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Copyright © 2015 Jesús Montes et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Synapses are key elements in the information transmission in the nervous system. Among the different approaches to study
them, the use of computational simulations is identified as the most promising technique. Simulations, however, do not provide
generalized models of the underlying biochemical phenomena, but a set of observations, or time-series curves, displaying the
behavior of the synapse in the scenario represented. Finding a general model of these curves, like a set of mathematical equations,
could be an achievement in the study of synaptic behavior. In this paper, we propose an exploratory analysis in which selected curve
models are proposed, and state-of-the-art metaheuristics are used and compared to fit the free coefficients of these curves to the
data obtained from simulations. Experimental results demonstrate that several models can fit these data, though a deeper analysis
from a biological perspective reveals that some are better suited for this purpose, as they represent more accurately the biological
process. Based on the results of this analysis, we propose a set ofmathematical equations and amethodology, adequate formodeling
several aspects of biochemical synaptic behavior.

1. Introduction

Most information in the mammalian nervous system flows
through chemical synapses. These are complex structures
comprising a presynaptic element (an axon terminal) and a
postsynaptic element (a dendritic spine, a dendritic shaft, an
axon, or a soma) separated by a narrow gap known as the
synaptic cleft (see Figure 1). The neurotransmitter is stored
in synaptic vesicles located in the presynaptic terminal. For
release to take place, the membrane of one or more vesicles
must fuse with a region of the presynaptic membrane, the
active zone, and lining the synaptic cleft. On the opposite
side, the postsynaptic membrane is populated by specific
receptors.

Multiple factors influence the diffusion of neurotransmit-
ter molecules and their interaction with specific receptors
[1–3]. The initial concentration of the released neurotrans-
mitter in the extracellular space depends on the volume of

the synaptic cleft. The subsequent diffusion of neurotrans-
mitter molecules outside the cleft may be influenced by the
geometrical characteristics of the membranes that surround
the synaptic junction, and by the presence and concentration
of transporter molecules. However, direct observation of the
various synaptic events at the molecular and ultrastructural
levels in vivo or in vitro is rather difficult, if not impossible.
Simulation approaches are thus useful to assess the influence
of different parameters on the behavior of the synapse (e.g.,
[4, 5]).

Simulation approaches in neuroscience have considered
different models, scales, and techniques, according to the
phenomenon being studied. Biochemical processes, such as
neurotransmitter diffusion, require Monte Carlo particle-
based simulators likeMCell [6, 7], ChemCell [8], or Smoldyn
[9, 10]. These simulation techniques allow computational
neuroscientist to reproduce these biological processes in a
manner that they can be thoroughly observed, systematically
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Figure 1: Chemical synapses. (a) Electron microphotograph of the cerebral cortex where three axon terminals (asterisks) establish synapses
with three dendritic elements showing clearly visible postsynaptic densities (arrows). (b) Simplifiedmodel of a chemical synapse, highlighting
its most significant parts.

analyzed, and easily adapted and/or modified. The results of
these simulations can be studied to extract general conclu-
sions and infer basic properties of the natural processes being
studied.

In the case of chemical synapses, many aspects of their
behavior during neurotransmitter release and diffusion can
be simulated. Simulations, however, do not provide general-
ized models of these series, showing only the specific values
observed each time and, in this case, these are subject to
the stochastic nature of the Monte Carlo simulations used
to produce them. Having general, empirical models of these
time series, such as a set of mathematical equations, could be
an important achievement in the study of chemical synaptic
behavior. Finding these equations, however, is not a trivial
task.

Having the raw simulation data at hand, the first step in
finding these equations is to identify the type ofmathematical
expression we are looking for. A reasonable approach to
achieve this is to study the underlying physicochemical
processes that take place during synapse operation (e.g.,
molecular diffusion and receptor kinetics) and try to ana-
lytically infer the synaptic equations from them. This is,
however, sometimes not possible (as is explained in detail in
Section 2.1).When this is the case, an exploratory analysis can
be attempted, testing different general mathematical models
against the empirical data, and trying to find the one with the
best adjustment. This becomes, in essence, a complex curve-
fitting problem, in which a set of general equations is fitted to
experimentally obtained data [11].

This problem is, in its general form, an optimization
task, in which different search strategies in the field of
metaheuristics have been successfully applied in the past.
This type of search techniques, with Evolutionary Algorithms
(EAs) as one of the most relevant exponents, have shown
in the last decades their ability to deal with optimization
problems of many different domains, ranging from com-
pletely theoretical mathematical functions (benchmarks) [12]

to real-world problems in many different domains: biology
[13–17], engineering [18–21], and logistics [22–25], to name a
few. Furthermore, different metaheuristics have been previ-
ously used in related curve fitting problems [26–29], which
motivates the use of this type of algorithms for our particular
problem.

2. Materials and Methods

2.1. Synaptic Curves. We analyzed simulations based on
simplifiedmodels of excitatory synapses where AMPA recep-
tors were present and the neurotransmitter involved was
glutamate (The AMPA receptor is a ionotropic receptor
commonly found in excitatory synapses using glutamate as
neurotransmitter. It is named from its specific agonist alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). We
based our study in a corpus of synaptic simulations very
similar to the one presented in [11]. Our corpus consisted
of 500 different synaptic configurations, each simulated 500
times (to incorporate stochastic variability) resulting in a total
of 250,000 simulations. As in [11], geometrical parameters
were taken into account to incorporate synaptic variability,
and simulations were performed using the MCell software
in the Magerit supercomputer [30]. Each one of the 500
synaptic configurations represented a unique synapse, mor-
phologically different form the others. Simulations studied
neurotransmitter diffusion and synaptic receptor behavior
in each configuration. After the synaptic simulations were
performed, two separated (but related) aspects of synaptic
behavior were considered:

(i) The average variation of neurotransmitter concen-
tration in the synaptic cleft over time, after a single
vesicle release.

(ii) The average variation of the total number of synaptic
receptors in the open state over time, again after
a single neurotransmitter vesicle release (Molecular
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kinetics of synaptic receptors follow Markov-chain-
likemodels, with several possible states and transition
probabilities depending on environmental factors and
chemical reaction rate constants. The most relevant
state in the AMPA receptor is the open state. It is
directly related with the electrical synaptic response
[31]).

These two aspects were plotted as time-series curves for
each of the 500 synaptic configurations, resulting in a total
of 1,000 curves (500 glutamate concentration curves and 500
open AMPA receptor curves), each of them being an average
of 500 simulations of the same synaptic configuration. An
example of these curves can be seen in Figure 2. The
curves obtained were consistent with previous studies [32–
35]. Each one of these 1,000 curves represented the behavior
of a specific synapse, morphologically different from the
others. Each curve became a separate curve-fitting problem,
addressed using the metaheuristics described in Section 2.2.

2.1.1. Glutamate Concentration Curves. In the case of the
glutamate concentration (Figure 2(a)), all curves showed
an initial peak (maximum concentration in the moment of
vesicle liberation), followed by what very closely resembled
a typical exponential decay. To understand this curve, we
referred to Fick’s second law of diffusion (derived by the
German physiologist Adolf Fick in 1855), which predicts how
diffusion causes the concentration of a substance to change
with time. For two or more dimensions, this law states that

𝜕𝜙
𝐴 (𝑟, 𝑡)

𝜕𝑡
= 𝐷
𝐴
∇
2
𝜙
𝐴 (𝑟, 𝑡) , (1)

where 𝜙
𝐴
(𝑟, 𝑡) is the concentration of a given substance 𝐴

(glutamate in our case) at location 𝑟 and time 𝑡 and 𝐷
𝐴
is

the coefficient of diffusion of substance 𝐴. This is also called
the heat equation and has no analytic solution for our specific
problem, due to the synaptic three-dimensional geometry
(The heat equation can only be solved analytically for a few
idealized uni-dimensional problems). It is known, however,
that its solution must follow a typical exponential decay. In
exponential decay processes, the quantity 𝑁 of a substance
decreases in the following way:

𝑑𝑁

𝑑𝑡
= −

1

𝜏
𝑁, (2)

where 𝜏 is the mean lifetime or exponential time constant of
the process. We solve (2) as follows:

𝑑𝑁

𝑑𝑡
= −

1

𝜏
𝑁,

𝑑𝑁

𝑁
= −

1

𝜏
𝑑𝑡.

