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We generalize the regularized sampling method introduced in 2005 by the author to compute the eigenvalues of scalar Sturm-
Liouville problems (SLPs) to the case of vectorial SLP with parameter dependent boundary conditions. A few problems are worked
out to illustrate the effectiveness of the method and show by the same token that we have indeed a general method capable of
handling with ease very broad classes of SLPs, whether scalar or vectorial.

1. Introduction

In [1] we introduced the regularized sampling method, a
method to compute the eigenvalues of scalar Sturm-Liouville
problems (SLPs) with parameter dependent boundary con-
ditions. We subsequently used this method to compute the
eigenvalues of singular and non-self-adjoint Sturm-Liouville
problems. The scope of the method was further extended to
include the computation of the eigenvalues of discontinu-
ous/impulsive, nonlocal ([2] and the references therein), and
two-parameter SLPs [3]. Continuing our effort we will tackle
in this paper vectorial SLP with parameter dependent non-
separated boundary conditions. Vectorial Sturm-Liouville
problems have been considered in [4-13] and the references
therein while corresponding inverse problems appeared in
[14-17].

2. The Characteristic Function

Consider the vectorial Sturm-Liouville problem,

"+ Q) y =1y, 0<x<1

A(p) (;/r((%,:‘[))) +B(y) (5,((111;))) o, 6

where Q is an n x n matrix function, A and B are real 2n x
2n matrix functions of the parameter y such that the matrix
[A(y) | B(u)] has full rank.

Let Y,, Y, be the solutions of the Sturm-Liouville matrix
equation -Y"+Q(x)Y = #2 Y subject to the initial conditions
Y(0,u) = LY'(0O,u) = 0and Y(O,) = 0, Y (O,p) = I,
respectively, I being the n x n identity matrix and 0 being the
n X n zero matrix.

The general solution of the Sturm-Liouville equation

Y +Q(x)Y = 'Y 2)

is given by Y = Y_a + Y,b with arbitrary constant vectors a
and b. Replacing in the boundary conditions, we get

A (Z) +B(M)<Yc(lyu)a+YS(1,u)b> _o,

Y (Lu)a+Y! (1L,u)b
Yo (L) Y, (Lu)\] (@) _
P2 () i) () -
To have a nontrivial solution () a necessary and sufficient

condition is that F(u) = 0 where the characteristic function
is

F (u) = det {Fmat (u)}, (4)
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where

Fmat ()= 4+ ) (75 ) )

The eigenvalues of (1) are the square of the zeroes of F. It
is well known that the multiplicities of these eigenvalues are
at most 7.

3. Main Results

Let PW be the Paley-Wiener space

PW, = {f entire, | f (1)| < Ce”™#, JOO |f (.“)lz dy < OO]’ >
(6)

and recall the celebrated Whittaker-Shannon-Kotel'nikov
theorem [18].

Theorem 1. Let f € PW,; then

£ (@) =§mf(’§) %

where the series converges uniformly on compact subset of C
and in L*(R).

, (7)

It is known that, in the case of scalar Sturm-Liouville
problems, y(x, ) is an entire function of y for each fixed
x € (0,1]. y(x,p) is in a Paley-Wiener space as a function
of u for each x only in the Dirichlet case. So, we had to
subtract some terms from y(x, y#) to make the difference fall
in an appropriate PW space. We had even to subtract terms
involving multiple integrals to get sharper results when it
comes to computing of the eigenvalues. The regularized sam-
pling method has been introduced recently [1] to overcome
this problem; we do not have to subtract any term involving
any (multiple) integration. In fact we multiplied y(x,pu) —
¢(x, 1) and y'(x, 4) — w(x, u) by an appropriate function of
p and got the eigenvalues with much greater precision at a
reduced cost. Here ¢ and y are known simple functions.

For the vectorial Sturm-Liouville problem at hand, we will
use the regularized sampling method to recover the matrices
Y, (1, ), Yc'(l, W), Y (1, u), and Ys'(l, u) from which we obtain
F(p), the characteristic function whose zeroes are the square
roots of the sought eigenvalues of the problem.

Consider the compatible vector and matrix norms given

by

n
= max ] 1P max Y[R

i=1,..

where Y € R", P € R”". In the following we will make use of
the standard estimate.

