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The existence and uniqueness of the boundary value problem for linear systems equations of the mixed hyperbolic-elliptic type in
the multivariate domain with the changing time direction are studied. Applying methods of functional analysis, “𝜀-regularizing”
continuation by the parameter and by means of prior estimates, the existence and uniqueness of generalized and regular solutions
of a boundary problem are established in a weighted Sobolev space.
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1. Introduction

Up to the present, various generalizations of mixed and
composite type of equations have been investigated by many
authors. Interest of investigations of nonclassical equations
arises in applications in the field of hydrogas dynamics,
modeling of physical processes (see, e.g., [1–6] and the
references given therein).

Nonclassical model is defined as the model of math-
ematical physics, which is represented in the form of the
equation or systems of partial differential equations that does
not fit into one of the classical types: elliptic, parabolic, or
hyperbolic. In particular, nonclassical models are described
by equations of mixed type (the Tricomi equation), degen-
erate equations (the Keldysh equation) or the equations of
Sobolev type (or the Barenblatt-Zsolt-Kachina equation), the
equation of mixed type with the changing time direction, and
forward-backward equations. In [7], a fundamental theory of

the solvability of many different boundary value problems for
nonclassical equations was presented.

In recent years the attention of many scholars has turned
to the study of well-posed boundary value problems for
nonclassical equations of mathematical physics, in particular,
for forward-backward equations of the parabolic type (as
the changing time direction) (see, e.g., [8, 9], etc.) and for
equations of mixed type with several lines of change of type
(see, e.g., [8–12] and the references given therein).

In the theory of boundary value problems for degenerate
equations and equations of mixed type, it is a well-known
fact that the well-posedness and the class of its correctness
essentially depend on the coefficient of the first-order deriva-
tive (younger member) of equations (e.g., [13–16] and the
references given therein).

In [14] the new called Fichera function was introduced,
in order to identify subsets of the boundary of the domain
where the boundary value problem for such kind of equations

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 703652, 10 pages
http://dx.doi.org/10.1155/2015/703652

http://dx.doi.org/10.1155/2015/703652


2 Abstract and Applied Analysis

is posed, where it is necessary (or not) to specify the boundary
condition. A namely, the boundary conditions depends on
sign of function Fichera’sB(𝑥).

In [13] (see, Chapter 1, pages 191–197, and Chapter 3, pages
239–245) and [15] new boundary conditions (so-called type
of problem “E” in which some part of the boundary will be
exempt from the boundary conditions) were studied.

In [16–18] various Dirichlet problems which can be
formulated for equations of Keldysh type, one of the two
main classes of linear elliptic-hyperbolic equations, were
investigated. Open boundary conditions (in which data
are prescribed on only part of the boundary) and closed
boundary conditions (in which data are prescribed on the
entire boundary) were both considered. Emphasis is on the
formulation of boundary conditions for which solutions can
be shown to exist in an appropriate function space.

Boundary value problems for equations of mixed hyper-
bolic-elliptic type with changing time direction had been
studied in detail in [10–12]. Great difficulties come into being
in the investigation of systems of degenerate elliptic and
hyperbolic equations.

Note that many authors studied hyperbolic-parabolic
equations and system equations of degenerating elliptic type,
system equations of hyperbolic-elliptic type and system equa-
tions of hyperbolic (see, e.g., [3, 5, 6, 19] and the references
given therein).

In mathematical modeling, partial differential equations
of themixed type are used togetherwith boundary conditions
specifying the solution on the boundary of the domain. In
some cases, classical boundary conditions cannot describe
process or phenomenon precisely. Therefore, mathematical
models of various physical, chemical, biological, or envi-
ronmental processes often involve nonclassical conditions.
Such conditions usually are identified as nonlocal boundary
conditions and reflect situationswhen the data on the domain
boundary cannot be measured directly or when the data
on the boundary depend on the data inside the domain. In
numerical methods for solving these equations, the problem
of stability has received a great deal of importance and
attention. In particular, a suitable model for analyzing the
stability is provided by a proper unconditionally absolutely
stable difference scheme with an unbounded operator. The
method of operators as a tool for the investigation of the
stability of the solution of nonlocal problems for partial
differential equations of themixed type inHilbert andBanach
spaces and of difference schemes for approximate solution of
these problems has been systematically developed (see, e.g.,
[20–22] and the references given therein).

Finally, the problem for the system of equations of
hyperbolic-elliptic type, including property of changing time
direction, has not been extensively investigated. Therefore in
the present paper we will study this problem.

2. Problem Statement, Notation,
and Preliminaries

Let 𝐺 be a bounded domain in the Euclidean space 𝑅𝑛 of the
point 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
), including a part of hyperplane 𝑥

𝑛
= 0

and with smooth boundary 𝜕𝐺 ∈ 𝐶2, 𝐺+ = 𝐺 ∩ {𝑥
𝑛
> 0},

𝐺
−

= 𝐺 ∩ {𝑥
𝑛
< 0}. The boundary of 𝐺+ consists of a

part of hyperplane 𝑥
𝑛
= 0 for 𝑥

𝑛
> 0 and smooth surface

𝜕𝐺
+. Analogically, the boundary 𝐺− consists of a part of

hyperplane 𝑥
𝑛
= 0 for 𝑥

𝑛
< 0 and smooth surface 𝜕𝐺−.

Assume that 𝐷 = 𝐺 × (−𝑇, 𝑇), 𝑇 > 0; 𝑆 = 𝜕𝐺 × (−𝑇, 𝑇),
where Γ = 𝜕𝐷 is a boundary of domain 𝐷. In the domain 𝐷
consider the system of equations

𝐿
1
(𝑢, 𝜐) = 𝑘

(1)

1
(𝑡) 𝑢
𝑡𝑡
+ 𝑘
2
(𝑥) Δ
𝑥
𝑢 +

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
(𝑥, 𝑡) 𝑢

𝑥𝑖

+

𝑛

∑

𝑖=1

𝑎
(1)

𝑖2
(𝑥, 𝑡) 𝜐

𝑥𝑖
+ 𝑏
11
(𝑥, 𝑡) 𝑢

𝑡
+ 𝑏
12
(𝑥, 𝑡) 𝜐

𝑡

+ 𝑐
11
(𝑥, 𝑡) 𝑢 + 𝑐

12
(𝑥, 𝑡) 𝜐 = 𝑓

1
(𝑥, 𝑡)

𝐿
2
(𝑢, 𝜐) = 𝑘

(2)

1
(𝑡) 𝜐
𝑡𝑡
+ Δ
𝑥
𝜐 +

𝑛

∑

𝑖=1

𝑎
(2)

𝑖1
(𝑥, 𝑡) 𝑢

𝑥𝑖

+

𝑛

∑

𝑖=1

𝑎
(2)

𝑖2
(𝑥, 𝑡) 𝜐

𝑥𝑖
+ 𝑏
21
(𝑥, 𝑡) 𝑢

𝑡

+ 𝑏
22
(𝑥, 𝑡) 𝜐

𝑡
+ 𝑐
21
(𝑥, 𝑡) 𝑢 + 𝑐

22
(𝑥, 𝑡) 𝜐

= 𝑓
2
(𝑥, 𝑡) ,

(1)

where the Δ
𝑥
is Laplace operator Δ

𝑥
= 𝜕
2

/𝜕𝑥
2

1
+ ⋅ ⋅ ⋅ + 𝜕

2

/𝜕𝑥
2

𝑛
.

Everywherewewill assume that the coefficients of the sys-
tem of (1) are sufficiently smooth. Moreover, the conditions

𝑡𝑘
(𝑖)

1
(𝑡) > 0 for 𝑡 ̸= 0, 𝑡 ∈ (−𝑇, 𝑇) , 𝑖 = 1, 2;

𝑥
𝑛
𝑘
2
(𝑥) < 0 for 𝑥

𝑛
̸= 0, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝐺 ∈ 𝑅

𝑛

(2)

are satisfied. As far as is known that quadratic form of
the equations of system (1) changes, then this system con-
tains portions degenerating elliptic, degenerating hyperbolic,
mixed, and composite type differential equations at the same
time including changing direction time of variable in the
domain 𝐷. Since, couples form such view system equations
in first time considered by author.

Assume the following notations:

Γ
+

−𝑇
= {(𝑥, 𝑡) ∈ Γ : 𝑥

𝑛
> 0, 𝑡 = −𝑇}, Γ−

−𝑇
= {(𝑥, 𝑡) ∈ Γ :

𝑥
𝑛
< 0, 𝑡 = −𝑇},

Γ
+

𝑇
= {(𝑥, 𝑡) ∈ Γ : 𝑥

𝑛
> 0, 𝑡 = 𝑇}, Γ−

𝑇
= {(𝑥, 𝑡) ∈ Γ :

𝑥
𝑛
< 0, 𝑡 = 𝑇}, 𝑆+ = 𝜕𝐺+ × [−𝑇, 𝑇],

𝑆
−

= 𝜕𝐺
−

× [−𝑇, 𝑇], 𝐷+ = 𝐷 ∩ {𝑥
𝑛
< 0}, 𝐷− =

𝐷 ∩ {𝑥
𝑛
< 0}.