(3)

We integer both sides:

ln𝑁 = −
1

𝜏
𝑡 + 𝐶. (4)

We now apply exp( ) to both sides:

𝑒
ln𝑁

= 𝑒
−𝑡/𝜏+𝐶

,

𝑁 = 𝑒
−𝑡/𝜏

𝑒
𝐶
.

(5)

Since 𝑒𝐶 is constant, we rename it to 𝑁
0
and we finally

obtain a solution to (2) in the following form:

𝑁(𝑡) = 𝑁0𝑒
−𝑡/𝜏

, (6)

where 𝑁
0
is the initial quantity, since at 𝑡 = 0, 𝑒−𝑡/𝜏 = 1,

∀𝜏 ̸= 0. We know that Fick’s second law of diffusion (1)
must follow an exponential decay (2). Therefore, its solution
must be in the form of (6). The neurotransmitter diffuses
through a certain volume: the synaptic cleft. As explained,
the neurotransmitter concentration 𝜙

𝐴
(𝑟, 𝑡) in every point of

this volume changes following an exponential decay (6). We
propose a new function Φ

𝐴
(𝑡) as the average concentration

of neurotransmitter in this volume, and we assume that it
also follows an exponential decay. We define Φ

𝐴
(𝑡) with the

following equation:

Φ
𝐴 (𝑡) = 𝐶0𝑒

−𝑡/𝜏
, (7)

where 𝐶
0
is the initial average concentration at 𝑡 = 0. Since

the number of neurotransmitter molecules released (vesicle
size) and the volume of the synaptic cleft are known (they
are part of the synaptic configuration simulation parameters),
𝐶
0
can be easily calculated beforehand. Please remember

that Φ
𝐴
(𝑡) is the average concentration of 𝐴 in a defined

volume, opposed to 𝜙
𝐴
(𝑟, 𝑡), which is the exact concentration

at position 𝑟. Φ
𝐴
(𝑡) is the value measured in our simulation

experiments (shown, e.g., in Figure 2(a)).
The value of 𝜏 in (7), however, cannot be analytically

calculated. From the previously mentioned link between (1)
and (2), we deduce a connection between each side of both
equations, concluding that

(i) 𝜕𝜙
𝐴
(𝑟, 𝑡)/𝜕𝑡 relates to 𝑑𝑁/𝑑𝑡 (left side of both equa-

tions);
(ii) 𝐷

𝐴
∇
2
𝜙
𝐴
(𝑟, 𝑡) relates to −(1/𝜏)𝑁 (right side of both

equations).

From the second item, we deduce that the 𝜏 constant
should be somehow calculated using𝐷

𝐴
and some unknown

aspects of the synaptic geometry, which are factored inside
the ∇2𝜙

𝐴
(𝑟, 𝑡) term that cannot be calculated analytically for

an arbitrary 3D problem. From 𝜏 and 𝐷
𝐴
we derive a new

coefficient 𝜐, so that
1

𝜏
= 𝐷
𝐴

1

𝜐
. (8)

The coefficient 𝜐 represents the effects of geometry,
separated from the substance diffusion coefficient (𝐷

𝐴
). For

our problem, 𝜐 cannot be determined analytically and needs
to be estimated using numerical and/or statistical methods.
We incorporate 𝜐 in (7) and obtain

Φ
𝐴 (𝑡) = 𝐶0𝑒

−𝐷𝐴𝑡/𝜐, (9)



4 Abstract and Applied Analysis

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

0 1 2 3 4 5

Time (ms)

G
lu

ta
m

at
e c

on
ce

nt
ra

tio
n 

(m
ol
·L

−
1
)

(a) Glutamate concentration curve

0 1 2 3 4 5

Time (ms)

O
pe

n 
A

M
PA

 re
ce

pt
or

s

100

80

60

40

20

0

−20

(b) Open AMPA receptors curve

Figure 2: Examples of synaptic curves after a neurotransmitter vesicle release. (a) Variation of neurotransmitter (in this case glutamate)
concentration through time inside the synaptic cleft. (b) Variation in the total number of synaptic receptors (in this case AMPA) in the open
state through time.

which is the final expression of our neurotransmitter (glu-
tamate) concentration time series model. The problem of
estimating the value of 𝜐 still remains, and for this we need
to return to our synaptic simulations. Using curve-fitting
methods, we can find the values of 𝜐 that most accurately
model the results observed during these experiments.

2.1.2. AMPA Open Receptors Curves. All open AMPA recep-
tors curves showed a rapid climb to a single peak followed
by a long tail, slowly descending towards 0 (as shown in
Figure 2(b)). The initial section of the curve (containing the
rapid ascent, peak and descent) contains the most relevant
information, that is, the amplitude of the peak and the time it
takes to reach it. A general exploration of the simulation data
showed that these two characteristics are highly dependent on
the neurotransmitter concentration and synaptic geometry.

As we have already established, neurotransmitter con-
centration cannot be predicted analytically (Fick’s second
law cannot be solved analytically for 2 or more dimen-
sions); therefore open AMPA receptors curves will not be
either (since they are dependent on neurotransmitter con-
centration). Moreover, synaptic geometry variations can be
extremely diverse, making the task of inferring a mathemati-
cal equation much harder.

Therefore, we adopted the exploratory analysis approach,
considering a set of selected general mathematical models
and testing them against the simulation data. We based this
set on a previous analysis presented in [11]. Our work differs
from this study in that in [11] this problem was tackled only
by means of a single approximate technique, which we use
here as a baseline to compare different global optimization
heuristics. We also performed a subsequent analysis of the
optimization results, taking into consideration the relevant

biological implications of our findings and proposing gener-
alized synaptic curvemodels. From [11], however, we selected
the best five curves as a starting point:

(i) 4-by-4 degree polynomial rational function (9 coeffi-
cients):

𝑦 =
𝑝
1
𝑥
4
+ 𝑝
2
𝑥
3
+ 𝑝
3
𝑥
2
+ 𝑝
4
𝑥 + 𝑝
5

𝑥4 + 𝑞
1
𝑥3 + 𝑞

2
𝑥2 + 𝑞

3
𝑥 + 𝑞
4

; (10)

(ii) 8-term Fourier series (18 coefficients):

𝑦 = 𝑎
0
+

8

∑

𝑖=0

(𝑎
𝑖
cos (𝑖𝑥𝑤) + 𝑏𝑖 sin (𝑖𝑥𝑤)) ; (11)

(iii) 8-term Gauss series (25 coefficients):

𝑦 = 𝑎
0
+

8

∑

𝑖=1

𝑎
𝑖
𝑒
−((𝑥−𝑏𝑖)/𝑐𝑖)

2

; (12)

(iv) 2-term exponential function (4 coefficients):

𝑦 = 𝑎𝑒
𝑏𝑥
+ 𝑐𝑒
𝑑𝑥
. (13)

(v) 9th degree polynomial (10 coefficients):

𝑦 = 𝑝
0
+

9

∑

𝑖=1

𝑝
𝑖
𝑥
𝑖
. (14)

To decide which of these curves best serves our purpose,
we need to test how well each of them can model the
experimental data we observed during simulations. We need,
therefore, to fit every curve to the data and see how they
perform.
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2.2. Algorithms Used in the Comparison. This section reviews
the considered algorithms for the previously described curves
fitting problem, including the reference baseline algorithm
(Nonlinear Least Squares) used in previous studies [11] and
several metaheuristics (five Evolutionary Algorithms and
two local searches) whose performance will be compared in
Section 3.

2.2.1. Baseline Algorithm: Nonlinear Least Squares. The Non-
linear Least Squares (NLLS) algorithm [36, 37] is frequently
used in some forms of nonlinear regression and is available
in multiple mathematical and statistical software, such as
MATLAB [38] or R [39]. Loosely speaking, this algorithm
tries to approximate the model by a linear one, in the
first place, to further refine the parameters by successive
iterations. This method was successfully used in a seminal
work [11] and thus has been selected as the baseline algorithm
to test the performance of several metaheuristics, which will
be reviewed in the following sections.