Lemma 2. Consider

|Im u| sinu Yo |Im u|
) —| < ——e ) 9)

[cosu| <e <
1+ |u

u

where y, is some constant (we may take y, = 1.72).
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To cover both cases (Y(0,u) = I, Y'(0, @) = 0and Y(0,
w =0, Y'(0, u) = I) we will consider the following initial
value problem:

Y'+ Y = Q) Y,
(10)
Y (0,p) = Ey

Y'(0,4) = Ey,

where E, and E, are n x n matrices or n-vector. We have

sin pux

Y (x,u) = E; cos yx + E,

(11)
. J‘x sinp (x —t)
U

0

Q)Y (t,u)dt.

Our first result is the following theorem.

Theorem 3. Y (x, u) is an entire matrix function of u for each
fixed x € (0, 1] and satisfies the growth conditions

N Yo Jy QI | xltm il
I il s ({lE e 2 e et i )

x| Im
el yl’

=N

sin px }

IIY (x,p) — {El cos px + E,

< Y2 exIImy,l
L+ |y

x| Im pl
S Ns€ >

x| Im pl
bl

"Y' (x, ) = {~uE, sin px + E, cos ptx}“ < s

IlY’ (x, ) + pE, sin px — E, cos px

- J cosp(x—1)Q(t) <E1 cosut + E, e Ht) dtll
0 ¢

< Ya exlImyI
L+ |y

>

(12)

for some positive constants y,, y,, Y3, and y,.

Proof. From (11) and using standard arguments, we conclude
that Y(x, ) is an entire matrix function of y for each x in
(0, 1]. Its derivative with respect to x,

Y' (x, ) = —pE, sin px + E, cos px
x (13)
+ J‘ cosp(x—1) Q@)Y (t, u) dt,
0
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is also an entire matrix function of y for each x in (0, 1]. Going

X
(x=t)| Im ] t|Tm g
<| e t e dt
back to (11) we get at once Jo IRy,

1
. _ Xl Imyl Ol dt = x| Im y
[Y (x, )| < ||E, cos px + E, R € " Jo Q@I Vs€ ,
17)
N J" sinp (x —t)
ol pulx-b where y; = , [ 1Q(0)lldt. As in the scalar case, Y(x, ) is

in a Paley-Wiener space only in the Dirichlet case; however,
Y (x, 4) — {E, cos ux + E,(sin ux/u)} is. As for Y’ (x, ), it is

not; nor is Y’ (x, u) — {—uE, sin px + E, cos px} since they are
Al

=01 -||Y (t )| dt

e {n 1+

not square integrable over the reals for fixed x in (0, 1]. Also,

Tox |M|
X ! .
+L1@M—ﬂe“”“WWQUWWWOJMMf |7 o)y i B cos
(" B sin ut
< pXlml {”E1" + Yo ”Ezll} Jo cosp (x —1)Q(t) <E1 cosut + E, p )dt”
L+ Jul
e [y iQan- ¢y (6 ). < ], kosute-ol 1000}
18)
(14) . (
. IIY (ty) - {El cos ut + E, sin pt HI dt
¢
Multiplying by e ™1™ #!, using Gronwall’s lemma, and multi- X
plying back by e ™#! we get < J COltmud oy ()] V2| | Mmul g
0
“Y (x) ‘l/l)" < ({" 1" + . "E "} el JU ||Q(t)||dt) x|Tm y| _ exllmyl Y2 J 1Q @) dt = Ya xlImyI)
+ l | L+ |y T[]
x|Tm p|
< ye > 1
| 1) where y, =y, [, [Q(t)]|dt. O

. We get at once the following corollaries.
where y; = {[|E; || + y,IE, I} exp(y, .[0 IQ()lldt). Now, using , ,
the above estimate in (10), we get Corollary 4. Y (x, p), Y. (x, 1), Y,(x, 1), Y (x, 1), Yo(x, ),
and Y, (x,y) are entire matrix functions of u for each fixed
x € (0, 1] and satisfy the growth conditions

HY (2, 1) = {El cos ux + E, sm:x}

I¥. o ] < (e b 100 ) e

*Isinp(x -t
SL %‘ (=D IQI - [Y (¢ p)] dt
) [V (5, ) = T cos x| < +2| | Xitm Syzex“m“',
x (x—t) Im ]
Yof t[Im p|
Sl el ¥oDIRE de (16
JO TP (16) e

_ﬁ”W'%T|quamm

Yc'(x,;/t)—{ yIsm;/Lx+J cos‘u(x—t)Q(t)cosytdt}H

Y2 x|Im p| x|Tm p| V4 x| Im pl
<2 ¢ < e , <% ¢ ,
L+ |y " L+ |u|
where Y2 = YoM fol Q) ||dt. Likewise we have "Ys (x, [/l)“ < (%0"”'@1’0 Jo ||Q(t)||dt> exIImplI < ylexllmp.l’
|Y" Ge.p) = {-4E, sinpux + E, cos pux}| Y, (3 p) - 12 < %leex"m“' < petimH,
U U

