Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2015, Article ID 768345, 6 pages
http://dx.doi.org/10.1155/2015/768345

Research Article

Boundary Criteria for the Stability of Delay

Differential-Algebraic Equations

Leping Sun and Yuhao Cong

College of Mathematics and Sciences, Shanghai Normal University, Shanghai 200234, China

Correspondence should be addressed to Leping Sun; sunlp611@126.com

Received 19 October 2014; Revised 17 April 2015; Accepted 24 April 2015

Academic Editor: Valery Y. Glizer

Copyright © 2015 L. Sun and Y. Cong. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the asymptotic stability of delay differential-algebraic equations. Two stability criteria described by
evaluating a corresponding harmonic analytical function on the boundary of a certain region are presented. Stability regions are
also presented so as to show the method geometrically. Our results are not reported.

1. Introduction

Functional differential equations have a wide range of appli-
cations in science and engineering. Perhaps the most natural
type of functional differential equation is a “delay differential
equation,” that is, differential equations with dependence
on the past state. One type of past dependence is that it is
carried out through the state variable but not through its
derivative. Then the equation can be expressed as delay differ-
ential equation (DDE). Delay differential-algebraic equations
(DDAEs), which have both delay and algebraic constraints,
arise frequently in circuit simulation and power system,
due to, for example, interconnects for computer chips and
transmission lines, and in chemical process simulation when
modeling pipe flows.

The criteria for the stability of DDAE can be classified
into two categories according to their dependence upon the
size of delays. The criteria that do not include information on
delays are referred to as the delay independent criteria, while
those carrying the information on delays are called the delay
dependent criteria.

In this paper we are concerned with the asymptotic
stability of a system of DDAEs:

Ax" () +Bx (t) +Cx (t - 1) = 0, (1)
where A,B,C € C%“ are constant real matrices, A is
singular, and 7 > 0 stands for a constant delay. We will study
delay independent criteria as well as delay dependent criteria

for the above system. Our stability criteria only require the
evaluation of a real function on the boundary of a certain
region in the complex plane. The region is given as the
intersection of a rectangle and a circle both specified with the
system.

We will first introduce zeros of analytical function in a
bounded region and the logarithmic norm of a matrix. Then
the stability criteria of DDAEs are presented.

2. Preliminary

As a preliminary, we will introduce theorems of complex-
variable functions. Let W denote a bounded region of the

complex plane. 9W and W represent the boundary and the
closure of W, respectively. That is, W =0WuUW:

) =f(xy)=ulxy)+iv(xy) (2)
is an arbitrary analytical function for s € W. Here i* = —1,
s = x + iy, u(x,y) = Ref(s), and v(x,y) = Imf(s).

The following two theorems give sufficient conditions for
nonexistence of zeros of f(s) € W. The two theorems only
require the evaluation on the boundary oW of harmonic
analytical functions each corresponding to f. Hence, they are
called boundary criteria.

Theorem 1 (see [1]). If for any (x,y) € OW, the real part
u(x, y) in (2) does not vanish, then f(x, y) # 0 for any (x, y) €
w.
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Theorem 2 (see [1]). Assume that, for any (x, y) € OW, there
exists real constant A satisfying u(x, y) + Av(x, y) # 0. Then

f(s) =ulx, y) +i(x, y) # 0, for any (x, y) € W.

Theorem 2 is an extension of Theorem 1. The following
four lemmas are important to our results.

Lemma 3 (see [2]). Let A € C¥¥ and B ¢ R If
the inequality |A| < B holds, then the inequality p(A) <
p(B) is valid. Here the order relation of matrices of the same
dimensions should be interpreted componentwise. |A| stands
for the matrix whose component is replaced by the modulus of
the corresponding component of A, and p(A) means the spectral
radius of A.