2.2.2. Selected Metaheuristics

Genetic Algorithm. Genetic Algorithms (GAs) [40] are one of
the most famous and widely used nature-inspired algorithms
in black-box optimization. The generality of its operators
makes it possible to use GAs both in the continuous and
the discrete domains. For our experiments, we have used a
Real-Coded GA that uses the BLX-𝛼 crossover, with alpha =
0.5, and the Gaussian mutation [41]. Different population
sizes and operator probabilities were tested, as described in
Section 3.

Differential Evolution. Differential Evolution (DE) [42] is one
of the most powerful algorithms used in continuous opti-
mization. Its flexibility and simplicity (it only has three free
parameters to configure) have gained DE a lot of popularity
in recent years and it is being used, both in its canonical form
and in more advanced flavors (as we will see below) in many
different complex optimization scenarios. For our experi-
ments we have considered a DE algorithm with Exponential
Crossover and, as for the GA, different values have been tried
for its three free parameters: population size (NP),𝐹, and CR.

Self-Adaptive Differential Evolution.This is one of the variants
of the aforementioned canonical DE algorithm. The Self-
Adaptive Differential Evolution algorithm proposed in [43]
does not consider fixed 𝐹 and CR parameters but, instead,
allows the algorithm to adjust their values with certain
probability, controlled by 𝜏

𝐹
and 𝜏CR, respectively.

Generalized Opposition-Based Differential Evolution. This is
the second variant of the DE algorithm used in our study.
In the Generalized Opposition-Based Differential Evolution
(GODE) algorithm [44], the Opposition-Based Learning
concept is used, which basically means that, with some
probability, the algorithm tries not only to evaluate the
solutions in the current population, but also the opposite
ones. Apart from the commonDE parameters, this algorithm
adds a new parameter to control the probability of applying
the opposite search.

Solis and Wets Algorithm. The well-known Solis and Wets
algorithm [45] has also been included in our study.This direct
searchmethod performs a randomized local minimization of
a candidate solution with an adaptive step size. It has several
parameters that rule the way the candidate solution is moved
and how the step size is adapted. All these parameters will be
subject to parameter tuning, as for the rest of the algorithms.

MTS-LS1 Algorithm. MTS-LS1 is the first of the three local
searches combined by the MTS algorithm [46]. This algo-
rithm tries to optimize each dimension of the problem
independently and has been successfully used in the past to
search large scale global optimization problems. In the same
line than the Solis and Wets algorithm, several parameters
control the movements of the local search, and all of them
will be adjusted.

Covariance Matrix Adaptation Evolution Strategy. The
CovarianceMatrix Adaptation Evolution Strategy (CMA-ES)
[47] is an evolution strategy that adapts the full covariance
matrix of a normal search. Some of its advantages is that
it exhibits the same performance on an objective function
whether or not a linear transformation has been applied
and its robustness against ill-conditioned and nonseparable
problems [48]. To increase the probability of finding the
global optimum, the increasing population size IPOP-CMA-
ES algorithm was proposed in [49]. This algorithm uses a
restart method with a successively increasing population size
strategy each time the stopping criterion is satisfied. This
algorithm was ranked first on the “Special Session on Real-
Parameter Optimization” held at the CEC 2005 Congress
and has since been used with several optimization problems.
For the proposed experiments, we have considered both the
CMA-ES and the IPOP-CMA-ES with several values for its
sigma parameter. The active covariance matrix adaptation
mechanism, which actively decreases variances in especially
unsuccessful directions to accelerate their convergence, has
also been tested with both algorithms.

2.3. Comparison Metric. To assess the accuracy of our curve-
fitting solutions, we based our study on the commonly used
coefficient of determination (𝑅2). This is the proportion of
variability in a data set that is accounted for by the statistical
model. It provides a measure of how well future outcomes are
likely to be predicted by the model. 𝑅2 usually has a value
between 0 and 1 (sometimes it can be less than 0), where 1
indicates an exact fit to the reference data and a value less than
or equal to 0 indicates no fit at all.

𝑅
2 is calculated as follows: given a reference data set 𝑋

with 𝑁 values 𝑥
𝑖
, each of which has an associated predicted

value 𝑥
𝑖
, the total sum of squares (TSS) and the residual sum

of squares (RSS) are defined as

TSS = ∑
𝑖

(𝑥
𝑖
− 𝑥)
2
,

RSS = ∑
𝑖

(𝑥
𝑖
− 𝑥


𝑖
)
2

.

(15)
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And 𝑅2 is expressed as

𝑅
2
= 1 −

RSS
TSS

. (16)

The coefficient of determination, however, does not take
into account regression model complexity or number of
observations.This is particularly important in our case, since
we want to compare the performance of very different curve
models, for example, the 2-term exponential function, which
has 4 coefficients, against the 8-term Gauss series, which has
25 coefficients. To incorporate these aspects, we adopted the
adjusted coefficient of determination (�̂�2) [50], which takes
into account the complexity of the regression model and the
number of observations. �̂�2 is calculated as follows:

�̂�
2
= 1 − (

RSS
TSS

×
𝑁 − 1

𝑁 − 𝑚
) , (17)

where 𝑁 is the size of the sample set and 𝑚 is the number
of coefficients of the regression model. As in the case of 𝑅2,
closer to 1means a better fit. We used �̂�2 as the fitness metric
for all our curve-fitting calculations.

2.4. Parameter Tuning. All the experimentation reported
in this paper has followed a fractional design based on
orthogonal matrices according to the Taguchi method [51].
In this method, the concept of signal to noise ratio (SN ratio)
is introduced for measuring the sensitivity of the quality
characteristic being investigated in a controlled manner to
those external influencing factors (noise factors) not under
control.The aim of the experiment is to determine the highest
possible SN ratio for the results since a high value of the SN
ratio implies that the signal is much higher than the random
effects of the noise factors. From the quality point of view,
there are three possible categories of quality characteristics:
(i) smaller is better, (ii) nominal is best, and (iii) bigger
is better. The obtained results fall in the “bigger is better
category” since the objective is to maximize the adjustment
of the model to the observed values measured as the �̂�2. For
this category, the SN ratio estimate is defined in (18), where
𝑛 denotes the total number of instances and 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛

the target values (the adjustment of the model in this case).
Consider the following:

SN = −10 log(1
𝑛

𝑛

∑

𝑡=1

𝑦
2

𝑡
) . (18)

This method allows the execution of a limited number
of configurations and still reports significant information on
the best combination of parameter values. In particular, a
maximum of 27 different configurations were tested for each
algorithm on the whole set of models and a subset of the
curves (the exact number of configurations will depend on
the number of parameters to be tuned). In Section 3.1 we
report the tested values for each algorithm and highlight
those reported by the Taguchi method as the best ones from
the SN ratio point of view.

2.5. Statistical Validation. Tovalidate the results obtained and
the conclusions derived from them, it is very important to
use the appropriate statistical tests for this purpose. In this
paper we conducted a thorough statistical validation that is
discussed in this section.

First, the nonparametric Friedman’s test [52] was used to
determine if significant differences exist among the perfor-
mance of the algorithms involved in the experimentation by
comparing their median values. If such differences existed,
then we continued with the comparison and used some
post-hoc tests. In particular, we reported the 𝑝 values for
two nonparametric post-hoc tests: Friedman [52–54] and
Wilcoxon tests [55]. Finally, as multiple algorithms are
involved in the comparison, adjusted 𝑝 values should rather
be considered in order to control the familywise error rate. In
our experimentation, we considered Holm’s procedure [54],
which has been successfully used in the past in several studies
[12, 56].

Apart from the 𝑝 values reported by the statistical tests,
we also reported the following values for each algorithm:

(i) Overall ranking according to the Friedman test: we
computed the relative ranking of each algorithm
according to its mean performance for each func-
tion and reported the average ranking computed
through all the functions. Given the following mean
performance in a benchmark of three functions for
algorithms 𝐴 and 𝐵: 𝐴 = (0.00𝑒 + 00, 1.27𝑒 +

01, 3.54𝑒−03), 𝐵 = (3.72𝑒+01, 0.42𝑒+00, 2.19𝑒−07);
their relative ranking would be Ranks

𝐴
= (1, 2, 2),

Ranks
𝐵

= (2, 1, 1); and thus their corresponding
average rankings are 𝑅

𝐴
= 1.67 and 𝑅

𝐵
= 1.33.