< JO |cos 1 (x = O] - 1Q )] - ¥ (¢, )] e

x| Im pl
b

u) — I cos yx“ < s



4
1 * nyt
Y, (x,y)—{lcosyx+] cosp(x—1)Q(t) }H
0
< Ya exIIm/,tl
L+ |y
Yo Yo 1 1QW)Ide \ x/tm pl
Y D )
oGl s ({Iod = 2l fer 100w )
Sylexllmm’

Yo (%, u) — {D1 cos pux + D, i e }
u

)2 x|Im |

< e x| Im p|
L+ Juf

< ye ,

x| Im pl
bl

"Y(; (x, ) = {~uD, sin pux + D, cos pLx}" < s

Y, (%, ) + uD; sin px — D, cos px

- J cosp(x—1)Q () <D1 cos ut + D, sin it ) dtll
0 “

(19)

for some generic positive constants y,, V,, Vs> and y,.
Corollary 5. The functions,
Y. (1,4) — Icosu,
1
! .
Y. (1,p) - {—yl sinp + L cosp (1 -1)Q(t) cosytdt} )

sin [/l

Yo(lp) - T—
] :
Y;(l,y)—{lcosy+J. cosy(l—t)Q(t)%Mtdt},
0

Y, (L u) - {D cosu+ D, %},
Yy (1)

- {—,uD1 sinpu + D, cos

1 .
+J cosu(l-1)Q(t) (Dl cos yt +Dzsm‘ut>dt} ,

0 g
(20)

belong to the Paley-Wiener space PW, as functions of y and
thus can be recovered from their samples at w, = km, k € Z
using the WSK series.
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Theorem 6. Let 0 be positive real number and m > 2 a positive
integer. Consider

U, (x,u)
i <Y(x’ u)- {El cos px + E, Sin:xb (sine(ﬁu) )’”,
U, (x, )

sin (6p) \"
O
(1)

= (Y' (%, p) = {-pE, sin px + E, cos px} ) (

belong to the Paley-Wiener space PW, where 0 = x + m0
as functions of u for each fixed x € (0,1] for m >
and satisfy the growth condition |U,(x, ), 1U,(x, w)ll
s¢ eoltmel /(1 4+ Olul)™ where ys is some positive constant (ys
Yo max(y,, y3))-

I IA =

Proof. 1t is enough to note that sin(Ou)/0u is an entire
function of y and satisfies the estimate in the above Lemma
and the fact that Z(x, p) is the product of two entire functions
thus entire. O

Remark 7. To avoid the first singularity of (sin(6u)/0p) ™ we
will take 6 < (N —m)™"

The use of the WSK theorem allows us to recover U, (1, y)
and U, (1, u) as

sino (4 — i)
U 1) = - N
1 () kgzéak o (= the)
o)
sino (4 —
U 1; = - N
2( [’l) ];Zlgk O'(‘l/l—‘blk)

where o, = U (L, i), B = Uy(L, i), 4y = kmfo, and o =
1+ m6.
Hence, Y (1, ) or Y'(1, u) can be recovered as

Y (1,u) = E, cos‘u+E25m”
sin (Op) \
+( (#)) y ksma(# M)
Y' (1, 4) = —uE, sinp + E, cos
sin (Op) \
+( (#)) y ksma(# He)
O i o)

In practice, we take |k| < N for some positive integer N, large
enough, so that F(u) can be reconstructed whose zeros are the
square roots of the sought eigenvalues.

Since ™ 'U, (1, u) and " 'U,(1, u) are in L*(—00, 00),
Jagerman’s result [18] is applicable and yields the following
better estimate.



Abstract and Applied Analysis

Lemma 8 (truncation error). Let U]N(l,‘u) = ZkN:_N Uj(l,
i) (sino(p— )/ o(p = ) denote the truncation of U,(1, ),

j =1,2. Then, for |u| < Nn/o,
U; (L) U (1, )]

|sin yge] ys ;
T (o)™t V1 - 4miT (24)

1 1 1
Vo -5 VNl T a) (N

where ys ; = ||(4m_1U]-(1, O] P%

Lemma 9. Consider |u| < Nm/o,

Y (Lu) - Yy (Ly)l
V' (L) - Yy (1)

p sin (Ou)
O

y |sin pu] ys
7 (/o)™ V1 = 47m+l

1 1 1
' [ JN7o) —f  NNAlo g (N+ )"
(25)

where ys = max{[lg" Y (L w)ll,, I 'Y (1, wll,}

The approximation of Y(1,u) and Y'(1,4) by Yy(1, x)
and Yl'\,(l, u), respectively, induces an approximation of the
characteristic function F by Fy, whose zeros are the square
root of the eigenvalues of the problem.

