜇) from which we obtain

𝐹(𝜇), the characteristic function whose zeroes are the square
roots of the sought eigenvalues of the problem.

Consider the compatible vector and matrix norms given
by

‖𝑌‖ = max
𝑖=1,...,𝑛

󵄨

󵄨

󵄨

󵄨

𝑌

𝑖

󵄨

󵄨

󵄨

󵄨

, ‖𝑃‖ = max
𝑖=1,...,𝑛

𝑛

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝑃

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

, (8)

where 𝑌 ∈ 𝑅𝑛, 𝑃 ∈ 𝑅𝑛×𝑛. In the following we will make use of
the standard estimate.

Lemma 2. Consider

|cos 𝑢| ≤ 𝑒|Im 𝑢|,
󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

sin 𝑢
𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤

𝛾

0

1 + |𝑢|

𝑒

|Im 𝑢|
, (9)

where 𝛾
0
is some constant (we may take 𝛾

0
= 1.72).

To cover both cases (𝑌(0, 𝜇) = 𝐼, 𝑌󸀠(0, 𝜇) = 0 and 𝑌(0,
𝜇) = 0, 𝑌󸀠(0, 𝜇) = 𝐼) we will consider the following initial
value problem:

𝑌

󸀠󸀠
+ 𝜇

2
𝑌 = 𝑄 (𝑥) 𝑌,

𝑌 (0, 𝜇) = 𝐸

1
, 𝑌

󸀠
(0, 𝜇) = 𝐸

2
,

(10)

where 𝐸
1
and 𝐸

2
are 𝑛 × 𝑛matrices or 𝑛-vector. We have

𝑌 (𝑥, 𝜇) = 𝐸

1
cos𝜇𝑥 + 𝐸

2

sin 𝜇𝑥
𝜇

+ ∫

𝑥

0

sin 𝜇 (𝑥 − 𝑡)
𝜇

𝑄 (𝑡) 𝑌 (𝑡, 𝜇) 𝑑𝑡.

(11)

Our first result is the following theorem.

Theorem 3. 𝑌(𝑥, 𝜇) is an entire matrix function of 𝜇 for each
fixed 𝑥 ∈ (0, 1] and satisfies the growth conditions

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤ ({

󵄩

󵄩

󵄩

󵄩

𝐸

1

󵄩

󵄩

󵄩

󵄩

+

𝛾

0

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝐸

2

󵄩

󵄩

󵄩

󵄩

} 𝑒

𝛾0 ∫
1

0
‖𝑄(𝑡)‖𝑑𝑡

) 𝑒

𝑥|Im 𝜇|

≤ 𝛾

1
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑥, 𝜇) − {𝐸

1
cos 𝜇𝑥 + 𝐸

2

sin 𝜇𝑥
𝜇

}

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥|Im 𝜇|
≤ 𝛾

2
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠
(𝑥, 𝜇) − {−𝜇𝐸

1
sin 𝜇𝑥 + 𝐸

2
cos 𝜇𝑥}󵄩󵄩󵄩

󵄩

󵄩

≤ 𝛾

3
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠
(𝑥, 𝜇) + 𝜇𝐸

1
sin 𝜇𝑥 − 𝐸

2
cos 𝜇𝑥

− ∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡) 𝑄 (𝑡) (𝐸
1
cos 𝜇𝑡 + 𝐸

2

sin 𝜇𝑡
𝜇

)𝑑𝑡

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

4

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥| Im𝜇|
,

(12)

for some positive constants 𝛾
1
, 𝛾
2
, 𝛾
3
, and 𝛾

4
.

Proof. From (11) and using standard arguments, we conclude
that 𝑌(𝑥, 𝜇) is an entire matrix function of 𝜇 for each 𝑥 in
(0, 1]. Its derivative with respect to 𝑥,

𝑌

󸀠
(𝑥, 𝜇) = −𝜇𝐸

1
sin 𝜇𝑥 + 𝐸

2
cos 𝜇𝑥

+ ∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡)𝑄 (𝑡) 𝑌 (𝑡, 𝜇) 𝑑𝑡,
(13)
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is also an entirematrix function of𝜇 for each𝑥 in (0, 1]. Going
back to (11) we get at once

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝐸

1
cos 𝜇𝑥 + 𝐸

2

sin 𝜇𝑥
𝜇

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

+ ∫

𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

sin 𝜇 (𝑥 − 𝑡)
𝜇 (𝑥 − 𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

⋅ (𝑥 − 𝑡) ‖𝑄 (𝑡)‖ ⋅

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇)