2.1. The Boundary Value Problem (So-Called Problem “E”).
Find the solution of system equations (1) in the domain 𝐷,
satisfying the conditions

𝑢|
𝑠
= 0, 𝑢|

Γ
+

−𝑇

= 0, 𝑢|
Γ
−

𝑇

= 0, (3)

𝜐|
𝑆
= 0, 𝜐|

Γ
+

−𝑇

= 0, 𝜐|
Γ
−

𝑇

= 0. (4)
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Remark 1. In this situation, the Γ+
−𝑇
, Γ−
−𝑇
, Γ+
𝑇
, and Γ−

𝑇
set are

carriers as boundary conditions which depending on the sign
𝑏
22
(𝑥, 𝑡), 𝑘(𝑖)

1
(𝑡), 𝑖 = 1, 2, 𝑏

11
(𝑥, 𝑡) when the 2𝑏

22
− 𝑘
(2)

1𝑡
(𝑡) ≥

𝛿
1
> 0, 2𝑏

11
− 𝑘
(1)

1𝑡
(𝑡) ≥ 𝛿 > 0 conditions must be satisfied

everywhere in 𝐷. Thus indicated boundary value problems
for the system of (1) are put in the forms (3) and (4), where
some of the parts of boundary Γ = 𝜕𝐷 will be exempt from
the boundary conditions. Consequently, the use of the term
type of problem “E” and setting the boundary conditions (3)
and (4) correspond to and are consistent with the approach
cited above.

By the symbol 𝐶
𝐿
we denote a class of twice continuously

differentiable functions in the closed domain 𝐷, satisfying
the boundary conditions (3) and (4), by 𝐻

1,𝐿
(𝐷), 𝐻

2,𝐿
(𝐷) in

Sobolev’s space with weighted spaces obtained by the class𝐶
𝐿

which is closed by the norms

‖𝑢‖
2

𝐻1,𝐿(𝐷)
= ∫

𝐷

(𝑢
2

𝑡
+




𝑘
2
(𝑥)





𝑛

∑

𝑖=1

𝑢
2

𝑥𝑖

+ 𝑢
2

)𝑑𝐷,

‖𝑢‖
2

𝐻2,𝐿(𝐷)
= ∫

𝐷

(𝑢
2

𝑡𝑡
+ 𝑘
2

2
(𝑥)

𝑛

∑

𝑖=1

𝑢
2

𝑥𝑖𝑥𝑖

+




𝑘
2
(𝑥)





𝑛

∑

𝑖=1

𝑢
2

𝑥𝑖𝑡

+




𝑘
2
(𝑥)





𝑛

∑

𝑖=1

𝑢
2

𝑥𝑖

+ 𝑢
2

𝑡
+ 𝑢
2

)𝑑𝐷,

(5)

respectively. Since 𝑘
2
(𝑥) ̸= 0 for 𝑥

𝑛
̸= 0, by Sobolev’s

embedding theorems [23] the functions from the spaces
𝐻
2,𝐿
(𝐷) will satisfy the boundary conditions (3), (4).

Lemma 2. Let the following conditions

(a) 2𝑏
11
(𝑥, 𝑡) − 𝑘

(1)

1𝑡
(𝑡) ≥ 𝛿 > 0 for 𝑡 = 0, 𝑥 ∈ 𝐺,

(b) 2𝑏
22
(𝑥, 𝑡) − 𝑘

(2)

1𝑡
(𝑡) ≥ 𝛿

1
> 0 for 𝑡 = 0, 𝑥 ∈ 𝐺,

(c) |𝑎(1)
𝑖1
(𝑥, 𝑡)|

2

≤ 𝑀
1
|𝑘
2
(𝑥)|, |𝑎(2)

𝑖1
(𝑥, 𝑡)|

2

≤ 𝑀
2
|𝑘
2
(𝑥)|,

∑
𝑛

𝑖=1
(𝑎
(1)

𝑖1
− 𝑘
2𝑥𝑖
)
2

≤ 𝑀
3
|𝑘
2
(𝑥)|, where 𝑀

1
, 𝑀
2
, 𝑀
3
,

and𝑀 are sufficiently large constants,
(d) 2𝑐

22
(𝑥, 𝑡) − ∑

𝑛

𝑖=1
𝑎
(2)

𝑖2
− 𝑏
22
(𝑥, 𝑡) ≤ 0, (𝑥, 𝑡) ∈ 𝐷,

(e) |𝑎(1)
𝑖2
|
2

≤ 𝑀|𝑘
2
(𝑥)|,

(f) −𝜇𝑐
22
− 𝑐
22𝑡
> 0; 𝜆𝑐

11
− 𝑐
11𝑡
> 0 (the constants 𝜆 > 0,

𝜇 > 0 are chosen)
be satisfied. Then there exist constants 𝜆 ≥ 𝜆

0
> 0, 𝜇 ≥ 𝜇

0
> 0

such that for all functions 𝑢(𝑥, 𝑡), 𝜐(𝑥, 𝑡) from the class 𝑐
𝐿
the

following inequality holds true:

∫

𝐷
+

𝐿
1
(𝑢, 𝜐) 𝑒

−𝜆𝑡

𝑢
𝑡
𝑑𝐷
+

+ ∫

𝐷
+

𝑒
−𝜆𝑡

𝜐
𝑡
𝐿
2
(𝑢, 𝜐) 𝑑𝐷

+

+ ∫

𝐷
−

𝑒
𝜇𝑡

𝑢
𝑡
𝐿
1
(𝑢, 𝜐) 𝑑𝐷

−

+ ∫

𝐷
−

𝑒
𝜇𝑡

𝜐
𝑡
𝐿
2
(𝑢, 𝜐) 𝑑𝐷

−

≥ 𝑚(‖𝑢‖
2

𝐻1 ,𝐿
(𝐷) + ‖𝜐‖

2

𝐻1,𝐿
(𝐷)) ,

(6)

where the constant 𝑚 is not dependent on function of 𝑢(𝑥, 𝑡)
and 𝜐(𝑥, 𝑡).

Proof. Let the functions 𝑢(𝑥, 𝑡), 𝜐(𝑥, 𝑡) ∈ 𝐶
𝐿
and consider the

following integrals:

𝐽
1
= ∫

𝐷
+

𝐿
1
(𝑢, 𝜐) 𝑒

−𝜆𝑡

𝑢
𝑡
𝑑𝐷
+

+ ∫

𝐷
−

𝑒
𝜇𝑡

𝑢
𝑡
𝐿
1
(𝑢, 𝜐) 𝑑𝐷

−

𝐽
2
= ∫

𝐷
+

𝐿
2
(𝑢, 𝜐) 𝑒

−𝜆𝑡

𝜐
𝑡
𝑑𝐷
+

+ ∫

𝐷
−

𝐿
2
(𝑢, 𝜐) 𝑒

𝜇𝑡

𝜐
𝑡
𝑑𝐷
−

.

(7)

After integration by parts and allowing for boundary con-
ditions of (3), (4) and taking into account nonnegative
boundary integrals we get

𝐽
1
= ∫

𝐷
+

𝐿
1
(𝑢, 𝜐) 𝑒

−𝜆𝑡

𝑢
𝑡
𝑑𝐷
+

+ ∫

𝐷
−

𝑒
𝜇𝑡

𝑢
𝑡
𝐿
1
(𝑢, 𝜐) 𝑑𝐷

−

≥

1

2

∫

𝐷
+

{𝑒
−𝜆𝑡

[(2𝑏
11
− 𝑘
(1)

1𝑡
(𝑡) + 𝜆𝑘

(1)

1
(𝑡)) 𝑢
2

𝑡

+

𝑛

∑

𝑖=1

(𝑎
(1)

𝑖1
𝑢
𝑥𝑖
𝑢
𝑡
+ 𝑎
(1)

𝑖2
𝜐
𝑥𝑖
𝑢
𝑡
)

+ 𝑏
12
𝜐
𝑡
𝑢
𝑡
− 𝑘


2𝑥𝑖

𝑢
𝑥𝑖
𝑢
𝑡
+ (𝜆𝑐
11
− 𝑐
11𝑡
) 𝑢
2

+ 𝑐
12
𝜐𝑢
𝑡
+ (−𝜆

𝑛

∑

𝑖=1

𝑘
2
(𝑥) 𝑢
2

𝑥𝑖
)]}𝑑𝐷

+

+ ∫

𝐷
−

{𝑒
𝜇𝑡

[(2𝑏
11
− 𝑘
(1)

1𝑡
(𝑡) − 𝜇𝑘

(1)

1
(𝑡)) 𝑢
2

𝑡

+ 2

𝑛

∑

𝑖=1

(𝑎
(1)

𝑖1
𝑢
𝑥𝑖
𝑢
𝑡
+ 𝑎
(1)

𝑖2
𝜐
𝑥𝑖
𝑢
𝑡
)

+ 𝜇

𝑛

∑

𝑖=1

𝑘
2
(𝑥) 𝜐
2

𝑥𝑖

+ 2𝑏
12
𝜐
𝑡
𝑢
𝑡

+ (−𝜇𝑐
11
− 𝑐
11𝑡
) 𝑢
2

+ 𝑐
12
𝜐𝑢
𝑡
]}𝑑𝐷

−

+ ∫

𝐺
+

𝑘
(1)