Let zi* denote an eigenvalue of the problem; then indepen-
dent eigenfunctions associated can be obtained using basis
vectors of the null space of the matrix Fmat(y) as initial
conditions to the differential equation —y" + Q(x)y = &y,
0<x<1.

4. Numerical Examples

In this section we will illustrate the power of the regularized
sampling method as applied to vectorial Sturm-Liouville
problems with parameter dependent boundary conditions.
We will take m = 6, N = 40 and a precision of 107*°
for the first three examples involving two dimensional SLPs.
We will also work out two three-dimensional SLPs one of
them involving parameter dependent boundary conditions.
In these last two examples we take different values of N,
namely, N = 20,40,60,80, and 100, and take m = 4
and a precision of 107%°. The reported multiplicities of the
eigenvalues zi* are just the dimensions of the null space of the
corresponding matrices Fmat(y).

Example 1 (Chanane [1], 1D-version taken from fom Binding
and Browne [19]). Consider

—y) () = Ay, (x), O0<x<1
3, (0)+ (A +d) y,(0) =0

¥, (1) = Ay, (1) =0,

—y) (%) = Ay, (%),
31 (0) + (A +d) y; (0) =0,

y (1) =Ay; (1) =0,
(26)

where d = —47°. The first three eigenvalues were ob-
tained as 9.730886578213082033, 88.76331625258976337,
and 157.88411043863472059 putting them at about 107"
from the exact eigenvalues. All these are double eigenvalues.

Example 2. Consider

" 2 " 2 2
-z, tXz; =Wz, -z, +xX2z,=4z, 0<x<I1

z,(0)=0, 2z,(00=0 (27)

z, (1) =0,

The first four eigenvalues were obtained as
10.149980317596192645, 39.426774741845613693,
88.33456043776637171, and  157.20995003768636950.
Their multiplicity is two. Figure 1 illustrates the graph of the
characteristic function.

z,(1) =0.

In the next example we change the boundary conditions
in Example 2 to a parameter dependent one.

Example 3. Consider

n 2 " 2 2
-z, tXz, =Wz, -z, +Xz,=4z, 0<x<I1

z,(0) =0, z,(0)=0
S (28)
zi(D)+pz, (1) +u'z, (1)=0

Wz, () +2, (1) +2) (1) + 2, (1) = 0.

The first ten eigenvalues were obtained as
1.8774711215942920040, 5.743710132061151193,
19.343498090220217814, 27.524136648884737570,
57.53122978141141088, 68.17260384634582088,
115.66805223522017586, 128.14561531120321356,

193.70672667853536264, and  207.68609472970380538.
All these are simple eigenvalues. Figure 2 illustrates the
graph of the characteristic function.

Next we consider three-dimensional vectorial SLPs, with
different boundary conditions.

Example 4. Consider

" 2 _ 2 n o 3x X 2
—Z; tX 2z, =Uzp, -z, +722—EZ3 = Uz,

n X 3x 2
—z3—5z2+723:yz3, 0<x<l1 (29)

z,(0)=0, 2z,(00=0, 2z;(0)=0

z,(1)=0, z,(1)=0, z(1)=0.



TABLE 1: y as a function of N for Example 4.
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M3

My

6

N 12 H

20 3.18255001139908084139 3.24667169525908938767
40 3.18255272015329488134 3.24667965370940216187
60 3.18255257457282246273 3.24667922487683254112
80 3.18255257724071613616 3.24667923278762738065
100 3.18255257728954451935 3.24667923293045271115

6.30074330869793149011
6.30075208373683858194
6.30075161400550151819
6.30075162260634961554
6.30075162276373835846

6.32071003783954269867
6.32073018962762953754
6.32072910805919989533
6.32072912799411873146

6.32072912835397407977

0.20 [

0.15 |

0.10 }

0.05 ¢

0.00

-0.05 |

00—

FIGURE 1: F for Example 2.

150 |

sof

FIGURE 2: F for Example 3.