(ii) nWins: this is the number of other algorithms for
which each algorithm is statistically better minus the
number of algorithms for which each algorithm is
statistically worse according to the Wilcoxon Signed
Rank Test in a pair-wise comparison [57].

This meticulous validation procedure allowed us to pro-
vide solid conclusions based on the results obtained in the
experimentation.

3. Results and Discussion

We have conducted a thorough experimentation to elucidate
if the selected metaheuristics can be successfully used in
the curve-fitting problem. For this purpose, we have taken
into account both glutamate concentration and AMPA open
receptors curves problems and, in the case of the latter, the
five different curves presented in Section 2.1.2.

In the first place, a parameter tuning of the seven
selected metaheuristics has been carried out, whose results
are presented in Section 3.1, and then final runs with the best
configuration of each algorithm are done, whose results are
presented in Sections 3.2-3.3 and their significance according
to the aforementioned statistical validation procedure is dis-
cussed. Finally, we provide a biological interpretation of the
results and discuss the convenience of using one particular
curve model instead of the others.
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3.1. Parameter Tuning of the Selected Metaheuristics. As
described in Section 2.4, to conduct our experimentation
we have followed a fractional design based on orthogonal
matrices according to the Taguchi method. This method
allows the execution of a limited number of configurations (a
maximum of 27 in our case) yet yielding significant results.
Furthermore, to avoid any overfitting to the experimental
data set, the parameter tuning of the algorithms was done on
a subset of curves (10 randomly chosen curves) prior to using
the selected values in the overall comparison. Table 1 contains,
for each algorithm, all their relevant parameters, highlighting
in bold the final selected values among all the tested ones
according to the measures reported by the Taguchi method.

Once the best configuration for each algorithm has been
determined, we ran each of them on both synaptic curves
problems, for all the models and curves and conducting 25
repetitions per curve. In the case of the selected metaheuris-
tics, we constrained search space to the following interval:
[−500, 500] to allow faster convergence. On the other hand,
to avoid any bias in the results, we ran the baseline algorithm
both constrained to the same interval and unconstrained.

3.2. Glutamate Concentration Curves Problem. As we stated
before, in the 500 glutamate concentration curves the only
parameter that needs to be optimized is the 𝜐 coefficient of
the proposed exponential decay function. Thus, it is a simple
optimization problem that should be solved with little issues
by most algorithms as it is shown in Table 2. In this table we
can observe that most algorithms are able to fit the curve with
a precision of 99%. The only three algorithms not reaching
that precision get trapped a few times in low quality local
optima, which prevents them to reach the same accuracy.
This is especially the case of the NLLS algorithm, both in the
constrained and unconstrained versions.

Due to the nonexistent differences in the performance of
most of the algorithms, the statistical validation did not reveal
any significant differences, except for the two versions of the
baseline algorithm. This first result is a good start point that
suggests that more advanced metaheuristics can deal with
these problems more effectively than the NLLS algorithm
used in previous studies [11].

3.3. AMPAOpen Receptors Curves Problem. To providemore
insight on the results obtained for the AMPA open receptors
curves problem, we have decided to report the results and
conduct the statistical validation on each of the curves
approximation models individually and then to carry out
an overall comparison considering all the models together
as a large validation data set. The results show that there
are three algorithms (IPOP-CMA-ES, Self-Adaptive DE, and
DE), which systematically rank among the best algorithms
and, in most of the cases, are significantly better than the
baseline algorithm NLLS.

3.3.1. Results with the 4-by-4 Degree Polynomial Rational
Function. The results for the 4-by-4 degree polynomial ratio-
nal function are reported in Table 5. As can be observed,
the average attained precision is very high for most of the

Table 1: Parameter tuning of the selected metaheuristics.

Parameter values of GA
popSize 100, 200, 400
pcx 0.1, 0.5, 0.9
pm 0.01, 0.05, 0.1

Parameter values of DE
popSize 25, 50, 100
𝐹 0.1, 0.5, 0.9
CR 0.1, 0.5, 0.9

Parameter values of Self-Adaptive DE
popSize 25, 50, 100
𝜏
𝐹

0.05, 0.1, 0.2
𝜏CR 0.05, 0.1, 0.2

Parameter values of GODE
popSize 25, 50, 100
𝐹 0.1, 0.5, 0.9
CR 0.1, 0.5, 0.9
godeProb 0.2, 0.4, 0.8

Parameter values of Solis and Wets
maxSuccess 2, 5, 10
maxFailed 1, 3, 5
adjustSuccess 2, 4, 6
adjustFailed 0.25, 0.5, 0.75
delta 0.6, 1.2, 2.4

Parameter values of MTS-LS1
(initial) SR 50% of the search space
(min) SR 1𝑒 − 14

adjustFailed 2, 3, 5
adjustMin 2.5, 5, 10
moveLeft 0.25, 0.5, 1
moveRight 0.25, 0.5, 1

Parameter values of CMA-ES
𝜎 0.01, 0.1, 1
Active CMA no, yes
CMA-ES variant CMA-ES, IPOP-CMA-ES

Table 2:Meanfitness, average ranking, andnumber ofwins (nWins)
in pair-wise comparisonswith the other algorithms on the glutamate
concentration problem.

Mean fitness Ranking nWins
Self-Adaptive DE 9.90𝐸 − 01 4.16 3
DE 9.90𝐸 − 01 4.16 3
GA 9.90𝐸 − 01 4.16 3
Solis and Wets 9.90𝐸 − 01 4.16 3
GODE 9.90𝐸 − 01 4.16 3
IPOP-CMA-ES 9.90𝐸 − 01 4.16 3
MTS-LS1 9.83𝐸 − 01 4.23 −4
NLLS constrained 9.53𝐸 − 01 7.91 −7
NLLS unconstrained 9.53𝐸 − 01 7.91 −7

algorithms (with the exception of the Solis and Wets algo-
rithm that alternates good and poor runs thus obtaining a low
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average fitness), especially in the case of the top three algo-
rithms (IPOP-CMA-ES, Self-Adaptive DE, and DE), which
reach a precision as high as 99.9%. The 𝑝 values reported by
the statistical validation (Table 6 for unadjusted 𝑝 values and
Table 7 for the adjusted ones) reveal significant differences
between the best performing algorithm (IPOP-CMA-ES) and
all the other algorithms except for Self-Adaptive DE and
DE according to the Friedman test (Wilcoxon test does
reveal significant differences). The prevalence of these three
algorithms will be a trend for most of the problems, as results
be will confirmed in the following sections.

3.3.2. Results with the 8-Term Fourier Series. For the 8-term
Fourier series results are similar in terms of the dominant
algorithms (see Table 8). In this case, the Self-Adaptive DE
obtained the highest ranking, number of wins, and average
precision, followed by IPOP-CMA-ES and the two remaining
DE alternatives. With this function, the attained precision
has slightly decreased (from 72% of the DE algorithm to
94%of the Self-AdaptiveDE) but again severalmetaheuristics
(all the population-based algorithms, which also includes the
GA) have outperformed the reference NLLS algorithm (in
both constrained and unconstrained versions). This could be
due to the highest complexity of the problem (18 dimensions
compared to the 9 of the previous model). Also, in this
problem the performance of the two local searches (Solis
and Wets and MTS-LS1) importantly degrades, and this will
also be a trend for the remainder problems. The statistical
validation, whose results are presented in Tables 9 and
10, found significant differences between the Self-Adaptive
DE algorithm and all the other algorithms for both tests
(Friedman and Wilcoxon).