󵄩

󵄩

󵄩

󵄩

𝑑𝑡

≤ 𝑒

𝑥|Im 𝜇|
{

󵄩

󵄩

󵄩

󵄩

𝐸

1

󵄩

󵄩

󵄩

󵄩

+

𝛾

0
𝑥

1 + 𝑥

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝐸

2

󵄩

󵄩

󵄩

󵄩

}

+ ∫

𝑥

0

𝛾

0
(𝑥 − 𝑡) 𝑒

(𝑥−𝑡)|Im 𝜇|
‖𝑄 (𝑡)‖ ⋅

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇)

󵄩

󵄩

󵄩

󵄩

𝑑𝑡

≤ 𝑒

𝑥|Im 𝜇|
{

󵄩

󵄩

󵄩

󵄩

𝐸

1

󵄩

󵄩

󵄩

󵄩

+

𝛾

0

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝐸

2

󵄩

󵄩

󵄩

󵄩

}

+ 𝑒

𝑥|Im 𝜇|
∫

𝑥

0

𝛾

0
‖𝑄 (𝑡)‖ ⋅ 𝑒

𝑡|Im 𝜇| 󵄩
󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇)

󵄩

󵄩

󵄩

󵄩

𝑑𝑡.

(14)

Multiplying by 𝑒−𝑥| Im𝜇|, using Gronwall’s lemma, and multi-
plying back by 𝑒𝑥| Im𝜇| we get

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤ ({

󵄩

󵄩

󵄩

󵄩

𝐸

1

󵄩

󵄩

󵄩

󵄩

+

𝛾

0

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝐸

2

󵄩

󵄩

󵄩

󵄩

} 𝑒

𝛾0 ∫
1

0
‖𝑄(𝑡)‖𝑑𝑡

) 𝑒

𝑥|Im 𝜇|

≤ 𝛾

1
𝑒

𝑥|Im 𝜇|
,

(15)

where 𝛾
1
= {‖𝐸

1
‖ + 𝛾

0
‖𝐸

2
‖} exp(𝛾

0
∫

1

0
‖𝑄(𝑡)‖𝑑𝑡). Now, using

the above estimate in (10), we get

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑥, 𝜇) − {𝐸

1
cos 𝜇𝑥 + 𝐸

2

sin 𝜇𝑥
𝜇

}

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ ∫

𝑥

0

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

sin 𝜇 (𝑥 − 𝑡)
𝜇 (𝑥 − 𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

⋅ (𝑥 − 𝑡) ‖𝑄 (𝑡)‖ ⋅

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇)

󵄩

󵄩

󵄩

󵄩

𝑑𝑡

≤ ∫

𝑥

0

𝛾

0
𝑒

(𝑥−𝑡)| Im𝜇|

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

(𝑥 − 𝑡)

⋅ (𝑥 − 𝑡) ‖𝑄 (𝑡)‖ 𝛾

1
𝑒

𝑡|Im 𝜇|
𝑑𝑡

≤ 𝑒

𝑥| Im𝜇| 𝛾0𝛾1
1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

∫

1

0

‖𝑄 (𝑡)‖ 𝑑𝑡

≤

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥|Im 𝜇|
≤ 𝛾

2
𝑒

𝑥|Im 𝜇|
,

(16)

where 𝛾
2
= 𝛾

0
𝛾

1
∫

1

0
‖𝑄(𝑡)‖𝑑𝑡. Likewise we have

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠
(𝑥, 𝜇) − {−𝜇𝐸

1
sin 𝜇𝑥 + 𝐸

2
cos 𝜇𝑥}󵄩󵄩󵄩

󵄩

󵄩

≤ ∫

𝑥

0

󵄨

󵄨

󵄨

󵄨

cos 𝜇 (𝑥 − 𝑡)󵄨󵄨
󵄨

󵄨

⋅ ‖𝑄 (𝑡)‖ ⋅

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇)