Here, we will take m = 4, N = 20,40, 60, 80, and 100,
and a precision of 1072°. Figure 3 illustrates the characteristic
function Fy; over the range [2.8,6.9], while Figures 4 and 5
zoom into the regions containing the eigenvalues. Note that,
in the range of interest [2.8,6.9], the graphs of Fy, N =
20, 40, 60, 80, and 100, are on the top of each other. A 107
precision on y can be obtained with just N = 40. It appears
clearly that in this example we have a simple eigenvalue
A, = i and a double eigenvalue A, = 3, followed by a
simple eigenvalue 1; = y; and a double eigenvalue A, = y;
(Figures 7, 8, 9, and 10). To obtain the double eigenvalues we
look for the roots 7 of F'(u) and then evaluate F(z) which
happened to be in each case of the order of 1072 Table 1
illustrates these p as function of N, the number of sampling
points.

0.005

0.000

-0.005

-0.010

0.00001

5x107°

—5x10°°F

316 318 320 322 324 326 3.28

FIGURE 4: F around the first cluster of zeroes for Example 4.

The first few alpha coefficients in the cardinal series
expansion of U, (1, u) are given as follows:

0.0507 0 0
oy = 0 0.130 -0.0447 |,

0  -0.0447 0.130

0.0165 0 0
a=-a,=| 0 00451 -0.0157 |,

0 —-0.0157 0.0451

—-0.00455 0 0
oy = —&_y = 0 —-0.0105 0.00352 |,

0 0.00352 -0.0105

0.00197 0 0
a=-ay=( 0 000442 -0.00147 |.

(30)

0 —-0.00147 0.00442

The above data have been reported with only a few digits.
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1500 -
1000 -
500
0 Iz
6x107° 1
4x1078 .
2x1078 .

0 Iz
—2x1078 ]
—4x10°8 . B L BN BT -

6.29 6.30 6.31 6.32 6.33 6.34
FIGURE 6: F around the second cluster of zeroes for Example 4.
0.3 i
0.2 ]
0.1 ]
0.0 - - u
1.80 1.85 1.90 1.95 2.00
FIGURE 7: F around g, in Example 5.
Example 5. Consider
2"+ Qz=p’z, 0<x<1
(31)
z(0)=0 z(1)+BZ' (1) =0,
where
¥ 0 0 "
0 ¥ % wopl
Q= 2 2| Belwwl (32)
x 3x 1 1 1
0 -= =
2 2

Here, we will take m = 4, N = 20,40, 60, 80, and 100,
and a precision of 107>°. Figure 6 illustrates the characteristic

0
—1F
2L
-3+
4

2.0 2.1 2.2 2.3 2.4 2.5
FIGURE 8: F around y, and y; in Example 5.

0.0

20k | | |
4.70 4.75 4.80 4.85 4.90

FIGURE 9: F around y, and y; in Example 5.

7.80 7.85 7.90 7.95 8.00

FIGURE 10: F around p, and y, in Example 5.

function Fy over the range [0, 8]. In this range, the graphs
of Fy, N = 20,40,60,80, and 100, are on the top of
each other. In this example the first seven (07) eigenvalues
A = plz, k = 1,...,7, are all simple. Tables 2(a) and 2(b)
illustrate these y as function of N, the number of sampling
points.

5. Conclusion

In this paper we have extended the domain of application
of the regularized sampling method to the case of vectorial



TABLE 2: y as a function of N for Example 5.
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U

My

2.29660628213819048323
2.29650089361152297043
2.29648223596348958117
2.29648526430437415553
2.29648522170989172904

4.77718462334715123614
4.77709199050137280895
4.77707495489416773295
4.77707769693838662656
4.77707765846484979002

He

Uy

8
(a)
N th t
20 1.89539417301926842876 2.02558758968702183901
40 1.89532715021073954015 2.02545891470303642172
60 1.89531503182513465256 2.02543500687372306198
80 1.89531699030377280216 2.02543884958899241306
100 1.89531696279196052243 2.02543879569567539948
(b)
N Us
20 4.83834197825672007101
40 4.83814507749939589802
60 4.83810790006947131246
80 4.83811385300866362529
100 4.83811376961267015403

7.89099828962247999966
7.89090804120709347972
7.89089138476342607463
7.89089406045343050839
7.89089402293178420005

7.93058654329498644499
7.93039290552171137187
7.93035620848368882791
7.93036207289652547074
7.93036199078631128916

Sturm-Liouville problems with parameter dependent bound-
ary conditions. We have presented the theoretical foundation
of the method and worked out a few examples to illustrate the
method and shown by the same token that we have indeed
a general method capable of handling with ease very broad
classes of SLPs, whether scalar or vectorial, and providing the
results at a reduced cost.
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