1
(𝑇) 𝑒
−𝜆𝑇

𝑢
2

𝑡
(𝑥, 𝑇) 𝑑𝑥

+ ∫

𝐺
−

𝑘
(1)

1
(−𝑇) 𝑒

𝜇𝑡

𝑢
2

𝑡
(𝑥, −𝑇) 𝑑𝑥

− ∫

𝑆
+

𝑘
2
(𝑥) 𝑒
−𝜆𝑡

𝑢
2

𝑥
(𝑥, 𝑡) 𝑑𝑥 + ∫

𝑆
−

𝑘
2
(𝑥) 𝑒
𝜇𝑡

𝑢
2

𝑥
(𝑥, 𝑡) 𝑑𝑥

− ∫

𝐺
−

𝑐
11
(𝑥, −𝑇) 𝑒

−𝜇𝑇

𝑢
2

(𝑥, −𝑇) 𝑑𝑥

+ ∫

𝐺
+

𝑐
11
(𝑥, 𝑇) 𝑒

𝜆𝑇

𝑢
2

(𝑥, 𝑇) 𝑑𝑥,

𝐽
2
= ∫

𝐷
+

𝑒
−𝜆𝑡

𝜐
𝑡
𝐿
2
(𝑢, 𝜐) 𝑑𝐷

+

+ ∫

𝐷
−

𝑒
𝜇𝑡

𝜐
𝑡
𝐿
2
(𝑢, 𝜐) 𝑑𝐷

−

≥

1

2

∫

𝐷
+

{𝑒
−𝜆𝑡

[(2𝑏
22
− 𝑘
(2)

1𝑡
(𝑡) + 𝜆𝑘

(2)

1
(𝑡)) 𝜐
2

𝑡

+ (−𝜆

𝑛

∑

𝑖=1

𝑘
2
(𝑥) 𝜐
2

𝑥𝑖

) + (𝜆𝑐
22
+ 𝑐
22𝑡
) 𝜐
2
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+ 2

𝑛

∑

𝑖=1

(𝑎
(2)

𝑖1
𝑢
𝑥𝑖
𝜐
𝑡
+ 𝑎
(2)

𝑖2
𝜐
𝑥𝑖
𝜐
𝑡
)

+ 2𝑐
21
𝑢𝜐
𝑡
+ 2𝑏
21
𝑢
𝑡
𝜐
𝑡
]}𝑑𝐷

+

+ ∫

𝐷
−

{𝑒
𝜇𝑡

[(2𝑏
22
− 𝑘
(2)

1
(𝑡) − 𝜇𝑘

(2)

1
(𝑡)) 𝜐
2

𝑡

+

𝑛

∑

𝑖=1

(𝑎
(2)

𝑖1
𝑢
𝑥𝑖
𝜐
𝑡
+ 𝑎
(2)

𝑖2
𝜐
𝑥𝑖
𝜐
𝑡
)

+ 𝜇

𝑛

∑

𝑖=1

𝜐
2

𝑥𝑖

+ 2𝑐
21
𝑢𝜐
𝑡

+2𝑏
21
𝑢
𝑡
𝜐
𝑡
+ (−𝜇𝑐

22
− 𝑐
22𝑡
) 𝜐
2

]}𝑑𝐷
−

+ ∫

𝐺
+

𝑘
(2)

1
(𝑇) 𝑒
−𝜆𝑇

𝜐
2

𝑡
(𝑥, 𝑇) 𝑑𝑥

− ∫

𝐺
−

𝑘
(2)

1
(−𝑇) 𝑒

𝜇𝑇𝑡

𝜐
2

𝑡
(𝑥, −𝑇) 𝑑𝑥

− ∫

𝐺
−

𝑐
22
(𝑥, −𝑇) 𝑒

−𝜇𝑇

𝜐
2

(𝑥, −𝑇) 𝑑𝑥

+ ∫

𝐺
+

𝑐
22
(𝑥, 𝑇) 𝑒

−𝜆𝑇

𝜐
2

(𝑥, 𝑇) 𝑑𝑥.

(8)

Now, using inequality of Cauchy-Bunyakovskiy, inequality
of Poincare, and conditions of Lemma 2 for coefficients
of system equations (1) and taking into account chosen
constants 𝜆 = 𝜆

0
> 0, 𝜇 = 𝜇

0
> 0 with the fact that

the coefficients 𝑘(𝑖)
1
(𝑡), 𝑖 = 1, 2, are homogeneous on the

boundaries and after summarizing estimates for 𝐽
1
and 𝐽

2
,

then obtain validity of inequality (6).

Definition 3. One says that 𝑢(𝑥, 𝑡) and 𝜐(𝑥, 𝑡) are regular
solution of problem ((1)–(4)), if the functions 𝑢(𝑥, 𝑡), 𝜐(𝑥, 𝑡) ∈
𝐻
2,𝐿
(𝐷) satisfy equation of (1) almost everywhere in domain

𝐷.
Note that for solvability of problem ((1)–(4)) the standard

methods ([3, 5–9, 13, 15–19, 24], etc.) are not applicable,
because the condition of Somigliana [25] is not fulfilled. We
need to seek other structure steps of proof or nonclassical
method for solvability of problem ((1)–(4)). For this reason,
first of all, begin to formulate the theory of existence; first take
the decaying system equations in the following form:

𝐿
1
(𝑢) = 𝑘

(1)

1
(𝑡) 𝑢
𝑡𝑡
+ 𝑘
2
(𝑥) Δ𝑢 +

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
𝑢
𝑥𝑖
+ 𝑏
11
𝑢
𝑡
+ 𝑐
11
𝑢

= 𝑓
1
(𝑥, 𝑡) ,

(9)

𝐿
2
(𝜐) = 𝑘

(2)

1
(𝑡) 𝜐
𝑡𝑡
+ Δ𝜐 +

𝑛

∑

𝑖=1

𝑎
(2)

𝑖2
𝜐
𝑥𝑖
+ 𝑏
22
𝜐
𝑡
+ 𝑐
22
𝜐

= 𝑓
2
(𝑥, 𝑡) .

(10)

For proving solvability of problem ((9), (3)) we use the
method of “𝜀-regularization” and it is the fact that the
hyperplane 𝑥

𝑛
= 0 is characteristic for (9). Therefore, we

can consider the boundary value problem ((9), (3)) in the
following form.

2.2. Boundary Value Problem 1. Find the solution of (9) in the
domain𝐷+, satisfying the boundary conditions

𝑢|
Γ
+

−𝑇

= 0, 𝑢|
𝑠
+ = 0. (11)

2.3. Boundary Value Problem 2. Find the solution of (9) in the
domain𝐷−, satisfying the boundary conditions

𝑢|
Γ
−

𝑇

= 0, 𝑢|
𝑠
− = 0. (12)

By 𝐶
𝐿
(𝐷
+

), 𝐶
𝐿
(𝐷
−

) we denote a class of infinitely differen-
tiable functions in the closed domains 𝐷+, 𝐷− satisfying the
boundary conditions (11) and (12), respectively.

3. Uniqueness Solution of Problem ((1)–(4)) in
Space𝐻

2,𝐿
(𝐷)

Theorem 4. Let the conditions of Lemma 2 be fulfilled. Then
the regular solution of the problem ((1)–(4)) is unique.

Proof. Indeed, let 𝑢
1
, 𝜐
1
and 𝑢

2
, 𝜐
2
be two solutions of prob-

lem ((1)–(4)) which is satisfying the systems equations (1).
Let 𝑢 = 𝑢

1
− 𝑢
2
, 𝜐 = 𝜐

1
− 𝜐
2
. Then the functions 𝑢, 𝜐 will

be satisfying equations 𝐿
1
(𝑢, 𝜐) = 0 and 𝐿

2
(𝑢, 𝜐) = 0 in the

domain 𝐷. Suppose that 𝑢 ̸= 0, 𝜐 ̸= 0 are satisfied. Let us
take sequence, functions {𝑢

𝑛
}, {𝜐
𝑛
} ∈ 𝐶
𝐿
, 𝑛 = 1, 2, . . ., and so

forth, such that 𝑢
𝑛
→ 𝑢 in𝐻

2,𝐿
(𝐷) for 𝑛 → ∞, 𝜐

𝑛
→ 𝜐 in

𝐻
2,𝐿
(𝐷) for 𝑛 → ∞. By the inequality of (6) we have





𝐿
1
(𝑢, 𝜐)




𝐿2(𝐷)

+




𝐿
2
(𝑢, 𝜐)




𝐿2(𝐷)

≥ 𝑚
1
(‖𝑢‖
𝐻2,𝐿(𝐷)

+ ‖𝜐‖
𝐻2,𝐿(𝐷)

) ,

(13)

where the constant𝑚
1
is independent of the functions 𝑢(𝑥, 𝑡)

and 𝜐(𝑥, 𝑡). Therefore we can assert that 𝐿
1
(𝑢
𝑛
, 𝜐
𝑛
) →

𝐿
1
(𝑢, 𝜐), 𝐿

2
(𝑢
𝑛
, 𝜐
𝑛
) → 𝐿

2
(𝑢, 𝜐) for 𝑛 → ∞. By the virtue

of inequality of (6) we have

(𝐿
1
(𝑢
𝑛
, 𝜐
𝑛
) , 𝑒
−𝜆𝑡

𝑢
𝑛𝑡
)
𝐿2(𝐷
+
)

+ (𝐿
1
(𝑢
𝑛
, 𝜐
𝑛
) , 𝑒
𝜇𝑡

𝑢
𝑛𝑡
)
𝐿2(𝐷
−
)

+ (𝐿
2
(𝑢
𝑛
, 𝜐
𝑛
) , 𝑒
−𝜆𝑡

𝜐
𝑛𝑡
)
𝐿2(𝐷
+
)

+ (𝐿
2
(𝑢
𝑛
, 𝜐
𝑛
) , 𝑒
𝜇𝑡

𝜐
𝑛𝑡
)
𝐿2(𝐷
−
)

≥ 𝑚
1
(




𝑢
𝑛






2

𝐻1,𝐿(𝐷)
+




𝜐
𝑛






2

𝐻1,𝐿(𝐷)
) .