󵄩

󵄩

󵄩

󵄩

𝑑𝑡

≤ ∫

𝑥

0

𝑒

(𝑥−𝑡)| Im𝜇|
‖𝑄 (𝑡)‖ 𝛾

1
𝑒

𝑡|Im 𝜇|
𝑑𝑡

= 𝑒

𝑥| Im𝜇|
𝛾

1
∫

1

0

‖𝑄 (𝑡)‖ 𝑑𝑡 = 𝛾

3
𝑒

𝑥| Im𝜇|
,

(17)

where 𝛾
3
= 𝛾

1
∫

1

0
‖𝑄(𝑡)‖𝑑𝑡. As in the scalar case, 𝑌(𝑥, 𝜇) is

in a Paley-Wiener space only in the Dirichlet case; however,
𝑌(𝑥, 𝜇) − {𝐸

1
cos 𝜇𝑥 + 𝐸

2
(sin 𝜇𝑥/𝜇)} is. As for 𝑌󸀠(𝑥, 𝜇), it is

not; nor is 𝑌󸀠(𝑥, 𝜇) − {−𝜇𝐸
1
sin 𝜇𝑥 +𝐸

2
cos 𝜇𝑥} since they are

not square integrable over the reals for fixed 𝑥 in (0, 1]. Also,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠
(𝑥, 𝜇) + 𝜇𝐸

1
sin 𝜇𝑥 − 𝐸

2
cos 𝜇𝑥

− ∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡)𝑄 (𝑡) (𝐸
1
cos 𝜇𝑡 + 𝐸

2

sin 𝜇𝑡
𝜇

)𝑑𝑡

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ ∫

𝑥

0

󵄨

󵄨

󵄨

󵄨

cos 𝜇 (𝑥 − 𝑡)󵄨󵄨
󵄨

󵄨

⋅ ‖𝑄 (𝑡)‖

⋅

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌 (𝑡, 𝜇) − {𝐸

1
cos 𝜇𝑡 + 𝐸

2

sin 𝜇𝑡
𝜇

}

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑑𝑡

≤ ∫

𝑥

0

𝑒

(𝑥−𝑡)| Im𝜇|
‖𝑄 (𝑡)‖

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑡|Im 𝜇|
𝑑𝑡

= 𝑒

𝑥| Im𝜇| 𝛾2
1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

∫

1

0

‖𝑄 (𝑡)‖ 𝑑𝑡 =

𝛾

4

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥| Im𝜇|
,

(18)

where 𝛾
4
= 𝛾

2
∫

1

0
‖𝑄(𝑡)‖𝑑𝑡.

We get at once the following corollaries.

Corollary 4. 𝑌
𝑐
(𝑥, 𝜇), 𝑌󸀠

𝑐
(𝑥, 𝜇), 𝑌

𝑠
(𝑥, 𝜇), 𝑌󸀠

𝑠
(𝑥, 𝜇), 𝑌

0
(𝑥, 𝜇),

and 𝑌󸀠
0
(𝑥, 𝜇) are entire matrix functions of 𝜇 for each fixed

𝑥 ∈ (0, 1] and satisfy the growth conditions

󵄩

󵄩

󵄩

󵄩

𝑌

𝑐
(𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤ (𝑒

𝛾0 ∫
1

0
‖𝑄(𝑡)‖𝑑𝑡

) 𝑒

𝑥|Im 𝜇|
,

󵄩

󵄩

󵄩

󵄩

𝑌

𝑐
(𝑥, 𝜇) − 𝐼 cos 𝜇𝑥󵄩󵄩

󵄩

󵄩

≤

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥|Im 𝜇|
≤ 𝛾

2
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

𝑐
(𝑥, 𝜇) + 𝜇𝐼 sin 𝜇𝑥󵄩󵄩󵄩

󵄩

󵄩

≤ 𝛾

3
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

𝑐
(𝑥, 𝜇) − {−𝜇𝐼 sin 𝜇𝑥 + ∫

𝑥

0

cos𝜇 (𝑥 − 𝑡) 𝑄 (𝑡) cos 𝜇𝑡 𝑑𝑡}
󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

4

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

𝑌

𝑠
(𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤ (

𝛾

0

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝛾0 ∫
1

0
‖𝑄(𝑡)‖𝑑𝑡

) 𝑒

𝑥|Im 𝜇|
≤ 𝛾

1
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

𝑠
(𝑥, 𝜇) − 𝐼

sin 𝜇𝑥
𝜇

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥|Im 𝜇|
≤ 𝛾

2
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

𝑠
(𝑥, 𝜇) − 𝐼 cos 𝜇𝑥󵄩󵄩󵄩

󵄩

󵄩

≤ 𝛾

3
𝑒

𝑥| Im𝜇|
,
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󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

𝑠
(𝑥, 𝜇) − {𝐼 cos 𝜇𝑥 + ∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡)𝑄 (𝑡)
sin 𝜇𝑡
𝜇

𝑑𝑡}

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

4

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

𝑌

0
(𝑥, 𝜇)