3.3.3. Results with the 8-Term Gauss Series. The results for
this model break the trend started in the previous two cases
that follows in the remaining two functions. Table 11 depicts
the results for the 8-term Gauss series. As can be seen, the
best algorithm is again the IPOP-CMA-ES algorithm, which
again reaches a very high precision of 99%. However, Self-
Adaptive DE and DE perform poorly this time, in spite of the
problem not being much bigger (25 parameters against 18).
This means that it is probably the nature of the components
of the Gauss series what makes the problem harder to solve
for DE-based algorithms (it is a summation of squared
exponential terms with two correlated coefficients whose
interdependenciesmight be better captured by the adaptation
of the covariance matrix in IPOP-CMA-ES). Surprisingly,
the NLLS approaches obtain very good results with this
model (93% and 97% precision, for both constrained and
unconstrained, resp.). It is also interesting to note that the
Solis andWets algorithm was unable to converge to any good
solution in any run. Finally, the statistical validation, whose
detailed information is given in Tables 12 and 13, reports
significant differences between the IPOP-CMA-ES algorithm
and all the others with both statistical tests.

3.3.4. Results with the 2-Term Exponential Function. In the
case of the 2-term exponential function, both the Self-
Adaptive DE and the DE algorithms obtain very good
results, the former being the best algorithm in this problem
(with a precision of more than 99% and the highest rank-
ing and number of wins). As in previous cases (with the
exception of the 8-term Gauss series), the NLLS algorithm
performs poorly in comparison with most other techniques.
Another interesting thing on this model is that both local
searches (MTS-LS1 and Solis and Wets) greatly improved
their performance compared with other problems. In this
case, this improvement should be probably due to the small
problem size that allows an easier optimization component
by component. Finally, the statistical validation (Tables 15
and 16) reports significant differences between the reference
algorithm (Self-Adaptive DE) and all the other algorithms,
except for the DE algorithm in the Friedman test.

3.3.5. Results with the 9th Degree Polynomial. The last func-
tion used in the experimentation, the 9th degree polynomial,
is an interesting case, as we can classify studied algorithms
into two groups: those that converge to (what seems) a
strong attractor and those that are unable to find any good
solution. In the first group we have the three aforementioned
algorithms that usually exhibit the best performance: IPOP-
CMA-ES, Self-Adaptive DE, and DE, plus both NLLS con-
figurations. Consequently the second group is made up of
the GA, the GODE algorithm, and the two local searches.
The algorithms in the first group normally converge, with
some unsuccessful runs in the case of NLLS constrained
and IPOP-CMA-ES, to the same attractor, and thus their
average precision and ranking is very similar (Table 17). Small
variations on the fitness introduce some differences in the
number of wins, although they are not very important. It
should be remarked that, in contrast to what happens with
the other four models, none of the selected algorithms is
able to reach a high precision with this problem (a highest
value of 84% compared to values in the range of 94% to
99%). This probably means that a 9th degree polynomial is
not the best curve to fit the experimental data, which makes
sense if we consider the exponential decay processes taking
part in the biological process. Section 3.4 will discuss this
issue in detail. Although the differences are very small in
terms of fitness among the best algorithms, the statistical
validation is able to find significant differences between the
unconstrained configuration of the NLLS algorithm and all
the other algorithms with the Wilcoxon test (see Tables 18
and 19 for details). However, Friedman’s test is unable to find
significant differences betweenNLLSunconstrained and Self-
Adaptive DE, DE, and NLLS constrained.

3.3.6. Overall Comparison. In this section we offer an overall
comparison of the algorithms for the five AMPA open
receptors curves problems. To make this comparison, we
considered the results on the five problems altogether, thus
comparing the 2,500 fitness values at the same time. Table 20
summarizes the results. From these data, it is clear to
conclude that the IPOP-CMA-ES algorithm obtains the best
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Figure 3: Example of curve-fit solution for the glutamate concen-
tration problem. The continuous line shows a solution obtained by
fitting the exponential decaymodel proposed with the Self-Adaptive
DE algorithm. The dashed line shows the reference data obtained
from biochemical simulations. For this example �̂�2 = 0.990.

results, with an average precision of 94%, the best overall
ranking and the highest number of wins, being the best
algorithm in all the pairwise comparisons. Following IPOP-
CMA-ES, two DE variants (Self-Adaptive DE and classic DE)
take places two and three in the ranking. It is important
to note that three of the considered metaheuristics are able
to outperform the NLLS algorithm, which was the base of
the previous work in [11]. It is also relevant to the poor
performance of the two considered local searches, which
seem to be inadequate for this type of problems. Finally,
the same statistical validation as for the individual problems
has been followed and the results, reported in Tables 21 and
22, confirm the superior performance of the IPOP-CMA-
ES algorithm, obtaining significant differences with all the
algorithms and both statistical tests.

3.4. Biological Interpretation of the Results. To understand the
biological implications of this study we have to consider each
of the two curve-fitting problems independently (glutamate
concentration and AMPA open receptors).

3.4.1. Glutamate Concentration Curves. In the case of the
glutamate concentration curves, the results shown in Tables
2, 3, and 4 illustrate two important aspects. Firstly, the high
fitness values obtained with many optimization techniques
(most of them around 99%) prove that the glutamate dif-
fusion equation proposed in Section 2.1 (equation (9)) is,
as expected, a very accurate model of this phenomenon.
This equation, therefore, can be efficiently used to interpret
and predict the glutamate diffusion process, given that the
adequate means for calculating the 𝜐 coefficient are used.
Secondly, selecting the appropriate curve-fitting technique is
also an important aspect in this case, since general purpose,
commonly used algorithms (such as the NLLS used in [11])

Table 3: Raw 𝑝 values (Self-Adaptive DE is the control algorithm)
for the glutamate concentration problem.

Self-Adaptive DE versus Friedman 𝑝 value Wilcoxon 𝑝 value
DE 1.00𝐸 + 00 1.00𝐸 + 00

GA 1.00𝐸 + 00 1.00𝐸 + 00

Solis and Wets 1.00𝐸 + 00 1.00𝐸 + 00

GODE 1.00𝐸 + 00 1.00𝐸 + 00

IPOP-CMA-ES 1.00𝐸 + 00 1.00𝐸 + 00

MTS-LS1 6.57𝐸 − 01 8.98𝐸 − 03

NLLS constrained 0.00𝐸 + 00 1.47𝐸 − 70

NLLS unconstrained 0.00𝐸 + 00 1.47𝐸 − 70

Table 4: Corrected 𝑝 values according to Holm’s method (Self-
Adaptive DE is the control algorithm) for the glutamate concentra-
tion problem.

Self-Adaptive DE versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
DE 1.00𝐸 + 00 1.00𝐸 + 00

GA 1.00𝐸 + 00 1.00𝐸 + 00

Solis and Wets 1.00𝐸 + 00 1.00𝐸 + 00

GODE 1.00𝐸 + 00 1.00𝐸 + 00

IPOP-CMA-ES 1.00𝐸 + 00 1.00𝐸 + 00

MTS-LS1 1.00𝐸 + 00 5.39𝐸 − 02

NLLS constrained 0.00𝐸 + 00
√

1.18𝐸 − 69
√

NLLS unconstrained 0.00𝐸 + 00
√

1.18𝐸 − 69
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

are now known to produce suboptimal results. Figure 3 shows
an example of a glutamate concentration curve solution (The
synapse configuration used here had an AMPA receptor con-
centration of 1967molecules/𝜇m2, a glutamate transporter
concentration of 11560molecules/𝜇m2, a postsynaptic length
of 229 nm, a total apposition length of 305 nm, and a 20 nm
wide synaptic cleft. For more details on these parameters
please refer to [11]). In this example the glutamate initial
concentration was𝐶

0
= 4.749×10

−3mol/L and its coefficient
of diffusion 𝐷

𝐴
= 0.33 𝜇m2/ms. The curve-fitting solution

produced 𝜐 = 6.577 × 10
−6, resulting in the following

equation:

Φ
𝐴 (𝑡) = 4.749 × 10

−3
× 𝑒
−0.33×𝑡/(6.577×10

−6
)
. (19)

It is important to remember that this equation is the
solution for one particular synaptic configuration. Each one
of the total 500 configurations produced a different glutamate
concentration curve, from which a different curve-fitting
solution (different 𝜐 value) was obtained.

