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We show that the sublinearity hypothesis of some well-known existence results on multipoint Boundary Value Problems (in short
BVPs) may allow the existence of infinitely many solutions by using Tietze extension theorem. This is a qualitative result which is
of concern in Applied Analysis and can motivate more research on the conditions that ascertain the existence of multiple solutions
to sublinear BVPs. The idea of the proof is of independent interest since it shows a constructive way to have ordinary differential
equations with multiple solutions.

1. Introduction

BVPs occur in most of the branches of sciences, engineering,
and technology, for example, boundary layer theory in fluid
mechanics, heat power transmission theory, space technol-
ogy, and also control and optimization theory. Concretely,
BVPs manifest themselves through the modelling of the
motion of a particle under the action of a force, the diffusion
of heat generated by positive temperature-dependent sources,
the distribution of shear deformation in a beam formed
by a few lamina of different materials, the deflection of
a beam, and the transverse displacement of an elastically
imbedded rail to a distributed transverse load, and so forth
[1]. In particular higher order linear differential equations
subjected to multipoint boundary conditions, of which we
are concerned, arise in the modelling of many phenomena
of physical or technological nature such as the deflection of
a curved beam, the three-layer beam, and the steam supply
control slide [2].

Let us base our terminology on those of Degla [3], Elias
[4], and Coppel [5]. Let 𝑛, 𝑚, and 𝑘

1
, . . . , 𝑘

𝑚
be positive

integers such that 2 ≤ 𝑚 ≤ ∑
𝑚

𝑖=1
𝑘
𝑖
= 𝑛, and let 𝑎 = 𝑎

1
< ⋅ ⋅ ⋅ <

𝑎
𝑚
= 𝑏 be 𝑚 real numbers. We will denote by 𝑃 the Levin

polynomial defined by 𝑃(𝑡) = ∏𝑚
𝑖=1
(𝑡 − 𝑎
𝑖
)
𝑘𝑖 and we will deal

with disconjugate 𝑛th-order differential operators on [𝑎, 𝑏] of
the form

𝐿𝑥 := 𝑥
(𝑛)
+ 𝑝
1
(𝑡) 𝑥
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑝
𝑛
(𝑡) 𝑥, (1)

where the coefficients 𝑝
1
, . . . , 𝑝

𝑛
are given real-valued con-

tinuous functions on [𝑎, 𝑏]; for instance, 𝐿𝑥 = 𝑥
(𝑛). The

disconjugacy of the higher order differential linear operator
𝐿 means that every nontrivial solution of the ordinary
differential equation 𝐿𝑥 = 0 has less than 𝑛 zeros counting
their multiplicities. This means also that 𝐿 has a Polya
factorization; that is, there exist 𝑛 smooth positive functions
V
𝑖
∈ C𝑛−𝑖+1([𝑎, 𝑏]), 1 ≤ 𝑖 ≤ 𝑛, such that

𝐿𝑥 = V
1
⋅ ⋅ ⋅ V
𝑛
𝐷

1

V
𝑛

𝐷 ⋅ ⋅ ⋅ 𝐷

1

V
1

𝑥

for every 𝑥 ∈ C
𝑛
([𝑎, 𝑏]) ,

(2)

where𝐷 = 𝑑/𝑑𝑡 (cf. [5]).
It follows that 𝐿 admits Green’s function associated with

the Boundary Value Problems:

𝐿𝑥 = 0,

𝑥
(𝑗)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑘

𝑖
− 1,

(3)
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and so for every 𝑓 ∈ C([𝑎, 𝑏]), there exists a unique solution
of the BPVs:

𝐿𝑥 = 𝑓,

𝑥
(𝑗)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑘

𝑖
− 1.

(4)

Besides, we will also adopt the notations ‖𝑓‖
∞

=

max
𝑎≤𝑡≤𝑏

|𝑓(𝑡)| and

𝑆
𝑓
(𝑡) =

{

{

{

𝑓 (𝑡)





𝑓 (𝑡)






if 𝑓 (𝑡) ̸= 0

0 if 𝑓 (𝑡) = 0
(5)

for any 𝑓 ∈ C([𝑎, 𝑏]).
Many authors have proved the existence of at least one

nontrivial solution for sublinear Boundary Value Problems
that can be transformed to the model problem

𝐿𝑦 = 𝐹 (𝑡, 𝑦) (6)

under various boundary conditions and where

𝐹 : [𝑎, 𝑏] ×R → R
+ (7)

is sublinear with respect to 𝑦 uniformly on 𝑡; that is,

lim
|𝑦|→+∞

(max
𝑎≤𝑡≤𝑏

𝐹 (𝑡, 𝑦)





𝑦





) = 0,

lim
𝑦→0

(min
𝑎≤𝑡≤𝑏

𝐹 (𝑡, 𝑦)





𝑦





) = +∞;

(8)

see [3, 6–8] and the references therein. Some authors have
shown the existence of multiple solutions (sometimes by
introducing a parameter); see [9–15] and the references
therein. But results about the cases of sublinear Boundary
Value Problems of any order with infinitely many solutions
are scarce; see [15, 16].