󵄩

󵄩

󵄩

󵄩

≤ ({

󵄩

󵄩

󵄩

󵄩

𝐷

1

󵄩

󵄩

󵄩

󵄩

+

𝛾

0

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

𝐷

2

󵄩

󵄩

󵄩

󵄩

} 𝑒

𝛾0 ∫
1

0
‖𝑄(𝑡)‖𝑑𝑡

) 𝑒

𝑥|Im 𝜇|

≤ 𝛾

1
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

0
(𝑥, 𝜇) − {𝐷

1
cos𝜇𝑥 + 𝐷

2

sin 𝜇𝑥
𝜇

}

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

2

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥|Im 𝜇|
≤ 𝛾

2
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

0
(𝑥, 𝜇) − {−𝜇𝐷

1
sin 𝜇𝑥 + 𝐷

2
cos 𝜇𝑥}󵄩󵄩󵄩

󵄩

󵄩

≤ 𝛾

3
𝑒

𝑥| Im𝜇|
,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑌

󸀠

0
(𝑥, 𝜇) + 𝜇𝐷

1
sin 𝜇𝑥 − 𝐷

2
cos 𝜇𝑥

−∫

𝑥

0

cos 𝜇 (𝑥 − 𝑡) 𝑄 (𝑡) (𝐷
1
cos 𝜇𝑡 + 𝐷

2

sin 𝜇𝑡
𝜇

)𝑑𝑡

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝛾

4

1 +

󵄨

󵄨

󵄨

󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑒

𝑥| Im𝜇|
,

(19)

for some generic positive constants 𝛾
1
, 𝛾
2
, 𝛾
3
, and 𝛾

4
.

Corollary 5. The functions,

𝑌

𝑐
(1, 𝜇) − 𝐼 cos 𝜇,

𝑌

󸀠

𝑐
(1, 𝜇) − {−𝜇𝐼 sin 𝜇 + ∫

1

0

cos 𝜇 (1 − 𝑡) 𝑄 (𝑡) cos 𝜇𝑡 𝑑𝑡} ,

𝑌

𝑠
(1, 𝜇) − 𝐼

sin 𝜇
𝜇

,

𝑌

󸀠

𝑠
(1, 𝜇) − {𝐼 cos 𝜇 + ∫

1

0

cos 𝜇 (1 − 𝑡) 𝑄 (𝑡)
sin 𝜇𝑡
𝜇

𝑑𝑡} ,

𝑌

0
(1, 𝜇) − {𝐷

1
cos𝜇 + 𝐷

2

sin 𝜇
𝜇

} ,

𝑌

󸀠

0
(1, 𝜇)

− {−𝜇𝐷

1
sin 𝜇 + 𝐷

2
cos 𝜇

+∫

1

0

cos 𝜇 (1 − 𝑡) 𝑄 (𝑡) (𝐷
1
cos 𝜇𝑡 + 𝐷

2

sin 𝜇𝑡
𝜇

)𝑑𝑡} ,

(20)

belong to the Paley-Wiener space 𝑃 ̇𝑊
1
as functions of 𝜇 and

thus can be recovered from their samples at 𝜇
𝑘
= 𝑘𝜋, 𝑘 ∈ 𝑍

using the WSK series.

Theorem6. Let 𝜃 be positive real number and𝑚 ≥ 2 a positive
integer. Consider

𝑈

1
(𝑥, 𝜇)

= (𝑌 (𝑥, 𝜇) − {𝐸

1
cos 𝜇𝑥 + 𝐸

2

sin 𝜇𝑥
𝜇

})(

sin (𝜃𝜇)
𝜃𝜇

)

𝑚

,

𝑈

2
(𝑥, 𝜇)

= (𝑌

󸀠
(𝑥, 𝜇) − {−𝜇𝐸

1
sin 𝜇𝑥 + 𝐸

2
cos𝜇𝑥})(

sin (𝜃𝜇)
𝜃𝜇

)

𝑚

(21)

belong to the Paley-Wiener space 𝑃𝑊
𝜎
where 𝜎 = 𝑥 + 𝑚𝜃

as functions of 𝜇 for each fixed 𝑥 ∈ (0, 1] for 𝑚 ≥ 1

and satisfy the growth condition ‖𝑈
1
(𝑥, 𝜇)‖, ‖𝑈

2
(𝑥, 𝜇)‖ ≤

𝛾

5
𝑒

𝜎|Im 𝜇|
/(1 + 𝜃|𝜇|)

𝑚 where 𝛾
5
is some positive constant (𝛾

5
=

𝛾

𝑚

0
max(𝛾

2
, 𝛾

3
)).