3.4.2. AMPA Open Receptors Curves. The case of the open
AMPA receptor curves requires further study. Optimization
results (Tables 5 to 22) show that, when using the appropriate
metaheuristic, most mathematical equations studied can be
fitted to the experimental data with excellent numerical
results (all curves can be fitted with more than 90% accuracy,
with the exception of the 9th degree polynomial). The five
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Table 5:Meanfitness, average ranking, andnumber ofwins (nWins)
in pair-wise comparisons with the other algorithms on the 4-by-4
degree polynomial rational function.

Mean fitness Ranking nWins
IPOP-CMA-ES 9.99𝐸 − 01 1.86 8
Self-Adaptive DE 9.99𝐸 − 01 2.08 5
DE 9.99𝐸 − 01 2.09 5
GA 9.35𝐸 − 01 4.86 2
MTS-LS1 9.00𝐸 − 01 6.04 0
GODE 9.18𝐸 − 01 6.04 −2
NLLS constrained 8.60𝐸 − 01 7.04 −4
Solis and Wets 4.30𝐸 − 01 7.17 −6
NLLS unconstrained 8.43𝐸 − 01 7.84 −8

Table 6: Raw 𝑝 values (IPOP-CMA-ES is the control algorithm) for
the 4-by-4 degree polynomial rational function.

IPOP-CMA-ES versus Friedman 𝑝 value Wilcoxon 𝑝 value
Self-Adaptive DE 2.14𝐸 − 01 2.03𝐸 − 12

DE 1.90𝐸 − 01 3.25𝐸 − 14

GA 0.00𝐸 + 00 5.52𝐸 − 84

MTS-LS1 0.00𝐸 + 00 6.31𝐸 − 84

GODE 0.00𝐸 + 00 5.40𝐸 − 84

NLLS constrained 0.00𝐸 + 00 1.99𝐸 − 83

Solis and Wets 0.00𝐸 + 00 1.60𝐸 − 86

NLLS unconstrained 0.00𝐸 + 00 5.91𝐸 − 84

Table 7: Corrected 𝑝 values according to Holm’s method (IPOP-
CMA-ES is the control algorithm) for the 4-by-4 degree polynomial
rational function.

IPOP-CMA-ES versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
Self-Adaptive DE 3.80𝐸 − 01 2.03𝐸 − 12

√

DE 3.80𝐸 − 01 6.50𝐸 − 14
√

GA 0.00𝐸 + 00
√

3.78𝐸 − 83
√

MTS-LS1 0.00𝐸 + 00
√

3.78𝐸 − 83
√

GODE 0.00𝐸 + 00
√

3.78𝐸 − 83
√

NLLS constrained 0.00𝐸 + 00
√

5.96𝐸 − 83
√

Solis and Wets 0.00𝐸 + 00
√

1.28𝐸 − 85
√

NLLS unconstrained 0.00𝐸 + 00
√

3.78𝐸 − 83
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

mathematical models studied are compared in Table 23,
selecting for them the results provided by the best opti-
mization technique in each case. As explained, most curve
equations produce very accurate results (only the 9th degree
polynomial falls clearly behind), although the number ofwins
for equations with similar average fitness may differ due to
small variations on individual executions. As a consequence
of this, the question of which model is best suited in this case
requires deeper analysis.

From a strictly numerical point of view, the 8-term Gauss
series fitted with the IPOP-CMA-ES algorithm produces the
best results, so it is the first logical choice. In addition,
we consider the nature of the biological process modeled

Table 8:Meanfitness, average ranking, andnumber ofwins (nWins)
in pair-wise comparisons with the other algorithms on the 8-term
Fourier series.

Mean fitness Ranking nWins
Self-Adaptive DE 9.44𝐸 − 01 1.26 8
IPOP-CMA-ES 9.19𝐸 − 01 1.91 6
GODE 8.13𝐸 − 01 3.46 4
DE 7.21𝐸 − 01 4.34 2
GA 6.99𝐸 − 01 4.79 0
NLLS unconstrained 6.20𝐸 − 01 5.46 −2
MTS-LS1 4.16𝐸 − 01 7.29 −4
NLLS constrained 3.87𝐸 − 01 7.49 −6
Solis and Wets 0.00𝐸 + 00 9.00 −8

Table 9: Raw 𝑝 values (Self-Adaptive DE is the control algorithm)
for the 8-term Fourier series.

Self-Adaptive DE versus Friedman 𝑝 value Wilcoxon 𝑝 value
IPOP-CMA-ES 1.67𝐸 − 04 5.89𝐸 − 14

GODE 0.00𝐸 + 00 1.58𝐸 − 83

DE 0.00𝐸 + 00 1.09𝐸 − 83

GA 0.00𝐸 + 00 8.67𝐸 − 82

NLLS unconstrained 0.00𝐸 + 00 8.08𝐸 − 83

MTS-LS1 0.00𝐸 + 00 6.43𝐸 − 84

NLLS constrained 0.00𝐸 + 00 6.36𝐸 − 84

Solis and Wets 0.00𝐸 + 00 6.21𝐸 − 84

Table 10: Corrected 𝑝 values according to Holm’s method (Self-
Adaptive DE is the control algorithm) for the 8-term Fourier series.

Self-Adaptive DE versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
IPOP-CMA-ES 1.67𝐸 − 04

√
5.89𝐸 − 14

√

GODE 0.00𝐸 + 00
√

6.32𝐸 − 83
√

DE 0.00𝐸 + 00
√

5.44𝐸 − 83
√

GA 0.00𝐸 + 00
√

1.73𝐸 − 81
√

NLLS unconstrained 0.00𝐸 + 00
√

2.42𝐸 − 82
√

MTS-LS1 0.00𝐸 + 00
√

4.97𝐸 − 83
√

NLLS constrained 0.00𝐸 + 00
√

4.97𝐸 − 83
√

Solis and Wets 0.00𝐸 + 00
√

4.97𝐸 − 83
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

(AMPA synaptic receptor activation after glutamate release).
Although it cannot be modeled analytically (as explained in
Section 2.1), we know that a key parameter of this process
is neurotransmitter concentration. From Fick’s second law
of diffusion we know that this concentration must follow an
exponential decay, so it is logical to assume that some sort
of exponential term has to be present in the AMPA open
receptors curve. This favors the 8-term Gauss series and 2-
term exponential function as the most biologically feasible
equations, since both contain exponential components.

To continue our analysis, we performed an exploratory
graphical study of the curve solutions provided by the
different optimization algorithms. Figure 4 shows an example
of curve-fit for every equation, fitted using the corresponding
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Table 11: Mean fitness, average ranking, and number of wins
(nWins) in pair-wise comparisons with the other algorithms on the
8-term Gauss series.

Mean fitness Ranking nWins
IPOP-CMA-ES 9.99𝐸 − 01 1.00 8
NLLS unconstrained 9.73𝐸 − 01 2.23 6
NLLS constrained 9.31𝐸 − 01 2.82 4
GA 7.80𝐸 − 01 3.95 2
GODE 5.24𝐸 − 01 5.00 0
Self-Adaptive DE 3.21𝐸 − 01 6.79 −3
MTS-LS1 3.23𝐸 − 01 6.85 −3
DE 2.97𝐸 − 01 7.35 −6
Solis and Wets 0.00𝐸 + 00 9.00 −8

Table 12: Raw𝑝 values (IPOP-CMA-ES is the control algorithm) for
the 8-term Gauss series.

IPOP-CMA-ES versus Friedman 𝑝 value Wilcoxon 𝑝 value
NLLS unconstrained 1.34𝐸 − 12 1.90𝐸 − 83

NLLS constrained 0.00𝐸 + 00 1.33𝐸 − 83

GA 0.00𝐸 + 00 6.22𝐸 − 84

GODE 0.00𝐸 + 00 6.30𝐸 − 84

Self-Adaptive DE 0.00𝐸 + 00 6.28𝐸 − 84

MTS-LS1 0.00𝐸 + 00 6.32𝐸 − 84

DE 0.00𝐸 + 00 6.29𝐸 − 84

Solis and Wets 0.00𝐸 + 00 4.75𝐸 − 111

Table 13: Corrected 𝑝 values according to Holm’s method (IPOP-
CMA-ES is the control algorithm) for the 8-term Gauss series.