In this paper, using a new basic topological idea in the
Theory of Differential Equations, we would like to underline
that, under the hypothesis that 𝑓 is sublinear with respect
to 𝑦 uniformly on 𝑡, infinitely many solutions may occur.
This will be achieved by starting adequately with infinitely
many functions satisfying the boundary condition and by
constructing a sublinear (in fact bounded) function 𝐹 for
which a sequence of these functions satisfies the Boundary
Value Problem:

𝐿𝑦 (𝑡) = 𝐹 (𝑡, 𝑦 (𝑡)) , 𝑎
1
≤ 𝑡 ≤ 𝑎

𝑚
,

𝑦
(𝑗)
(𝑎
𝑖
) = 0, 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘

𝑖
− 1.

(9)

2. The Result

We have the following.

Theorem 1. Let 𝜓 ∈ C𝑛([𝑎
1
, 𝑎
𝑚
]) be such that 𝐿𝜓 > 0

everywhere in [𝑎
1
, 𝑎
𝑚
] and satisfy the boundary condition of

(4); for example, the unique solution𝜓 of 𝐿𝑦 = 1 and 𝑦(𝑗)(𝑎
𝑖
) =

0, 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘
𝑖
− 1.

Moreover let 𝑔 ∈ C𝑛([𝑎
1
, 𝑎
𝑚
]) be such that

𝑃 (𝑡) 𝑔 (𝑡) > 0 𝑓𝑜𝑟 𝑡 ∈

𝑚−1

⋃

𝑖=1

(𝑎
𝑖
, 𝑎
𝑖+1
) ,

𝑔
(𝑗)
(𝑎
𝑖
) = 0 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘

𝑖
− 1,

[𝐿𝑔] (𝑎
𝑖
) = 0 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑚.

(10)

(e.g., the function 𝑔 = 𝜓2𝑛+1).
Then there exist a positive integer ℓ

0
and a bounded positive

continuous function

𝐹 : [𝑎
1
, 𝑎
𝑚
] ×R → (0,∞) (11)

such that all the functions 𝜓+𝑔/ℓ with ℓ ≥ ℓ
0
satisfy the single

nonlinear problem

𝐿𝑦 = 𝐹 (𝑡, 𝑦) (12)

with the boundary condition of (4); that is,

𝑦
(𝑗)
(𝑎
𝑖
) = 0, 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘

𝑖
− 1. (13)

For a proof of this theorem, we will use the following.

Lemma 2 (see [3]). If 𝐿 is disconjugate, then there exists a
continuous function 𝜑 ∈ C([𝑎

1
, 𝑎
𝑚
]) positive on⋃𝑚−1

𝑖=1
(𝑎
𝑖
, 𝑎
𝑖+1
)

with 𝜑/|𝑃| having a positive infimum such that

𝑆
𝑃
(𝑡) 𝑦 (𝑡) ≥ 𝜑 (𝑡)





𝑦



∞

, 𝑎
1
≤ 𝑡 ≤ 𝑎

𝑚
, (14)

for every 𝑦 ∈ C𝑛([𝑎
1
, 𝑎
𝑚
]) satisfying the differential inequality

𝐿𝑦 ≥ 0 (15)

and the homogeneous Hermite𝑚-point conditions

𝑦
(𝑗)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚; 0 ≤ 𝑗 ≤ 𝑘

𝑖
− 1. (16)

Proof of Theorem 1. For the sake of simplicity we take 𝜓 to be
the solution of

𝐿𝑥 = 1,

𝑥
(𝑗)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑘

𝑖
− 1,

(17)

and so 𝜓 is 𝑛-times differentiable with

𝐿𝜓 = 1 > 0,

𝜓
(𝑗)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑘

𝑖
− 1,

(18)

and furthermore, according to the above lemma, we have
inf(𝜓/𝑃) > 0. Hence by setting 𝑔 = 𝜓

2𝑛+1, it is clear that
𝑃 ⋅ 𝑔 is positive on⋃𝑚−1

𝑖=1
(𝑎
𝑖
, 𝑎
𝑖+1
) and moreover

𝑔
(𝑘)
(𝑎
𝑖
) = 0, 1 ≤ 𝑖 ≤ 𝑚, and all 𝑘 = 0, . . . , 𝑛, (19)
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which implies

𝑔
(𝑗)
(𝑎
𝑖
) = 0 for 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘

𝑖
− 1,

[𝐿𝑔] (𝑎
𝑖
) = 𝑔
(𝑛)
(𝑎
𝑖
) +

𝑛−1

∑

𝑗=0

𝑝
𝑛−𝑗

(𝑎
𝑖
) 𝑔
(𝑗)
(𝑎
𝑖
) = 0

for 𝑖 = 1, . . . , 𝑚.