(14)

Hence, passing to limit as 𝑛 → ∞ in last inequality, we get
𝑢
𝑛
→ 0, 𝜐

𝑛
→ 0 in space 𝐻

1,𝐿
(𝐷). On the other sides we

have




𝑢
𝑛
− 𝑢



𝐻1,𝐿(𝐷)

≤




𝑢
𝑛
− 𝑢



𝐻2,𝐿(𝐷)

→ 0,





𝜐
𝑛
− 𝜐



𝐻1,𝐿(𝐷)

≤




𝜐
𝑛
− 𝜐



𝐻2,𝐿(𝐷)

→ 0

(15)
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for 𝑛 → ∞. Hence, 𝑢 ≡ 0, 𝜐 ≡ 0. That is proof ofTheorem 4.
Now, we need the proof of solvability problem ((1)–(4)).

4. The Existence of Weak (Regular) Solution of
Problems ((9), (11)) and ((9), (12))

Lemma 5. Let the conditions (a)–(c), (e), and (f) of Lemma 2
be satisfied.Then for any functions 𝑢(𝑥, 𝑡) ∈ 𝐶

𝐿
(𝐷
+

) (𝑢(𝑥, 𝑡) ∈

𝐶


𝐿
(𝐷
−

)) the following inequalities

(𝐿
1
(𝑢) , 𝑒
−𝜆𝑡

𝑢
𝑡
)
𝐿2(𝐷
+
)

≥ 𝑚
1
‖𝑢‖
2

𝐻1,𝐿(𝐷
+
)
,

(𝐿
1
(𝑢) , 𝑒
𝜇𝑡

𝑢
𝑡
)
𝐿2(𝐷
−
)

≥ 𝑚
2
‖𝑢‖
2

𝐻1,𝐿(𝐷
−
)

(16)

are valid.

Proof. Let us consider the integrals

∫

𝐷
+

𝐿
1
(𝑢) 𝑒
−𝜆𝑡

𝑢
𝑡
𝑑𝐷
+

= ∫

𝐷
+

𝑓
1
𝑒
−𝜆𝑡

𝑢
𝑡
𝑑𝐷
+

,

∫

𝐷
−

𝐿
1
(𝑢) 𝑒
𝜇𝑡

𝑢
𝑡
𝑑𝐷
−

= ∫

𝐷
−

𝑓
1
𝑒
𝜇𝑡

𝑢
𝑡
𝑑𝐷
−

.

(17)

After integration by parts, allowing for boundary conditions
and taking into account nonnegative boundary integrals, we
get

(𝐿
1
(𝑢), 𝑒
−𝜆𝑡

𝑢
𝑡
)
𝐿2(𝐷
+
)

≥

1

2

∫

𝐷
+

{𝑒
−𝜆𝑡

[(2𝑏
11
(𝑥, 𝑡) − 𝑘

(1)

1𝑡
(𝑡) + 𝜆𝑘

(1)

1
(𝑡)) 𝑢
2

𝑡

+ 2

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
𝑢
𝑥𝑖
𝑢
𝑡
+ (𝜆𝑐
11
− 𝑐
11𝑡
) 𝑢
2

+(−𝜆

𝑛

∑

𝑖=1

𝑘
2
(𝑥) 𝑢
2

𝑥𝑖

)]}𝑑𝐷
+

+ ∫

𝐺
+

𝑐
11
(𝑥, 𝑇) 𝑒

𝜆𝑇

𝑢
2

(𝑥, 𝑇) 𝑑𝑥

+ ∫

𝐺
+

𝑘
(2)

1
(𝑇) 𝑒
−𝜆𝑇

𝑢
2

𝑡
(𝑥, 𝑇) 𝑑𝑥, ∀𝑢 (𝑥, 𝑡) ∈ 𝑐



𝐿
(𝐷
+

) ,

(𝐿
1
(𝑢), 𝑒
𝜇𝑡

𝑢
𝑡
)
𝐿2(𝐷
−
)

≥

1

2

∫

𝐷
−

{𝑒
𝜇𝑡

[(2𝑏
11
(𝑥, 𝑡) − 𝑘

(1)

1𝑡
(𝑡) − 𝜇𝑘

(1)

1
(𝑡)) 𝑢
2

𝑡

+ 2

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
𝑢
𝑥𝑖
𝑢
𝑡
+ (𝜇𝑐
11
− 𝑐
11𝑡
) 𝑢
2

+ 𝜇

𝑛

∑

𝑖=1

𝑘
2
(𝑥) 𝑢
2

𝑥𝑖

]}𝑑𝐷
−

− ∫

𝐺
−

𝑐
11
(𝑥, −𝑇) 𝑒

−𝜇𝑇

𝑢
2

(𝑥, −𝑇) 𝑑𝑥

− ∫

𝐺
−

𝑘
(2)

1
(−𝑇) 𝑒

𝜇𝑇

𝑢
2

𝑡
(𝑥, −𝑇) 𝑑𝑥, ∀𝑢 (𝑥, 𝑡) ∈ 𝑐



𝐿
(𝐷
−

) .

(18)

Hence, using Cauchy-Bunyakovskiy and Poincare inequali-
ties and taking into account conditions (a)–(c), (e), and (f) of
Lemma 2 and chosen constants 𝜆 = 𝜆

0
> 0, 𝜇 = 𝜇

0
> 0 with

the fact that the coefficients 𝑘(1)
1
(𝑡), 𝑘(21)
1
(𝑡) are homogeneous

on the boundaries, then we get the truth of inequalities (16).
Moreover, using Holder’s inequality we have





𝑓
1




𝐿2(𝐷

+
)
≥ 𝑚
1
‖𝑢‖
2

𝐻1,𝐿(𝐷
+
)
,





𝑓
1




𝐿2(𝐷

−
)
≥ 𝑚
2
‖𝑢‖
2

𝐻1,𝐿(𝐷
−
)
,

(19)

where the constants 𝑚
1
and 𝑚

2
are independent of the

function 𝑢(𝑥, 𝑡).

Definition 6. The function 𝑢(𝑥, 𝑡) ∈ 𝐻
2,𝐿
(𝐷
+

) (𝑢(𝑥, 𝑡) ∈

𝐻
2,𝐿
(𝐷
−

)) is said to be regular solution of problems ((9), (11)),
and ((9), (12)) if it is generalized solution and satisfies almost
everywhere (9) in domain𝐷+ (𝐷−).

Lemma 7. Let the conditions of Lemma 5 be fulfilled. Then
regular solution of problems ((9), (11)), and ((9), (12)) is unique.

Proof. Lemma 7 is proved by a way similar to Lemmas 2 and
5. Since the equation of (9) is also degenerating then due to
regularizing effect for (9).

In the domain 𝐷+, we have “𝜀-regularized” equation of
mixed type

𝐿
1𝜀
(𝑢
𝜀
) = 𝑘
(1)

1
(𝑡) 𝑢
𝜀𝑡𝑡
+ (𝑘
2
− 𝜀) Δ𝑢

𝜀
+ 𝑏
11
𝑢
𝜀𝑡

+

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
𝑢
𝜀𝑥𝑖
+ 𝑐
11
𝑢
𝜀
= 𝑓
1
(𝑥, 𝑡)

(20)

and we state for it the boundary value problem

𝑢
𝜀




𝑥𝑛=0

= 0, 𝑢
𝜀




𝑆
+ = 0, 𝑢

𝜀




Γ
+

−𝑇

= 0. (21)

Analogically, we will consider the following boundary value
problem:

𝐿
1𝜀
(𝑢
𝜀
) = 𝑘
(1)

1
(𝑡) 𝑢
𝜀𝑡𝑡
+ (𝑘
2
+ 𝜀) Δ𝑢

𝜀
+ 𝑏
11
𝑢
𝜀𝑡

+

𝑛

∑

𝑖=1

𝑎
(1)

𝑖1
𝑢
𝜀𝑥𝑖
+ 𝑐
11
𝑢
𝜀
= 𝑓
1
(𝑥, 𝑡)

(22)

𝑢
𝜀




𝑥𝑛=0

= 0, 𝑢
𝜀




𝑆
− = 0, 𝑢

𝜀




Γ
−

𝑇

= 0. (23)

Proceeding from the results of [12] we can affirm the follow-
ing Remark.