Proof. It is enough to note that sin(𝜃𝜇)/𝜃𝜇 is an entire
function of 𝜇 and satisfies the estimate in the above Lemma
and the fact that𝑍(𝑥, 𝜇) is the product of two entire functions
thus entire.

Remark 7. To avoid the first singularity of (sin(𝜃𝜇)/𝜃𝜇)−𝑚 we
will take 𝜃 < (𝑁 − 𝑚)−1.

The use of theWSK theorem allows us to recover𝑈
1
(1, 𝜇)

and 𝑈
2
(1, 𝜇) as

𝑈

1
(1, 𝜇) = ∑

𝑘∈𝑍

𝛼

𝑘

sin𝜎 (𝜇 − 𝜇
𝑘
)

𝜎 (𝜇 − 𝜇

𝑘
)

,

𝑈

2
(1, 𝜇) = ∑

𝑘∈𝑍

𝛽

𝑘

sin𝜎 (𝜇 − 𝜇
𝑘
)

𝜎 (𝜇 − 𝜇

𝑘
)

,

(22)

where 𝛼
𝑘
= 𝑈

1
(1, 𝜇

𝑘
), 𝛽
𝑘
= 𝑈

2
(1, 𝜇

𝑘
), 𝜇
𝑘
= 𝑘𝜋/𝜎, and 𝜎 =

1 + 𝑚𝜃.
Hence, 𝑌(1, 𝜇) or 𝑌󸀠(1, 𝜇) can be recovered as

𝑌 (1, 𝜇) = 𝐸

1
cos 𝜇 + 𝐸

2

sin 𝜇
𝜇

+ (

sin (𝜃𝜇)
𝜃𝜇

)

−𝑚

∑

𝑘∈𝑍

𝛼

𝑘

sin𝜎 (𝜇 − 𝜇
𝑘
)

𝜎 (𝜇 − 𝜇

𝑘
)

,

𝑌

󸀠
(1, 𝜇) = −𝜇𝐸

1
sin 𝜇 + 𝐸

2
cos 𝜇

+ (

sin (𝜃𝜇)
𝜃𝜇

)

−𝑚

∑

𝑘∈𝑍

𝛼

𝑘

sin𝜎 (𝜇 − 𝜇
𝑘
)

𝜎 (𝜇 − 𝜇

𝑘
)

.

(23)

In practice, we take |𝑘| ≤ 𝑁 for some positive integer𝑁, large
enough, so that𝐹(𝜇) can be reconstructedwhose zeros are the
square roots of the sought eigenvalues.

Since 𝜇𝑚−1𝑈
1
(1, 𝜇) and 𝜇𝑚−1𝑈

2
(1, 𝜇) are in 𝐿2(−∞,∞),

Jagerman’s result [18] is applicable and yields the following
better estimate.
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Lemma 8 (truncation error). Let 𝑈𝑁
𝑗
(1, 𝜇) = ∑

𝑁

𝑘=−𝑁
𝑈

𝑗
(1,

𝜇

𝑘
)(sin𝜎(𝜇−𝜇

𝑘
)/𝜎(𝜇 −𝜇

𝑘
)) denote the truncation of𝑈

𝑗
(1, 𝜇),

𝑗 = 1, 2. Then, for |𝜇| < 𝑁𝜋/𝜎,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑈

𝑗
(1, 𝜇) − 𝑈

𝑁

𝑗
(1, 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

sin 𝛾𝜇󵄨󵄨
󵄨

󵄨

𝛾

5,𝑗

𝜋 (𝜋/𝜎)

𝑚−1
√

1 − 4

−𝑚+1

⋅ [

1

√
(𝑁𝜋/𝜎) − 𝜇

+

1

√
(𝑁𝜋/𝜎) + 𝜇

]

1

(𝑁 + 1)

𝑚−1
,

(24)

where 𝛾
5,𝑗
= ‖𝜇

𝑚−1
𝑈

𝑗
(1, 𝜇)‖

2
.