For a complex matrix W, let u(W) be the logarithmic
norm of W:

[I+AW| -1

A (3)

pu(W) = Algr(l)+

p(W) depends on the chosen matrix norm. Let |[W]| denote
the matrix norm of W subordinate to a certain vector norm.
In order to specify the norm, the notation || - || p s used. And
the notation 4,(-) is also adopted to denote the logarithmic
norm associated with || - || e

Lemma 4 (see [2]). For each eigenvalue of a matrix W €
C™, the inequality

—php W) <Red; (W) < p, (W) (4)
holds.

Lemma55 (see [3]). LetU, V be nxk rectangular matrices with
k < n, and let A be an n X n matrix; then

T=1+V'A"'U (5)
is nonsingular if and only if A + UV is nonsingular. In this

case, one has

-1

(A+UVT) =At-Alurtviath (6)

Lemma 6 (see [3]). Let || - | be a norm defined on C™" with
Il = 1and A € C™" satisfy | All < 1. Then I-A is nonsingular
and satisfies

1

-4 < AT ?)
3. Delay Independent Stability of DDAEs
Now we deal with the asymptotic stability of DDAEs,
Ax' () +Bx (1) +Cx (t—71) = 0, (8)

where A, B, C € R are constant real matrices, A is singular,
and 7 > 0 stands for a constant delay. According to [4], the
system is solvable if and only if the matrix pencil AA + B is
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regular, that is, not identically singular for any A. Thus, for
the system to be asymptotically stable, B is required to be
nonsingular since; otherwise, A = 0 will be a singular value of
the matrix pencil.

For the stability of system (8), we investigate its charac-
teristic equation:

P(A) =det[AA+B+Ce "] = 0. )

When A # 0 and letting s = 1/A, then the above characteristic
equation may be written as

1 _
det| ~A+B+Ce™| =0. (10)
S

If B - ICll < 1, matrix (B + Ce ™) is nonsingular, so (10)
may be written as

det[s1+A(B+Ce™) | =0 )
and (11) also may be written as
det[sT+A(B+Ce™) | =U (6, )+iV (x.y), (2)

where s = x + iy. By the above assumption, Re(s) < 0 &
Re A < 0 is valid.
The following lemma is well known.

Lemma 7 (see [5]). If the real parts of all the characteristic
roots of (11) are less than zero, then system (8) is asymptotically
stable; that is, solution x(t) of (8) satisfies x(t) — 0ast —
00.

The following is a sufficient condition for the stability of

(8).

Lemma8. Let |B!|| - |C] < 1. If the condition

Al |37 il

bl il AL (13)
L= [BIcCl

U (—ABil) +

holds, system (8) is asymptotically stable.

Proof. Assume that the condition of the lemma is satisfied
and that system (8) is unstable. There is a characteristic root
of (11) with positive real part. Note that the characteristic root
is an eigenvalue of the matrix —A(B + Ce ™71, By Lemma 5,
we have the following inequalities:

0<Re(s) <p[-A(B+Ce™) . (14)
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Applying the properties of the logarithmic norm and Lemmas
5 and 6, we have

ul-A(B+ce™) ]
=u|-a(B'-B'C(1+BCe ’/S)‘leff/stl)]

=u[-AB" +ABC(1+B7'Ce ey 5]

< u(cam)

+ ||AB‘1c (1+B7'Ce™) (15)

<u(-AB™")

Al 1cn|(r+ B ce )|

-1 e—‘r/sB—l “

Al |87 icl

< AR ) —1_ 1 "
K (AR e

This however contradicts the condition; hence, the proof is
completed. O

From the above lemma, ify(—AB_l) +[ANBHPICH/ (1 -
IBHIICID < 0 is not satisfied, system (8) may be stable or
unstable. By Lemma 5, we have the following inequalities:

—u [A (B+Ce_f/s)_l] <Res

(16)
<u[-A(Brce™) ]
A derivation similar to that of Lemma 8 leads to
oy s
HAE) - T S
I v
o lArBIC
Sy(—AB )+ 1—”3_1” il

So according to Lemma 8, if y(—AB’l) +lAIBHPICH/ (1 -
IBHIICI) < 0 is not valid, there are two situations when the
condition of Lemma 8 fails. The following theorem gives two
regions from two situations including all the roots of (11) with
nonnegative real parts.