Remark 8. If the conditions of Lemmas 5 and 7 and 2𝑏
11
(𝑥, 𝑡)−

|𝑘
(1)

1𝑡
| ≥ 𝛿 > 0 (𝑥, 𝑡) ∈ 𝐷 are satisfied, then for any right-hand

side 𝑓
1
(𝑥, 𝑡), 𝑓

1𝑡
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷
+

) (𝑓
1
(𝑥, 𝑡), 𝑓

1𝑡
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷
−

))
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there exists a unique solution of boundary value problems
(20), (21), ((22), (23)) from the space𝑊2

2
(𝐷
+

)(𝑊
2

2
(𝐷
−

)) and
this solution allows following estimates





𝑓
1






2

𝐿2(𝐷
+
)
+




𝑓
1𝑡






2

𝐿2(𝐷
+
)
≥ 𝑚
3





𝑢
𝜀






2

𝑊
2

2
(𝐷
+
)
,





𝑓
1






2

𝐿2(𝐷
−
)
+




𝑓
1𝑡






2

𝐿2(𝐷
−
)
≥ 𝑚
4





𝑢
𝜀






2

𝑊
2

2
(𝐷
−
)
,

(24)

where the constants 𝑚
3
and 𝑚

4
are independent of the

function 𝑢(𝑥, 𝑡).

Proof. This Remark can be proves similarly to Lemmas 2 and
5 andTheorem 4.

Theorem 9 (on the solvability of problem ((9), (11))). Let
the conditions of Lemma 5 and |𝑘

2𝑥𝑖
𝑘
2𝑥𝑗
| ≤ 𝑀

1
|𝑘
2
(𝑥)|,

𝑓
1
(𝑥, 𝑡), 𝑓

1𝑡
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷
+

), and 2𝑏
11
(𝑥, 𝑡) − |𝑘

(1)

1𝑡
(𝑡)| ≥ 𝛿 >

0, for (𝑥, 𝑡) ∈ 𝐷+, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, be satisfied. Then there
exists a unique regular solution of problem ((9), (11)) from the
space𝐻

2,𝐿
(𝐷
+

).

Theorem 10 (on the solvability of problem ((9), (12))). Let the
conditions of Lemma 2 and |𝑘

2𝑥𝑖
𝑘
2𝑥𝑗
| ≤ 𝑀

1
|𝑘
2
(𝑥)|, 𝑓

1
(𝑥, 𝑡),

𝑓
1𝑡
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷
−

), 2𝑏
11
(𝑥, 𝑡)− |𝑘

(1)

1𝑡
(𝑡)| ≥ 𝛿 > 0, and 𝑓(𝑥, 𝑡)

∈ 𝐷
−, 𝑖, 𝑗 = 1, 2, . . . , 𝑛, be satisfied. Then there exists a unique

regular solution of problem ((9), (12)) from the space𝐻
2,𝐿
(𝐷
−

).

Proof of Theorems 9 and 10. The following a priori estimates





𝑓
1




𝐿2(𝐷

+
)
≥ 𝑚
5
∫

𝐷
+

(𝑢
2

𝜀𝑡
+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝑢
2

𝜀𝑥𝑖

+ 𝑢
2

𝜀
)𝑑𝐷
+





𝑓
1




𝐿2(𝐷

−
)
≥ 𝑚
6
∫

𝐷
−

(𝑢
2

𝜀𝑡
+




𝑘
2
+ 𝜀





𝑛

∑

𝑖=1

𝑢
2

𝜀𝑥𝑖

+ 𝑢
2

𝜀
)𝑑𝐷
−

(25)

hold for the functions 𝑢
𝜀
(𝑥, 𝑡) ∈ 𝑊

2

2
(𝐷
+

) (𝑢
𝜀
(𝑥, 𝑡) ∈

𝑊
2

2
(𝐷
−

)) and being the solution of boundary value problems
((20), (21)), and ((22), (23)), respectively, where the constants
𝑚
5
and 𝑚

6
are independent of 𝜀 and 𝑢(𝑥, 𝑡). The proof of

these statements is easily obtained by integration by parts and
using the Cauchy inequality. Further for obtaining the second
a priori estimation we take the function 𝜉

1
(𝑡)

𝜉
1
(𝑡) =

{
{
{
{
{
{

{
{
{
{
{
{

{

≡ 1 for 𝑡 ∈ (−𝑇, −𝜂) , 𝑇
2

> 𝜂 > 0,

≤ 1 for 𝑡 ∈ [−𝜂, −
𝜂

2

) ,

≡ 0 for 𝑡 ∈ [−
𝜂

2

, 𝑇) .

(26)

Then, we consider the function 𝑤
𝜀
(𝑥, 𝑡) = 𝜉

1
(𝑡)𝑢
𝜀
(𝑥, 𝑡).

Obviously, the function 𝑤
𝜀
(𝑥, 𝑡) will satisfy the equation

𝐿
1𝜀
𝑤
𝜀
= 𝜉
1
𝑓
1
+ 2𝑘
(1)

1
(𝑡) 𝜉


1
(𝑡) 𝑢
𝜀𝑡
+ 𝑘
(1)

1
(𝑡) 𝜉


1
(𝑡) 𝑢
𝜀
= 𝐹
𝜀
.

(27)
Hence, by virtue of inequalities (24) and (25), the set of
functions {𝐹

𝜀
(𝑥, 𝑡)} is uniformly bounded in space 𝐿

2
(𝐷
+

).
On the other side, in domain

𝐷
+

𝜂/2
= {𝑥 ∈ 𝐷, −𝑇 < 𝑡 < −

𝜂

2

} , (28)

the equation 𝐿
1𝜀
𝑤
𝜀
= 𝐹
𝜀
belongs to elliptical type of equation;

therefore, multiplying equation of (27) by −𝑤
𝜀𝑡𝑡

and after
integrating by parts in the domain 𝐷+, allowing boundary
conditions, use the Cauchy-Bunyakovskiy inequality we get





𝐹
𝜀




𝐿2(𝐷

+
)
≥ 𝑚
7
∫

𝐷
+

(𝑤
2

𝜀𝑡𝑡
+ 𝑤
2

𝜀
+ 𝑤
2

𝜀𝑡
+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝑤
2

𝜀𝑥𝑖

+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝑤
2

𝜀𝑥𝑖𝑥𝑖

)𝑑𝐷
+

,

(29)

where constant 𝑚
7
is independent of 𝜀, 𝑢(𝑥, 𝑡). Now, let us

consider the function 𝜉
2
(𝑡) ∈ 𝐶

∞

(−𝑇, 𝑇) such that 𝜉
2
(𝑡) ≡ 0

for −𝑇 < 𝑡 < −2𝜂, 𝜉
2
(𝑡) ≡ 1, −𝜂 < 𝑡 < 𝑇. Since 0 ≤ 𝜉

2
(𝑡) ≤ 1

and 𝜉
1
(𝑡) + 𝜉

2
(𝑡) ≡ 1, then 𝜑

𝜀
(𝑥, 𝑡) = 𝜉

2
(𝑡)𝑢
𝜀
(𝑥, 𝑡). It is easy to

see that the functions 𝜑
𝜀
(𝑥, 𝑡) satisfy the equation

𝐿
1𝜀
𝜑
𝜀
= 𝜉
2
(𝑡) 𝑓
1
(𝑥, 𝑡) + 2𝑘

(1)

1𝑡
(𝑡) 𝜉


2
(𝑡) 𝑢
𝜀
(𝑥, 𝑡)

+ 𝑘
(1)

1
(𝑡) 𝜉


2
(𝑡) 𝑢
𝜀
= Φ
𝜀
(𝑥, 𝑡) .

(30)

Hence include the fact that the functions B
𝜀
(𝑥, 𝑡),B

𝜀𝑡
(𝑥, 𝑡)

are uniformly bounded with respect to 𝜀 in the space 𝐿
2
(𝐷
+

).
Therefore, we can take finite difference

𝜑
𝜀ℎ
=

𝜑
𝜀
(𝑥, 𝑡 + ℎ) − 𝜑

𝜀
(𝑥, 𝑡)

ℎ

. (31)

It is easy to see that the functions 𝜑
𝜀
(𝑥, 𝑡) satisfy the equation

𝐿
1𝜀
(𝜑
𝜀ℎ
) = 𝜉
2
(𝑡) 𝑓
1
+ 2𝑘
(1)

1
(𝑡) 𝜉


2
(𝑡) 𝑢
𝜀𝑡
+ 𝑘
(1)

1
(𝑡) 𝜉


2
(𝑡) 𝑢
𝜀

= Φ
𝜀ℎ
(𝑥, 𝑡) .