IPOP-CMA-ES versus Friedman 𝑝 value Wilcoxon 𝑝 value
NLLS unconstrained 1.34𝐸 − 12

√
4.35𝐸 − 83

√

NLLS constrained 0.00𝐸 + 00
√

4.35𝐸 − 83
√

GA 0.00𝐸 + 00
√

4.35𝐸 − 83
√

GODE 0.00𝐸 + 00
√

4.35𝐸 − 83
√

Self-Adaptive DE 0.00𝐸 + 00
√

4.35𝐸 − 83
√

MTS-LS1 0.00𝐸 + 00
√

4.35𝐸 − 83
√

DE 0.00𝐸 + 00
√

4.35𝐸 − 83
√

Solis and Wets 0.00𝐸 + 00
√

3.80𝐸 − 110
√

√means that there are statistical differences with significance level 𝛼 = 0.05.

best algorithm for each case according to our experiments (As
in the glutamate concentration curve example, the synapse
configuration used here had an AMPA receptor concentra-
tion of 1967molecules/𝜇m2, a glutamate transporter con-
centration of 11560molecules/𝜇m2, a postsynaptic length of
229 nm, a total apposition length of 305 nm, and a 20 nmwide
synaptic cleft. For more details on these parameters please
refer to [11]). This study revealed several new findings:

(1) The 8-termGauss, 4-by-4 degree polynomial rational,
and 2-term exponential functions are clearly the best
candidates for modeling the AMPA open receptors
curve. This is consistent with the previously men-
tioned numerical results (Table 23).

Table 14: Mean fitness, average ranking, and number of wins
(nWins) in pair-wise comparisons with the other algorithms on the
2-term exponential function.

Mean fitness Ranking nWins
Self-Adaptive DE 9.97𝐸 − 01 1.69 8
DE 9.96𝐸 − 01 1.86 6
IPOP-CMA-ES 9.97𝐸 − 01 2.46 4
Solis and Wets 7.32𝐸 − 01 4.84 2
MTS-LS1 6.27𝐸 − 01 5.43 0
NLLS unconstrained 6.20𝐸 − 01 5.73 −2
NLLS constrained 3.47𝐸 − 01 7.25 −4
GODE 2.25𝐸 − 01 7.68 −6
GA 1.65𝐸 − 01 8.06 −8

Table 15: Raw 𝑝 values (Self-Adaptive DE is the control algorithm)
for the 2-term exponential function.

Self-Adaptive DE versus Friedman 𝑝 value Wilcoxon 𝑝 value
DE 3.38𝐸 − 01 6.11𝐸 − 10

IPOP-CMA-ES 9.00𝐸 − 06 9.79𝐸 − 54

Solis and Wets 0.00𝐸 + 00 6.31𝐸 − 84

MTS-LS1 0.00𝐸 + 00 6.26𝐸 − 84

NLLS unconstrained 0.00𝐸 + 00 6.31𝐸 − 84

NLLS constrained 0.00𝐸 + 00 6.32𝐸 − 84

GODE 0.00𝐸 + 00 6.04𝐸 − 84

GA 0.00𝐸 + 00 5.26𝐸 − 84

Table 16: Corrected 𝑝 values according to Holm’s method (Self-
Adaptive DE is the control algorithm) for the 2-term exponential
function.

Self-Adaptive DE versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
DE 3.38𝐸 − 01 6.11𝐸 − 10

√

IPOP-CMA-ES 1.80𝐸 − 05
√

1.96𝐸 − 53
√

Solis and Wets 0.00𝐸 + 00
√

4.23𝐸 − 83
√

MTS-LS1 0.00𝐸 + 00
√

4.23𝐸 − 83
√

NLLS unconstrained 0.00𝐸 + 00
√

4.23𝐸 − 83
√

NLLS constrained 0.00𝐸 + 00
√

4.23𝐸 − 83
√

GODE 0.00𝐸 + 00
√

4.23𝐸 − 83
√

GA 0.00𝐸 + 00
√

4.21𝐸 − 83
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

(2) The curve-fitting calculated for the 8-term Gauss
series presents an abnormal perturbation near the
curve peak (see the detail in Figure 4(a)). This seems
to be small enough so the overall fitness is not affected,
but implies that apparently the adjusted curves model
the synaptic phenomenon in a less realistic way than
other options studied.

(3) The 9th degree polynomial produces low quality solu-
tions, clearly surpassed by the first three equations.

(4) The 8-term Fourier series seems to be overfitted to
the training data.Thenumerical results are apparently
good, which indicates that the curve points tested
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(a) 8-term Gauss series (�̂�2 = 0.999)
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(b) 4-by-4 deg. polynomial rational (�̂�2 = 0.999)
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(c) 2-term exp. function (�̂�2 = 0.997)
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(d) 9th degree polynomial (�̂�2 = 0.836)
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(e) 8-term Fourier series (�̂�2 = 0.976)
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(f) 8-term Fourier series (tested points only)

Figure 4: Examples of curve-fit solutions for theAMPA open receptors problem. All figures show curve-fitting solutions for the same synaptic
curve. Continuous lines show curve-fitting solutions obtained using the indicated equation fitted by the best optimization algorithm from
our experiments. Dashed lines show reference data obtained from simulation. (a) also shows a detailed view of the curve peak. (e) shows an
extreme case of overfitting, in the form of a fast-oscillating periodic function. (f) shows the sampled points tested in the fitness evaluation of
the 8-term Fourier series, to better illustrate the overfitting problem.
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Table 17: Mean fitness, average ranking, and number of wins
(nWins) in pair-wise comparisons with the other algorithms on the
9th degree polynomial.

Mean fitness Ranking nWins
NLLS unconstrained 8.43𝐸 − 01 2.44 8
Self-Adaptive DE 8.42𝐸 − 01 2.50 5
DE 8.42𝐸 − 01 2.50 5
NLLS constrained 8.02𝐸 − 01 2.72 2
IPOP-CMA-ES 8.26𝐸 − 01 4.95 0
GA 0.00𝐸 + 00 7.48 −5
Solis and Wets 0.00𝐸 + 00 7.48 −5
MTS-LS1 0.00𝐸 + 00 7.48 −5
GODE 0.00𝐸 + 00 7.48 −5

Table 18: Raw 𝑝 values (NLLS unconstrained is the control
algorithm) for the 9th degree polynomial.

NLLS unconstrained versus Friedman 𝑝 value Wilcoxon 𝑝 value
Self-Adaptive DE 7.42𝐸 − 01 6.52𝐸 − 05

DE 7.42𝐸 − 01 6.52𝐸 − 05

NLLS constrained 1.08𝐸 − 01 8.91𝐸 − 06

IPOP-CMA-ES 0.00𝐸 + 00 5.34𝐸 − 84

GA 0.00𝐸 + 00 5.92𝐸 − 84

Solis and Wets 0.00𝐸 + 00 5.92𝐸 − 84

MTS-LS1 0.00𝐸 + 00 5.92𝐸 − 84

GODE 0.00𝐸 + 00 5.92𝐸 − 84

Table 19: Corrected 𝑝 values according to Holm’s method (NLLS
unconstrained is the control algorithm) for the 9th degree polyno-
mial.

NLLS unconstrained versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
Self-Adaptive DE 1.00𝐸 + 00 1.30𝐸 − 04

√

DE 1.00𝐸 + 00 1.30𝐸 − 04
√

NLLS constrained 3.25𝐸 − 01 2.67𝐸 − 05
√

IPOP-CMA-ES 0.00𝐸 + 00
√

4.27𝐸 − 83
√

GA 0.00𝐸 + 00
√

4.27𝐸 − 83
√

Solis and Wets 0.00𝐸 + 00
√

4.27𝐸 − 83
√

MTS-LS1 0.00𝐸 + 00
√

4.27𝐸 − 83
√

GODE 0.00𝐸 + 00
√

4.27𝐸 − 83
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

when calculating the fitness value are very close to
the simulation ones (Figure 4(f)). This is due to the
fact that, when evaluating the fitness value, not all data
points obtained during simulation are used.The high-
resolution simulations on which this work is based
produce 10,000-point curves per simulation. Testing
all of these points would make fitness calculation an
extremely heavy computational task. To avoid this,
simulation data were sampled before curve-fitting,
reducing the number of points per curve to 100. An
identical sampling procedure was performed in [11]

Table 20: Mean fitness, average ranking, and number of wins
(nWins) in pair-wise comparisons with the other algorithms for all
the models.