Theorem 9. Let |B'| - |C|| < 1. Suppose that there exists a
root of (11) whose real part is nonnegative.
(i) If one has the estimation

Al |37 el

(18)
LB el

‘u(—AB’l)+

SCHEME 1
then the inequalities
oy lanE el
OSRCSS#(—AB )+W,
I V] ) el o
_M(_IAB )_ 1— "B_l" "C" <Im (S) ( )
o lanE el
<u(iAB)+ ————,
AR TE
hold (see Scheme 1).
(ii) If one has the estimation
o lanE e
—u(AB) - — L (20)
“ )
defining a positive number f3 satisfying
1A en
_u(AB ™) - peim™ _ (21)
AR T
then the inequalities
2
Ly lArBIen .
ﬂSReSS‘M(—AB )+W 5
2
gy B IC 2
_M(—IAB )—W <Ims ( )
2
ooy Al en e
<u (1AB )+ WQ

arevalid, wherem = | Al|B |+ ANIB~ IZICIl/(1-IB~HIICI)

(see Scheme 2).
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Proof. (i) A similar reduction to that of Lemma 8 yields

lan |3 e

T (@23
1-[|B]ICl

0<Res<pu(-AB')+

Noting that the imaginary part of an eigenvalue of a matrix A
is equal to the real part of an eigenvalue of —iA, we have the
second inequality.

(ii) By Lemma 5,

—u [A (B+CeiT/s)_l] <Res

(24)
<ul-A (B+Ce4/s)7l] '
It leads to
w48 ) - i S 2s)
Ly i
<u(-AB )+W.

Let 3y = —u(AB™)- || AllIB™'I?ICIl/(1- B~ [|C]). Inequality
(24) implies

-Res<yu [A (B+Ce4/s)71]

o A ien
< p(AB 1)+W| / (26)
g, A 2 Lo p——
< [/l( ) + We 5
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where the truth of the last inequality is attained from the
following.

Sets = s, + syiand s; = Res > 0; then |e™™/"] =
|e_7/(51+szi)| — 6—51‘1’/|S|2 — e—Res"r/Islz’ where
Is| < p [—A (B+Ce_7/s)_1] < "A (B+Ce_7/s)_1||
= -1_pgt! ~1,-t/s\7 —t/sp1
= ||A(B ~B'c(1+B'ce™) B )" o
2
_ AL [B7H" Il
B [ il
1= [BICI
So |e /5| < e~ Res/ mz, which means

A e

e Res~r/m2. (28)
1= B ICl

Res > —y(AB_l)

Hence, taking (25) into consideration, we have

oy JAETICl e e
Resz—y(AB )—We /m” (29)
Iteration
o A en e
-u(aB )‘We T T hm (30)
(7=0,1,2,...)

and the monotonicity

BosPi<--<Pj<Pj<--<Res

Sy (—ABfl) +

ensure that the limit of the series {$;} is equal to 3, where f8
is positive number satisfying

Al |37 il (3D
1-[B1Cl

A e

prim* _ (32)
T T I

~u(4B”)

Therefore, the first inequality holds. In a similar manner we
can get the second inequality. O

There is also another possible region including roots with
nonnegative real parts which is illustrated in the following
theorem.