(32)

Using the results on smoothness of the solution of problem
((20), (21)) and a priori estimates (25), (29) and passing to
limit as ℎ → 0 in the obtained inequalities





𝜙
𝜀ℎ




𝐿2(𝐷

+
)
≥ 𝑚
8
∫

𝐷
+

(𝜑
2

𝜀ℎℎ
+ 𝜑
2

𝜀
+ 𝜑
2

𝜀ℎ
+




𝑘
2
− 𝜀





⋅

𝑛

∑

𝑖=1

𝜑
2

𝜀𝑥ℎ𝑖

+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝜑
2

𝜀𝑥𝑖𝑥𝑖

)𝑑𝐷
+

(33)

and establishing relation between the functions 𝑓
1
(𝑥, 𝑡) and

B
𝜀
(𝑥, 𝑡) we get




𝑓
1




𝐿2(𝐷

+
)
+




𝑓
1𝑡




𝐿2(𝐷

+
)

≥ 𝑚
9
(∫

𝐷
+

(𝑢
2

𝜀𝑡𝑡
+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝑢
2

𝜀𝑡𝑥𝑖

+ 𝑢
2

𝜀𝑡
+




𝑘
2
− 𝜀





𝑛

∑

𝑖=1

𝑢
2

𝜀𝑥𝑖

+ 𝑢
2

𝜀
)𝑑𝐷
+

,

∀𝑢
𝜀
(𝑥, 𝑡) ∈ 𝐶



𝐿
(𝐷
+

)) .

(34)
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From the representations of function 𝜑
𝜀
(𝑥, 𝑡) and from (20)

by standard estimation method, we get |𝑘
2
− 𝜀|∑

𝑛

𝑖=1
𝑢
𝜀𝑥𝑖𝑥𝑖
∈

𝐿
2
(𝐷
+

). Consequently, from the uniformly bounded sequen-
ces {𝑢

𝜀
} can be chosen such subsequences {𝑢

𝜀𝑘
} which is

weakly converges to the function 𝑢(𝑥, 𝑡) ∈ 𝐻
2,𝐿
(𝐷
+

). Then
passing to limit as 𝜀

𝑘
→ 0, 𝑘 → ∞ in the identity

(𝑢
𝜀𝑘
, 𝐿
∗

1𝜀𝑘

𝑤
𝜀
)
𝐿2(𝐷
+
)

= (𝑓
1
, 𝑤
𝜀
)
𝐿2(𝐷
+
)
,

∀𝑤
𝜀
(𝑥, 𝑡) ∈ 𝐶

∞

0
(𝐷
+

) ,

(35)

where 𝐿∗
1
is an operator conjugated to the operator 𝐿

1
.

Hence,

(𝑢, 𝐿
∗

1
𝑤)
𝐿2(𝐷
+
)
= (𝑓
1
, 𝑤)
𝐿2(𝐷
+
)
, ∀𝑤 (𝑥, 𝑡) ∈ 𝐶

∞

0
(𝐷
+

) .

(36)

Consequently, the function 𝑢(𝑥, 𝑡) ∈ 𝐻
2,𝐿
(𝐷
+

) is gen-
eralized solution of problem ((9), (11)) whilst by virtue of
conditions 2𝑏

11
(𝑥, 0) − 𝑘

(1)

1𝑡
(0) ≥ 𝛿 > 0, ∀𝑥 ∈ 𝐺 this

solution satisfies (9) almost everywhere for 𝐷+ and by
Sobolev’s embedding theorems [23] the functions from the
spaces 𝐻

2,𝐿
(𝐷) will satisfy the boundary conditions (11)

almost everywhere.
In a similar way, repeating all the steps carried out for

the domain 𝐷+ for 𝐷− also we can establish that problem
((9), (12)) has a generalized solution and belongs to the space
𝐻
2,𝐿
(𝐷
−

) and satisfies (9) almost everywhere for 𝐷− and
boundary conditions (12).

We conclude the following Remark.

Remark 11. Let the following conditions

(a) 2𝑏
11
(𝑥, 𝑡) − |𝑘

(1)

1𝑡
(𝑡)| ≥ 𝛿 ≥ 0, ∀(𝑥, 𝑡) ∈ 𝐷, 𝑏

11
(𝑥, 0) −

𝑘
(1)

1𝑡
(0) ≥ 𝛿 > 0 ∀𝑥 ∈ 𝐺,

(b) |𝑎(1)
𝑖1
(𝑥, 𝑡)|

2

≤ 𝑀
1
|𝑘
2
(𝑥)|, |𝑎(2)

𝑖1
(𝑥, 𝑡)|

2

≤ 𝑀
2
|𝑘
2
(𝑥)|,

|𝑎
(1)

𝑖2
|
2

≤ 𝑀|𝑘
2
(𝑥)| ∀(𝑥, 𝑡) ∈ 𝐷, ∑𝑛

𝑖=1
(𝑎
(1)

𝑖1
− 𝑘
2𝑥𝑖
)
2

≤

𝑀
3
|𝑘
2
(𝑥)|, where𝑀

1
,𝑀
2
,𝑀
3
, and𝑀 are sufficiently

large constants,
(c) 𝜆𝑐

11
− 𝑐
11𝑡
> 0 (the constants 𝜆 > 0 are chosen)

be satisfied. Then for ∀𝑓
1
(𝑥, 𝑡), 𝑓

1𝑡
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷) there exists

generalized solution 𝑢(𝑥, 𝑡) of problems ((9), (11)) and ((9),
(12)) and it belongs to the space𝐻

2,𝐿
(𝐷
+

)(𝐻
2,𝐿
(𝐷
−

)) and for
𝜀 = 0.

5. The Theorem of Existence and Uniqueness
of Strong (Regular) Solution of Problems
((9), (11)) and ((9), (12))

Definition 12 (following [26]). The function 𝑢(𝑥, 𝑡) ∈

𝐻
1,𝐿
(𝐷
+

) (𝑢(𝑥, 𝑡) ∈ 𝐻
1,𝐿
(𝐷
−

)) is said to be a strong solution
of boundary value problems (20), (21), ((22), (23)), if there
exists a sequence of functions {𝑢

𝜀𝑛
} ∈ 𝐶



𝐿
(𝐷
+

) ({𝑢
𝜀𝑛
} ∈

𝐶


𝐿
(𝐷
−

)) such that equality

lim
𝑛→∞





𝐿
1
(𝑢
𝑛
) − 𝑓
1
(𝑥, 𝑡)




𝐿2(𝐷

+
)
= lim
𝑛→∞





𝑢
𝑛
− 𝑢



𝐻1,𝐿(𝐷

+
)
= 0

(37)

is fulfilled in the domain 𝐷− as well if taken instead of the
domain𝐷+.

The following theorem on the existence of strong solution
holds.

Theorem 13. Let the conditions of Lemma 2 and







𝑘
2𝑥𝑖
𝑘
2𝑥𝑗








≤ 𝑀
1





𝑘
2
(𝑥)




, 𝑖, 𝑗 = 1, . . . , 𝑛,

2𝑏
11
−






𝑘
(1)

1
(𝑡)






≥ 𝛿 > 0, (𝑥, 𝑡) ∈ 𝐷

(38)

be satisfied.Then for any function𝑓
1
∈ 𝐿
2
(𝐷
+

) (𝑓
1
∈ 𝐿
2
(𝐷
−

))

there exists a unique strong solution of boundary value problem
((9), (11)) from the space𝐻

1,𝐿
(𝐷
+

) (for the problem ((9), (12))
from𝐻

1,𝐿
(𝐷
−

)).

Proof. FromTheorems 4, 9, and 10 there exists 𝑢+(𝑥, 𝑡) solu-
tion of problem ((9), (11)) and 𝑢−(𝑥, 𝑡) solution of problem
((9), (12)) in the domains𝐷+ and𝐷−, respectively, belonging,
respectively, to the spaces 𝐻

2,𝐿
(𝐷
+

) and 𝐻
2,𝐿
(𝐷
−

). Then by
the construction of such spaces there exist sequences {𝑢

𝑛
} ∈

𝐶


𝐿
(𝐷
+

) ({𝑢
𝑛
} ∈ 𝐶


𝐿
(𝐷
−

)) such that

lim
𝑛→∞





𝑢
+

𝑛
− 𝑢
+


𝐻2,𝐿(𝐷

+
)
= lim
𝑛→∞





𝑢
−

𝑛
− 𝑢
−


𝐻2,𝐿(𝐷

−
)
= 0.

(39)

From the obvious inequality




𝑢
+

𝑛




𝐻2,𝐿(𝐷

+
)
≥ 𝑚





𝐿
1
(𝑢
+

𝑛
)



𝐿2(𝐷

+
)
,





𝑢
−

𝑛




𝐻2,𝐿(𝐷

−
)
≥ 𝑚





𝐿
1
(𝑢
−

𝑛
)



𝐿2(𝐷

−
)

(40)

it follows that {𝐿
1
(𝑢
+

𝑛
)} → 𝑓

+

1
in 𝐿
2
(𝐷
+

), for 𝑛 → ∞.
{𝐿
1
(𝑢
−

𝑛
)} → 𝑓

−

1
in 𝐿
2
(𝐷
−

), for 𝑛 → ∞. Thus, suppose that
𝑓
+

1𝑡
∈ 𝐿
2
(𝐷
+

), 𝑓−
1𝑡
∈ 𝐿
2
(𝐷
−

); then regular solutions 𝑢+ and
𝑢
− are strong solution. We are constructing the sequences of

functions 𝑓+
1𝑛
∈ 𝑊
1

2
(𝐷
+

), 𝑓−
1𝑛
∈ 𝑊
1

2
(𝐷
−

) such that {𝑓+
1𝑛
} →

𝑓
+

1
in 𝐿
2
(𝐷
+

), {𝑓−
1𝑛
} → 𝑓

−

1
in 𝐿
2
(𝐷
−

), for 𝑛 → ∞. Then for
the functions 𝑓+

1
and 𝑓−
1
there exists strong solution problem

of ((9), (11)) and ((9), (12)) from the spaces 𝐻
2,𝐿
(𝐷
+

) and
𝐻
2,𝐿
(𝐷
−

), respectively. So, by inequality of Lemma 2 we have




𝑓
+

1𝑛




𝐿2(𝐷

+
)
≥ 𝑚





𝑢
+

𝑛




𝐻1,𝐿(𝐷

+
)
,





𝑓
−

1𝑛




𝐿2(𝐷

−
)
≥ 𝑚





𝑢
−

𝑛




𝐻1,𝐿(𝐷

−
)
.