(20)

Now set

𝛼 :=

1

2

min {[𝐿𝜓] (𝑡) , 𝑎
1
≤ 𝑡 ≤ 𝑎

𝑚
} =

1

2

,

𝛽
0
:= max {[𝐿𝜓] (𝑡) , 𝑎

1
≤ 𝑡 ≤ 𝑎

𝑚
} = 1,

(21)

and 𝛽 := 𝛼 + 𝛽
0
= 3/2.

Moreover, choose ℓ
0
≥ 1 such that (1/ℓ

0
)‖𝐿𝑔‖

∞
≤ 𝛼 =

1/2. Thus for all ℓ ≥ ℓ
0
we have, on the one hand,

𝐿𝑦
ℓ
= 𝐿𝜓 +

𝐿𝑔

𝑙

≥ 𝐿𝜓 −





𝐿𝑔



∞

𝑙

≥ 1 −

1

2

=

1

2

, (22)

and on the other hand,

𝐿𝑦
ℓ
= 𝐿𝜓 +

𝐿𝑔

𝑙

≤ 𝛽
0
+





𝐿𝑔



∞

𝑙

≤ 1 +

1

2

=

3

2

, (23)

yielding

1

2

≤ 𝐿𝑦
ℓ
≤

3

2

. (24)

Moreover let us set

Γ := {0} ∪ {

1

ℓ

, ℓ ∈ N, ℓ ≥ ℓ
0
} ,

𝑦
𝜇
:= 𝜓 + 𝜇𝑔 for every 𝜇 ∈ Γ.

(25)

Also set

𝐴
𝜇
:= {(𝑡, 𝑦

𝜇
(𝑡)) , 𝑎

1
≤ 𝑡 ≤ 𝑎

𝑚
} for each 𝜇 ∈ Γ, (26)

𝐴 := ⋃

𝜇∈Γ

𝐴
𝜇
. (27)

Note at once that𝐴
0
is the graph of𝜓 and that, for every𝜇 ∈ Γ,

𝐴
𝜇
is compact and so 𝐴

𝜇
\ ⋃
𝑚

𝑖=1
{(𝑎
𝑖
, 0)} is open in 𝐴.

For 𝜇
1

̸= 𝜇
2
in Γ, we have

(𝑠, 𝑧) ∈ 𝐴
𝜇1
∩ 𝐴
𝜇2

⇐⇒ 𝑧 = 𝑦
𝜇1
(𝑠) = 𝑦

𝜇2
(𝑠)

⇐⇒ 𝑧 = 𝑦
𝜇1
(𝑠) , (𝜇

1
− 𝜇
2
) 𝑔 (𝑠) = 0,

with 𝜇
1

̸= 𝜇
2

⇐⇒ 𝑧 = 𝑦
𝜇1
(𝑠) , 𝑔 (𝑠) = 0,

⇐⇒ 𝑠 ∈ {𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
} , 𝑧 = 0.

(28)

Hence

𝐴
𝜇1
∩ 𝐴
𝜇2
= {(𝑎
𝑖
, 0) ; 𝑖 = 1, . . . , 𝑚}

for 𝜇
1
, 𝜇
2
∈ Γ with 𝜇

1
̸= 𝜇
2
.

(29)

Besides it is not hard to see that 𝐴 is closed (in fact compact)
because every sequence of elements of 𝐴 has a subsequence
that is either contained in some fixed 𝐴

𝜇0
(which is compact

as the graph of a continuous function on a compact set) or
distributed into infinitely many 𝐴

𝜇
in which case it has an

adherent point in 𝐴
0
⊂ 𝐴.

Therefore by (29), (27), (24), and the continuity of the
functions 𝑦

𝜇
, we have a well-defined and continuous map

𝑓 : 𝐴 ⊂ [𝑎
1
, 𝑎
𝑚
] ×R → [𝛼, 𝛽] ⊂ (0,∞) ,

where 𝛼 = 1

2

, 𝛽 =

3

2

,

(30)

characterized by the relation

𝑓 (𝑡, 𝑥) := 𝐿𝑦
𝜇
(𝑡) if (𝑡, 𝑥) ∈ 𝐴

𝜇
. (31)

But, by the well-known Tietze extension theorem (also
known as Tietze-Uryshon-Brouwer theorem) [17, 18], this
map 𝑓 has a continuous extension

𝐹 : [𝑎
1
, 𝑎
𝑚
] ×R → [𝛼, 𝛽] ⊂ (0,∞) . (32)

It follows that for every 𝜇 ∈ Γ we have

𝐿𝑦
𝜇
(𝑡) = 𝐹 (𝑡, 𝑦

𝜇
(𝑡)) , 𝑎

1
≤ 𝑡 ≤ 𝑎

𝑚
,

𝑦
(𝑗)

𝜇
(𝑎
𝑖
) = 0, 𝑖 = 1, . . . , 𝑚; 𝑗 = 0, . . . , 𝑘

𝑖
− 1,

(33)

completing the proof.
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