Theorem 10. Let |B7}| - |C|| < 1. If s is a characteristic root of
(12) with nonnegative real part, then the inequality

sl < p 141 B (1-|cB)) ] (33)

holds.
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SCHEME 3

Proof. By the assumption above, there exists an integer j (1 <
j < d) such that

s=A;[-A(B+ Ce"“)*l] . (34)

This implies the inequality
sl < p(-4 (B+Ce‘”5)_1). (35)

It is obvious that

‘—A (B+Ce*r/s)—l‘ _ IABA (I+CB71e71/5)_1’

<|aB|-y (1 _ |CB‘1|") (36)
<|Al-|B|- (1-|cB7))
Therefore, due to Lemma 4, we have the conclusion. O

In fact the region is a circle centered at the origin (see
Scheme 3).

4. Boundary Criteria for DDAEs

Let

Al |3 1cl

=2 (37)
1-[B]ICl

y=u (—ABfl) +

By virtue of Lemma 8, if y < 0, system (8) is asymptotically
stable. If y > 0, system (8) may be stable or unstable. We
consider the stability of (8) when y > 0.

Let By = —u(AB™") — |AIIBIPICI/(1 = 1B~ IICI)) and
y = 0. We define the following quantities according to the
sign of S, (see Theorem 9).

(i) If B, < 0, then we put

E, =0,
E=u(-AB")+ %’
Fy=-u(-iAB™)- %, (38)
F=u(iAB™")+ %'
(if) If B, > 0, then we put
E, =B,
E=u(-AB™")+ % ~prin
Fy=-u(-iAB™")- %[Mﬂz’ (39)
F=u(iAB™")+ % ~peim?.

where f3 is a root of the equation

A i

“prim’ _ (40)
T TTo

~u(4B”)

Under the above notations we turn our attention to the
following three kinds of bounded regions in the s-plane.

Definition 11. Letl,,1,,1;,and ], denote the segments {(E,, y) :
Fy, <y < FL{(x,F) : Ey < x < E},{(E,y) : F, < y < F},
and {(x,F,) : E, < x < E}, respectively. Furthermore, | =
I, Ul Ul Ul, and let D be the rectangular region surrounded
by L

Definition 12. Let R = p[|Al - [B™'| - (I = |CB'|)"]. Let K
denote the circular region with radius R centered at the origin
of the plane of C:

K={(r,0):r<R,0<0<2m}. (41)

Definition 13. Let T represent the intersection D N K. The
boundary of T' is denoted by 0T and T'= T' U 0T

A necessary and sufficient condition for the delay-
independent stability of system (8) is presented in [6]. The
following two theorems give criteria for the delay-dependent
stability of system (8). We apply Theorems 1 and 2 to prove
them, respectively.
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Theorem 14. If for any (x, y) € 0T, the real part U(x, y) in
(12) does not vanish, then system (8) is asymptotically stable.

Proof. Assume that the condition is satisfied and that system
(8) is unstable, this means the existence of a characteris-
tic root of (12) with nonnegative real part. According to
Lemma 8, it suffices to prove P(s) # 0 for Res > 0.
Applying Theorems 9 and 10 and Definition 13, it is sufficient
to consider s € T. From the assumption of this theorem
and statement of Theorem 9, this contradicts with P(s) = 0
for s € T. Hence, P(s) # 0 for Res > 0 and the proof is
completed. O

Due to Theorem 2, we can further extend the above result
as follows.

Theorem 15. Assume that, for any (x, y) € 9T, there exists a
real constant A satisfying

U(x,y)+AV (x,y) #0, (42)
Then system (8) is asymptotically stable.

The proof is analogous to Theorem 14. Two kinds of
region T considered in Definition 13 and Theorems 14 and 15
are as in Scheme 4.

5. Conclusions

We give two criteria for the delay-dependent stability of linear
delay system (8). Theorems 9 and 10 show that the unstable
characteristic roots of system (8) are located in some specified
bounded region in the complex plane, while Theorems 14 and
15 show that it is sufficient to check certain conditions on
its boundary to exclude the possibility of such roots from
the region. Theorems 1 and 2 provide general and simple
criteria for nonexistence of zeros of an analytic function in
any boundary region.
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