(41)

Hence, we can include that 𝑢+
𝑛
→ 𝑢
+ in 𝐻

1,𝐿
(𝐷
+

), 𝑢−
𝑛
→

𝑢
− in 𝐻

1,𝐿
(𝐷
−

), for 𝑛 → ∞ and these functions are strong
solutions of problems ((9), (11)) and ((9), (12)), respectively.

6. The Solvability of Problem ((9), (3))

Remark 14 (gluing solutions in the spaces). Let the functions
𝑢
+

∈ 𝐻
𝑖,𝐿
(𝐷
+

), 𝑢− ∈ 𝐻
𝑖,𝐿
(𝐷
−

), 𝑖 = 1, 2. Then the constructed
function

𝑢 (𝑥, 𝑡) =

{

{

{

𝑢
+

(𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐷
+

,

𝑢
−

(𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐷
−

(42)

will also be from the class 𝑢(𝑥, 𝑡) ∈ 𝐻
𝑖,𝐿
(𝐷), 𝑖 = 1, 2.
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Proof. Consider for 𝑖 = 1. Let us take the functions {𝑢
𝑛
} ∈

𝐶
∞

(𝐷), {𝑢
𝑛
} ∈ 𝐶


𝐿
(𝐷
+

), and {𝑢
𝑛
} ∈ 𝐶


𝐿
(𝐷
−

) such that 𝑢(𝑥, 𝑡) ∈
𝐿
2
(𝐷) and also 𝑢

𝑛
→ 𝑢
+ in𝐻

1,𝐿
(𝐷
+

), 𝑢
𝑛
→ 𝑢
− in𝐻

1,𝐿
(𝐷
−

),
𝑛 → ∞. Then we can write

∫

𝐷

√




𝑘
2





𝑢
𝑛
𝜑
𝑥𝑛
𝑑𝐷 = ∫

𝐷
−

√




𝑘
2





𝑢
𝑛
𝜑
𝑥𝑛
𝑑𝐷
−

+ ∫

𝐷
+

√




𝑘
2





𝑢
𝑛
𝜑
𝑥𝑛
𝑑𝐷
+

, ∀𝜑 ∈ 𝐶
∞

0
(𝐷) .

(43)

Consequently, we have

∫

𝐷
+

(√




𝑘
2





𝑢
𝑛
)𝜑
𝑥𝑛
𝑑𝐷
+

= − ∫

𝐷
+

(√




𝑘
2





𝑢
𝑛
)

𝑥𝑛

𝜑𝑑𝐷
+

− ∫

𝐷
−

(√




𝑘
2





) 𝑢
𝑛𝑥𝑛
𝜑𝑑𝐷
−

(44)

and it is fulfilled in the domain 𝐷− as well if taken instead of
the domain𝐷+.

Then from the inequality of 𝑘2
2𝑥𝑛

≤ 𝑀|𝑘
2
| we include that

the function √|𝑘
2
|𝑢
𝑛𝑥𝑛

uniformly bounded in space 𝐿
2
(𝐷).

Hence, it follows that 𝑢 ∈ 𝐻
1,𝐿
(𝐷). Analogically, in case

of 𝑖 = 2 we need to consider the integral ∫
𝐷

𝑘
2
𝑢
𝑛𝑥𝑛
𝜑
𝑥𝑛
𝑑𝐷.

Consequently, Remark 14 is proved.

Thus, we have the proof of the following theorem accord-
ing essentially to a combination of the proofs of Theorems 4,
9, and 10 and Lemmas 2, 5, and 7 and Remark 14.

Note. Compare the classical conditions of “gluing solutions”
in [5, 7, 9, 13, 16, 17] which belong to the boundary conditions,
but in this case although the conditions of “gluing solutions”
are not written together with conditions (3), (4), finally, the
gluing solutions determined by (42), of problem ((1)–(4)),
belong to the spaces𝐻

𝑖,𝐿
(𝐷), 𝑖 = 1, 2, which are proved.

Now, we can prove the main theorem of solvability of
problem ((9), (3)).

Theorem 15 (on the solvability of problem ((9), (3))). Let any
conditions of Lemmas 2 and 5 andTheorems 4, 9, 10, and 13 be
satisfied. Then for any functions 𝑓

1
, 𝑓
1𝑡
∈ 𝐿
2
(𝐷) there exists a

unique generalized solution of problem ((9), (3)) from the space
𝐻
2,𝐿
(𝐷).

Proof. Since on the base of Theorems 9, 10, and 13 there
exists a unique solution 𝑢+(𝑥, 𝑡), 𝑢−(𝑥, 𝑡) of problems ((9),
(11)) and ((9), (12)) from the spaces 𝐻

2,𝐿
(𝐷
+

) and 𝐻
2,𝐿
(𝐷
−

),
respectively, then function 𝑢(𝑥, 𝑡) which is constructed by
formula (42) will also be from the class 𝑢(𝑥, 𝑡) ∈ 𝐻

2,𝐿
(𝐷) and

at the same time it is generalized solution of (9);moreover, the
functions 𝑢+(𝑥, 𝑡) and 𝑢−(𝑥, 𝑡) are strong generalized solution
of problem ((9), (3)).

Consequently, itmeans that the strong andweak solutions
of corresponding problems are identity. It follows that prob-
lem ((9), (3)) is solvability. The uniqueness of problem ((9),
(3)) follows by means of inequality of Lemma 2.That is proof
ofTheorem 4.Analogically, the existence of strong solution of
problem ((9), (3)) from the space𝐻

1,𝐿
(𝐷) can be proved.

7. On the Solvability of Problem ((1)–(4))

For proving the solvability of problem ((1)–(4)) we use the
method of “continuation by parameter.” It holds.

Theorem 16 (on the solvability problemof ((10), (4))). Let the
conditions

2𝑐
22
(𝑥, 𝑡) −

𝑛

∑

𝑖=1

𝑎
(2)

𝑖2
(𝑥, 𝑡) − 𝑏

22
(𝑥, 𝑡) ≤ −𝛿

1
< 0, (𝑥, 𝑡) ∈ 𝐷,

(45)






𝑎
(2)

𝑖1
(𝑥, 𝑡)







2

≤ 𝑀
1





𝑘
2
(𝑥)





(46)

be satisfied. Then for any functions of 𝑓
2
(𝑥, 𝑡) ∈ 𝐿

2
(𝐷)

there exists unique solution of problem ((10), (4)) in the space
𝐻
2,𝐿
(𝐷) (in case, instead of condition of (46), if taken smallest

of coefficient |𝑎(2)
𝑖1
(𝑥, 𝑡)|, then there exists unique solution of

problem ((10), (4)) in space𝑊2
2
(𝐷)).

Proof. By virtue of condition (45) and 2𝑏
22
− |𝑘
(2)

1𝑡
| ≥ 𝛿
1
> 0

𝑏
22
(𝑥, 0) − 𝑘

(2)

1𝑡
(0) ≥ 𝛿

1
> 0 ∀𝑥 ∈ 𝐺; the operator

𝐿
2
(𝜐) = 𝑘

(2)

1
(𝑡) 𝜐
𝑡𝑡
+ Δ𝜐 +

𝑛

∑

𝑖=1

𝑎
(2)

𝑖2
𝜐
𝑥𝑖
+ 𝑏
22
𝜐
𝑡
+ 𝑐
22
𝜐 (47)

is coercive. Since the coefficient of 𝑘(2)
1
(𝑡) is sign fixed

(according to [10]), then there exists unique solution of
problem ((10), (4)) in space𝑊1

2
(𝐷). If 𝜐(𝑥, 𝑡) ∈ 𝑊1

2
(𝐷) then

(according to [23, 24]) any solution of problem ((10), (4)) will
be element of space 𝑊2

2
(𝐷). Analogically, repeating all the

steps carried out for the solution 𝜐(𝑥, 𝑡) ∈ 𝐻
2,𝐿
(𝐷) we can

also establish that problem ((10), (4)) has generalized solution
if condition (45) is satisfied. Therefore Theorem 16 is proved.
Now we must prove solvability of problem ((1)–(4)).