Lemma 9. Consider |𝜇| < 𝑁𝜋/𝜎,

󵄨

󵄨

󵄨

󵄨

𝑌 (1, 𝜇) − 𝑌

𝑁
(1, 𝜇)

󵄨

󵄨

󵄨

󵄨

,

󵄨

󵄨

󵄨

󵄨

󵄨

𝑌

󸀠
(1, 𝜇) − 𝑌

󸀠

𝑁
(1, 𝜇)

󵄨

󵄨

󵄨

󵄨

󵄨

≤

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

sin (𝜃𝜇)
𝜃𝜇

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

−𝑚

×

󵄨

󵄨

󵄨

󵄨

sin 𝛾𝜇󵄨󵄨
󵄨

󵄨

𝛾

5

𝜋 (𝜋/𝜎)

𝑚−1
√

1 − 4

−𝑚+1

⋅ [

1

√
(𝑁𝜋/𝜎) − 𝜇

+

1

√
(𝑁𝜋/𝜎) + 𝜇

]

1

(𝑁 + 1)

𝑚−1
,

(25)

where 𝛾
5
= max{‖𝜇𝑚−1𝑌(1, 𝜇)‖

2
, ‖𝜇

𝑚−1
𝑌

󸀠
(1, 𝜇)‖

2
}.

The approximation of 𝑌(1, 𝜇) and 𝑌󸀠(1, 𝜇) by 𝑌
𝑁
(1, 𝜇)

and 𝑌󸀠
𝑁
(1, 𝜇), respectively, induces an approximation of the

characteristic function 𝐹 by 𝐹
𝑁
, whose zeros are the square

root of the eigenvalues of the problem.
Let𝜇2 denote an eigenvalue of the problem; then indepen-

dent eigenfunctions associated can be obtained using basis
vectors of the null space of the matrix 𝐹mat(𝜇) as initial
conditions to the differential equation −𝑦󸀠󸀠 + 𝑄(𝑥)𝑦 = 𝜇2𝑦,
0 < 𝑥 < 1.

4. Numerical Examples

In this section we will illustrate the power of the regularized
sampling method as applied to vectorial Sturm-Liouville
problems with parameter dependent boundary conditions.
We will take 𝑚 = 6, 𝑁 = 40 and a precision of 10−20
for the first three examples involving two dimensional SLPs.
We will also work out two three-dimensional SLPs one of
them involving parameter dependent boundary conditions.
In these last two examples we take different values of 𝑁,
namely, 𝑁 = 20, 40, 60, 80, and 100, and take 𝑚 = 4

and a precision of 10−20. The reported multiplicities of the
eigenvalues 𝜇2 are just the dimensions of the null space of the
corresponding matrices 𝐹mat(𝜇).

Example 1 (Chanane [1], 1D-version taken from fom Binding
and Browne [19]). Consider

−𝑦

󸀠󸀠

1
(𝑥) = 𝜆𝑦

1
(𝑥) , −𝑦

󸀠󸀠

2
(𝑥) = 𝜆𝑦

2
(𝑥) , 0 ≤ 𝑥 ≤ 1

𝑦

1
(0) + (𝜆 + 𝑑) 𝑦

󸀠

1
(0) = 0, 𝑦

2
(0) + (𝜆 + 𝑑) 𝑦

󸀠

2
(0) = 0

𝑦

1
(1) − 𝜆𝑦

󸀠

1
(1) = 0, 𝑦

2
(1) − 𝜆𝑦

󸀠

2
(1) = 0,

(26)

where 𝑑 = −4𝜋

2. The first three eigenvalues were ob-
tained as 9.730886578213082033, 88.76331625258976337,
and 157.88411043863472059 putting them at about 10−18
from the exact eigenvalues. All these are double eigenvalues.

Example 2. Consider

−𝑧

󸀠󸀠

1
+ 𝑥𝑧

1
= 𝜇

2
𝑧

1
, −𝑧

󸀠󸀠

2
+ 𝑥

2
𝑧

2
= 𝜇

2
𝑧

2
, 0 < 𝑥 < 1

𝑧

1
(0) = 0, 𝑧

2
(0) = 0

𝑧

1
(1) = 0, 𝑧

2
(1) = 0.

(27)

The first four eigenvalues were obtained as
10.149980317596192645, 39.426774741845613693,
88.33456043776637171, and 157.20995003768636950.
Their multiplicity is two. Figure 1 illustrates the graph of the
characteristic function.

In the next example we change the boundary conditions
in Example 2 to a parameter dependent one.