Mean fitness Ranking nWins
IPOP-CMA-ES 9.48𝐸 − 01 2.44 8
Self-Adaptive DE 8.21𝐸 − 01 2.86 6
DE 7.71𝐸 − 01 3.62 4
NLLS unconstrained 7.80𝐸 − 01 4.74 2
NLLS constrained 6.65𝐸 − 01 5.46 0
GA 5.16𝐸 − 01 5.83 −2
GODE 4.96𝐸 − 01 5.93 −4
MTS-LS1 4.53𝐸 − 01 6.61 −6
Solis and Wets 2.32𝐸 − 01 7.50 −8

Table 21: Raw𝑝 values (IPOP-CMA-ES is the control algorithm) for
all the models.

IPOP-CMA-ES versus Friedman 𝑝 value Wilcoxon 𝑝 value
Self-Adaptive DE 4.15𝐸 − 08 5.01𝐸 − 05

DE 0.00𝐸 + 00 2.16𝐸 − 86

NLLS unconstrained 0.00𝐸 + 00 4.81𝐸 − 306

NLLS constrained 0.00𝐸 + 00 0.00𝐸 + 00

GA 0.00𝐸 + 00 0.00𝐸 + 00

GODE 0.00𝐸 + 00 0.00𝐸 + 00

MTS-LS1 0.00𝐸 + 00 0.00𝐸 + 00

Solis and Wets 0.00𝐸 + 00 0.00𝐸 + 00

Table 22: Corrected 𝑝 values according to Holm’s method (IPOP-
CMA-ES is the control algorithm) for all the models.

IPOP-CMA-ES versus Friedman∗𝑝 value Wilcoxon∗𝑝 value
Self-Adaptive DE 4.15𝐸 − 08

√
5.01𝐸 − 05

√

DE 0.00𝐸 + 00
√

4.31𝐸 − 86
√

NLLS unconstrained 0.00𝐸 + 00
√

1.44𝐸 − 305
√

NLLS constrained 0.00𝐸 + 00
√

0.00𝐸 + 00
√

GA 0.00𝐸 + 00
√

0.00𝐸 + 00
√

GODE 0.00𝐸 + 00
√

0.00𝐸 + 00
√

MTS-LS1 0.00𝐸 + 00
√

0.00𝐸 + 00
√

Solis and Wets 0.00𝐸 + 00
√

0.00𝐸 + 00
√

√means that there are statistical differences with significance level 𝛼 = 0.05.
∗means these are adjusted 𝑝-values according to Holm’s method.

for the same reasons. In the case of the 8-term
Fourier series, the optimization algorithms were able
to find rapidly oscillating curves that passed very
close to most test points. The shapes of the resulting
curves, however, were completely different from real
phenomena observed (Figure 4(e)). This indicates
that the 8-term Fourier series is not an appropriate
model for the AMPA open receptors curve, as it can
easily produce this kind of false-positive, overfitted
solutions.

Taking all this into consideration, we can try to select
the appropriate equation for theAMPA open receptors curve.
Between the best three, the biological relationship with
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Table 23: Average ranking and number of wins (nWins) in pair-wise comparisons for the best algorithm for each AMPA model.

Mean fitness Ranking nWins
8-term Gauss series 9.99𝐸 − 01 1.63 4
4-by-4 degree polynomial rational function 9.99𝐸 − 01 1.67 2
2-term exponential function 9.97𝐸 − 01 2.73 0
8-term Fourier series 9.44𝐸 − 01 3.99 −2
9th degree polynomial 8.43𝐸 − 01 4.97 −4

the neurotransmitter concentration (following an exponen-
tial decay) makes us favor the 8-term Gauss and 2-term
exponential functions over the 4-by-4 polynomial rational.
These two present almost identical numerical results, with a
slightly better performance in the case of the 8-term Gauss
series. The small perturbation observed in 8-term Gauss
series curves, however, indicates this equation models the
natural phenomenon in a less realistic way. The simplicity
of the 2-term exponential function has to be considered
as well. It is a model with 4 parameters, in contrast with
the 25 parameters of the 8-term Gauss series. For all this
reason we suggest the 2-term exponential function as the best
approximation.

In the example shown in Figure 4, the Self-Adaptive DE
metaheuristic calculated a curve-fitting solution for the 2-
term exponential function with 𝑎 = 51.749, 𝑏 = −2.716,
𝑐 = −53.540, and 𝑑 = −30.885, resulting in the following
equation (also plotted in Figure 4(c)):

𝐴𝑀𝑃𝐴open (𝑡) = 51.749 × 𝑒
−2.716×𝑡

− 53.540

× 𝑒
−30.885×𝑡

.

(20)

As in the case of the glutamate concentration curves, it
is important to remember that this equation is the solution
for one particular synaptic configuration. Each one of the
total 500 configurations produced a different AMPA open
receptors curve, from which a different curve-fitting solution
(different values of 𝑎, 𝑏, 𝑐, and 𝑑) was obtained.

4. Conclusions

In this paper we have compared several metaheuristics in
the problem of fitting curves to match the experimental
data coming from a synapse simulation process. Each one
of the 500 synaptic configurations used represents a different
synapse and produces two separate problem curves that need
to be treated independently (glutamate concentration and
AMPA open receptors). Several different functions have been
used and the selected metaheuristics have tried to find the
best fitting to each of them. We have treated all curves from
the same problem in our simulation as a single data set, trying
to find the best combination of function andmetaheuristic for
the entire problem. Furthermore, in order to show that more
advanced metaheuristics can improve currently used state-
of-the-art techniques, such as theNLLS algorithm,whichwas
used in [11], we have conducted an extensive experimentation
that yields significant results. First, it has been proved that

several metaheuristics systematically outperform the state-
of-the-art NLLS algorithm, especially in the case of the IPOP-
CMA-ES, which obtained the best overall performance.
Second, it has been shown that some commonly used local
searches that obtain excellent results in other problems are
not suitable for this task, which implies that the curve fitting
algorithmmust be carefully chosen and thus this comparison
can be of great value for other researchers. Finally, the
different performance of the algorithms opens a new research
line thatwill focus on finding combinations of algorithms that
could obtain even better results by exploiting the features of
several metaheuristics.

From a biological point of view, we have observed how
several curve models are able to very accurately fit a set of
time-series curves obtained from the simulation of synaptic
processes. We have studied two main aspects of synap-
tic behavior: (i) changes in neurotransmitter concentration
within the synaptic cleft after release and (ii) synaptic receptor
activation. We have proposed an analytically derived curve
model for the former and a set of possible curve equations for
the latter. In the first scenario (changes in neurotransmitter
concentration) the optimization results validate our proposed
curvemodel. In the second one (synaptic receptor activation)
several possible curve models attained accurate results. A
more detailed inspection, however, revealed that some of
these models severely overfitted the experimental data, so
not all models were considered acceptable. The best behavior
was observed with the exponential models, which suggests
that exponential decay processes are key elements of synapse
activation.These results have several interesting implications,
that can have an application in future neuroscience research.
Firstly, as explained, we have identified the best possible
candidate equations for both synaptic curves studied. Future
studies of synaptic behavior can be modeled over these
equations, further expanding the understanding of aspects
such as synaptic geometry and neurotransmitter vesicle size.
Our work demonstrates the validity of these equations.
Secondly, we have identified the appropriate optimization
techniques to be used when constructing these models. As
we have demonstrated, not all curve-fitting alternatives are
adequate, so selecting the wrong one could have a strong
impact on the validity of any derived research. Our work
successfully resolves this issue, again setting the basis for
upcoming advances in synaptic behavior analysis.
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