Example 3. Consider

−𝑧

󸀠󸀠

1
+ 𝑥𝑧

1
= 𝜇

2
𝑧

1
, −𝑧

󸀠󸀠

2
+ 𝑥

2
𝑧

2
= 𝜇

2
𝑧

2
, 0 < 𝑥 < 1

𝑧

1
(0) = 0, 𝑧

2
(0) = 0

𝑧

1
(1) + 𝜇𝑧

2
(1) + 𝜇

2
𝑧

󸀠

1
(1) = 0

𝜇

2
𝑧

1
(1) + 𝑧

2
(1) + 𝑧

󸀠

1
(1) + 𝑧

󸀠

2
(1) = 0.

(28)

The first ten eigenvalues were obtained as
1.8774711215942920040, 5.743710132061151193,
19.343498090220217814, 27.524136648884737570,
57.53122978141141088, 68.17260384634582088,
115.66805223522017586, 128.14561531120321356,
193.70672667853536264, and 207.68609472970380538.
All these are simple eigenvalues. Figure 2 illustrates the
graph of the characteristic function.

Next we consider three-dimensional vectorial SLPs, with
different boundary conditions.

Example 4. Consider

−𝑧

󸀠󸀠

1
+ 𝑥

2
𝑧

1
= 𝜇

2
𝑧

1
, −𝑧

󸀠󸀠

2
+

3𝑥

2

𝑧

2
−

𝑥

2

𝑧

3
= 𝜇

2
𝑧

2
,

−𝑧

󸀠󸀠

3
−

𝑥

2

𝑧

2
+

3𝑥

2

𝑧

3
= 𝜇

2
𝑧

3
, 0 < 𝑥 < 1

𝑧

1
(0) = 0, 𝑧

2
(0) = 0, 𝑧

3
(0) = 0

𝑧

1
(1) = 0, 𝑧

2
(1) = 0, 𝑧

3
(1) = 0.

(29)
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Table 1: 𝜇 as a function of𝑁 for Example 4.

𝑁 𝜇

1
𝜇

2
𝜇

3
𝜇

4

20 3.18255001139908084139 3.24667169525908938767 6.30074330869793149011 6.32071003783954269867

40 3.18255272015329488134 3.24667965370940216187 6.30075208373683858194 6.32073018962762953754

60 3.18255257457282246273 3.24667922487683254112 6.30075161400550151819 6.32072910805919989533

80 3.18255257724071613616 3.24667923278762738065 6.30075162260634961554 6.32072912799411873146

100 3.18255257728954451935 3.24667923293045271115 6.30075162276373835846 6.32072912835397407977

0 5 10 15

0.00

0.05

0.10

0.15

0.20

−0.05

−0.10

𝜇

Figure 1: 𝐹 for Example 2.

0 2 4 6 8 10 12 14

0

50

100

150

𝜇

Figure 2: 𝐹 for Example 3.

Here, we will take 𝑚 = 4, 𝑁 = 20, 40, 60, 80, and 100,
and a precision of 10−20. Figure 3 illustrates the characteristic
function 𝐹

𝑁
over the range [2.8, 6.9], while Figures 4 and 5

zoom into the regions containing the eigenvalues. Note that,
in the range of interest [2.8, 6.9], the graphs of 𝐹

𝑁
, 𝑁 =

20, 40, 60, 80, and 100, are on the top of each other. A 10−5
precision on 𝜇 can be obtained with just 𝑁 = 40. It appears
clearly that in this example we have a simple eigenvalue
𝜆

1
= 𝜇

2

1
and a double eigenvalue 𝜆

2
= 𝜇

2

2
, followed by a

simple eigenvalue 𝜆
3
= 𝜇

2

3
and a double eigenvalue 𝜆

4
= 𝜇

2

4

(Figures 7, 8, 9, and 10). To obtain the double eigenvalues we
look for the roots 𝜇 of 𝐹󸀠(𝜇) and then evaluate 𝐹(𝜇) which
happened to be in each case of the order of 10−20. Table 1
illustrates these 𝜇 as function of 𝑁, the number of sampling
points.

3 4 5 6

0.000

0.005

−0.005

−0.010

𝜇

Figure 3: 𝐹 for Example 4.

3.16 3.18 3.20 3.22 3.24 3.26 3.28

0

0.00001

𝜇

5 × 10
−6

−5 × 10
−6

Figure 4: 𝐹 around the first cluster of zeroes for Example 4.

The first few 𝑎𝑙𝑝ℎ𝑎 coefficients in the cardinal series
expansion of 𝑈

1
(1, 𝜇) are given as follows:

𝛼

0
= (

0.0507 0 0

0 0.130 −0.0447

0 −0.0447 0.130

) ,

𝛼

1
= −𝛼

−1
= (

0.0165 0 0

0 0.0451 −0.0157

0 −0.0157 0.0451

) ,

𝛼

2
= −𝛼

−2
= (

−0.00455 0 0

0 −0.0105 0.00352

0 0.00352 −0.0105

) ,

𝛼

3
= −𝛼

−3
= (

0.00197 0 0

0 0.00442 −0.00147

0 −0.00147 0.00442

) .

(30)

The above data have been reported with only a few digits.
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2 3 4 5 6 7 8

0

500

1000

1500

𝜇

Figure 5: 𝐹 for Example 5.

6.29

0

6.30 6.31 6.32 6.33 6.34

6 × 10
−8

4 × 10
−8

2 × 10
−8

−2 × 10
−8

−4 × 10
−8

𝜇

Figure 6: 𝐹 around the second cluster of zeroes for Example 4.

1.80 1.85 1.90 1.95 2.00

0.0

0.1

0.2

0.3

𝜇

Figure 7: 𝐹 around 𝜇
1
in Example 5.

Example 5. Consider

−𝑧

󸀠󸀠
+ 𝑄𝑧 = 𝜇

2
𝑧, 0 < 𝑥 < 1

𝑧 (0) = 0 𝑧 (1) + 𝐵𝑧

󸀠

(1) = 0,

(31)

where

𝑄 = (

𝑥

2
0 0

0

3𝑥

2

−

𝑥

2

0 −

𝑥

2

3𝑥

2

) , 𝐵 = (

𝜇

2
𝜇 1

𝜇 𝜇

2
1

1 1 1

) . (32)

Here, we will take 𝑚 = 4, 𝑁 = 20, 40, 60, 80, and 100,
and a precision of 10−20. Figure 6 illustrates the characteristic

2.0 2.1 2.2 2.3 2.4 2.5

0

−1

−2

−3

−4

Figure 8: 𝐹 around 𝜇
2
and 𝜇

3
in Example 5.

4.70 4.75 4.80 4.85 4.90

0.0

−0.5

−1.0

−1.5

−2.0

Figure 9: 𝐹 around 𝜇
4
and 𝜇

5
in Example 5.

7.80 7.85 7.90 7.95 8.00
0

2

4

6

8

10

12

Figure 10: 𝐹 around 𝜇
6
and 𝜇

7
in Example 5.

function 𝐹
𝑁
over the range [0, 8]. In this range, the graphs

of 𝐹
𝑁
, 𝑁 = 20, 40, 60, 80, and 100, are on the top of

each other. In this example the first seven (07) eigenvalues
𝜆

𝑘
= 𝜇

2

𝑘
, 𝑘 = 1, . . . , 7, are all simple. Tables 2(a) and 2(b)

illustrate these 𝜇 as function of 𝑁, the number of sampling
points.

5. Conclusion

In this paper we have extended the domain of application
of the regularized sampling method to the case of vectorial
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Table 2: 𝜇 as a function of𝑁 for Example 5.

(a)

𝑁 𝜇

1
𝜇

2
𝜇

3
𝜇

4

20 1.89539417301926842876 2.02558758968702183901 2.29660628213819048323 4.77718462334715123614

40 1.89532715021073954015 2.02545891470303642172 2.29650089361152297043 4.77709199050137280895

60 1.89531503182513465256 2.02543500687372306198 2.29648223596348958117 4.77707495489416773295

80 1.89531699030377280216 2.02543884958899241306 2.29648526430437415553 4.77707769693838662656

100 1.89531696279196052243 2.02543879569567539948 2.29648522170989172904 4.77707765846484979002

(b)

𝑁 𝜇

5
𝜇

6
𝜇

7

20 4.83834197825672007101 7.89099828962247999966 7.93058654329498644499

40 4.83814507749939589802 7.89090804120709347972 7.93039290552171137187

60 4.83810790006947131246 7.89089138476342607463 7.93035620848368882791

80 4.83811385300866362529 7.89089406045343050839 7.93036207289652547074

100 4.83811376961267015403 7.89089402293178420005 7.93036199078631128916

Sturm-Liouville problems with parameter dependent bound-
ary conditions. We have presented the theoretical foundation
of themethod and worked out a few examples to illustrate the
method and shown by the same token that we have indeed
a general method capable of handling with ease very broad
classes of SLPs, whether scalar or vectorial, and providing the
results at a reduced cost.
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