Let

𝑀𝑢 = 𝐾𝑢
𝑡𝑡
+

𝑛

∑

𝑖=1

𝐴
𝑖
𝑢
𝑥𝑖
+ 𝐵𝑢
𝑡
+ 𝐶𝑢,

𝑁𝑢 =

𝑛

∑

𝑖=1

𝑃
𝑖
𝑢
𝑥𝑖
+ 𝑄𝑢
𝑡
+ 𝑅𝑢, where

𝐾 = (

𝑘
(1)

1
0

0 𝑘
(2)

1

) , 𝐴
𝑖
= (

𝑎
(1)

𝑖1
0

0 𝑎
(2)

𝑖2

) ,

𝐵 = (

𝑏
11
0

0 𝑏
22

) , 𝐶 = (

𝑘
2
Δ + 𝑐
11

0

0 Δ + 𝑐
22

) ,

𝑃
𝑖
= (

0 𝑎
(1)

𝑖2

𝑎
(2)

𝑖1
0

) , 𝑄 = (

0 𝑏
12

𝑏
21
0

) ,

𝑅 = (

0 𝑐
12

𝑐
21
0

) , 𝑢 = (

𝑢

𝜐

) , 𝑓 = (

𝑓
1

𝑓
2

) .

(48)

Then the system equations (1) can be written in the form

𝐿𝑢 = 𝑀𝑢 + 𝑁𝑢 = 𝑓. (49)
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Theorem 17. Let the conditions of Lemmas 2, 5, and 7 and
Theorems 4, 9, 10, 13, 15, and 16 are satisfies; moreover
𝑓
1
, 𝑓
2
, 𝑓
1𝑡
∈ 𝐿
2
(𝐷), 𝑓

2
(𝑥, −𝑇) = 0, |𝑎(1)

𝑖2
|
2

≤ 𝑀|𝑘
2
(𝑥)| are

fulfilled. Then there exists a unique solution of problem ((1)–
(4)) in space 𝐻

2,𝐿
(𝐷). In case that 𝑎(1)

𝑖2
is smallest then there

exists a unique solution of problem ((1)–(4)) from the space
𝐻
2,𝐿
(𝐷) ∩𝑊

2

2
(𝐷).

Proof. Multiplying (49), by the vector 𝜂
1
= (𝑒
−𝜆𝑡

𝑢
𝑡
, −𝜐) in

domain 𝐷+, 𝜂
2
= (𝑒
𝜇𝑡

𝑢
𝑡
, −𝜐) in domain 𝐷−, after integration

by parts and using the Cauchy inequality, allowing for
boundary condition (by analogical action to Lemmas 2, 5, and
7), we get the following estimates:

‖𝐿𝑢‖
𝐿2(𝐷)

≥ 𝑚 ‖𝑢‖
𝐻1,𝐿(𝐷)

or

‖𝐿𝑢‖
𝐿2(𝐷)

≥ 𝑚 ‖𝑢‖
𝐻1,𝐿(𝐷)∩𝑊

1

2
(𝐷)
.

(50)

Now, let𝐻
𝑡,0
be the space of vector function 𝜑 = (𝜑

1
, 𝜑
2
) such

that𝜑
1
, 𝜑
1𝑡
, 𝜑
2
∈ 𝐿
2
(𝐷) and𝜑

1
(𝑥, −𝑇) = 0.The norm of space

𝐻
𝑡,𝑆

is defined by ‖𝜑‖2
𝑡,0
= ‖𝜑
1𝑡
‖
2

0
+ ‖𝜑
2
‖
2

0
.

From the results of Theorems 15 and 16, follows a prior
estimates

‖𝑢‖
𝐻2,𝐿(𝐷)

≤ 𝑝 ‖𝑀𝑢‖
𝑡,0

or ‖𝑢‖
𝐻2,𝐿(𝐷)∩𝑊

2

2
(𝐷)
≤ 𝑝 ‖𝑀𝑢‖

𝑡,0
,

(51)

where 𝑝 constant is not dependent on 𝑢(𝑥, 𝑡). We must show
that analogical estimates (50) and (51) can be expressed for
operator 𝐿𝑢. Indeed, we may write𝑀𝑢 = 𝐿𝑢 − 𝑁𝑢; then

‖𝑢‖
𝐻2,𝐿(𝐷)

≤ 𝑝 (‖𝐿𝑢‖
𝑡,0
+ ‖𝑁𝑢‖

𝑡,0
) or

‖𝑢‖
𝐻2,𝐿(𝐷)∩𝑊

2

2
(𝐷)
≤ 𝑝 (‖𝐿𝑢‖

𝑡,0
+ ‖𝑁𝑢‖

𝑡,0
)

(52)

is valid. Now, we consider the set of equations 𝐿
𝜏
𝑢 = 𝑀𝑢 +

𝜏𝑁𝑢 where 0 ≤ 𝜏 ≤ 1. Obviously, the following a prior
estimate is uniformly bounded with respect to parameter of
𝜏:

‖𝑢‖
𝐻2,𝐿(𝐷)

≤ 𝑐
1





𝐿
𝜏
𝑢



𝑡,0
, (53)

where 𝑐
1
is independent of parameter 𝜏 and 𝑢(𝑥, 𝑡). On the

other hand for 𝜏 = 0 we have 𝐿
0
𝑢 = 𝑀𝑢. In this case we

considered problem is solvable. Notice that if 𝜏 = 1 then
𝐿
1
= 𝐿. Then as well as known method of continuation by

parameter we can prove solvability of problem ((1)–(4)).

8. Conclusion

The existence and uniqueness of the boundary value prob-
lem for linear systems equations of the mixed hyperbolic-
elliptic type in the multivariate domain with the changing
time direction are studied. The existence and uniqueness of
generalized and regular solutions of a boundary problem are
established in a weighted Sobolev space. Moreover, applying
the result of the monograph [22], difference schemes for the
numerical solution of the boundary value problem for linear
systems equations of the mixed hyperbolic-elliptic type in

themultivariate domainwith the changing time direction can
be presented.Of course, the stability estimates for the solution
of these difference schemes have been establishedwithout any
assumptions about the grid steps.
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Scienze dell’Università di Cagliari, vol. 27, p. 114, 1957.

[5] C. S. Morawetz, “Mixed equations and transonic flow,” Journal
of Hyperbolic Differential Equations, vol. 1, no. 1, pp. 1–26, 2004.

[6] C. S. Morawetz, “A weak solution for a system of equations of
elliptic-hyperbolic type,” Communications on Pure and Applied
Mathematics, vol. 11, pp. 315–331, 1958.

[7] V. N. Vragov, Boundary Value Problems for the Nonclassical
Equations of Mathematical Physics, NSU, Novosibirsk, Russia,
1983, (Russian).

[8] S. G. Pyatkov, “On the solvability one boundary value problem
for a forward-backward equation parabolic type,” Doklady
Akademii Nauk SSSR, no. 6, pp. 1322–1327, 1985.

[9] S. A. Tersenov, “On some problems for forward-backward
parabolic equation,” Siberian Mathematical Journal, vol. 51, pp.
338–345, 2010.

[10] M. A. Nurmamedov, “The first boundary value problems for the
equation of mixed type,” in Proceedings of the Non-Classical
Equations of Mathematical Physics, pp. 117–122, Institute of
Mathematics of Siberian Branch of the Academy of Sciences,
USSR, Novosibirsk, Russia, 1985 (Russian).

[11] M. A. Nurmamedov, “Some of well-posed boundary value
problems for equations of mixed type with orthogonal linear
degeneration,” in Some Problems of Differential Equations and
DiscreteMathematics, pp. 104–107, Novosibirsk State University,
Novosibirsk, Russia, 1986, (Russian).

[12] M. A. Nurmamedov, “On the solvability of the first local
boundary value problems for linear systems equations of non-
classical type with second order,” Journal Reports of Adigeyskiy
International Academy of Sciences, vol. 10, no. 2, pp. 51–58, 2008.



10 Abstract and Applied Analysis

[13] A. V. Bitsadze, Some Classes of Partial Differential Equations,
Gordon and Breach, NewYork, NY, USA, 1988, Russian edition,
Nauka, Moscow, Russia, 1981.

[14] G. Fichera, “On a unified theory of boundary value problems
for elliptic-parabolic equations of second order,” in Boundary
Problems in Differential Equations, pp. 97–120, University of
Wisconsin Press, Madison, Wis, USA, 1960.

[15] M. V. Keldysh, “On certain cases of degeneration of equations
of elliptic type on the boundry of a domain,”Doklady Akademii
Nauk SSSR, vol. 77, pp. 181–183, 1951 (Russian).

[16] T. H. Otway,TheDirichlet Problem for Elliptic-Hyperbolic Equa-
tions of Keldysh Type, vol. 2043 of Lecture Notes in Mathematics,
Springer, Berlin, Germany, 2012.

[17] D. Lupo, C. S. Morawetz, and K. R. Payne, “On closed boundary
value problems for equations of elliptic-hyperbolic type,” Com-
munications on Pure and AppliedMathematics, vol. 60, no. 9, pp.
1319–1348, 2007.

[18] N. Popivanov, “The theory of linear systems of first order pde
and equations of mixed type with two perpendicular lines of
parabolic degeneracy,” in Mathematics and Mathematical Edu-
cations: Proceedings of the Second Spring Conference Bulgarian
Mathematical Society, pp. 175–181, 1974.

[19] D. Lupo, K. Payne, and N. Popivanov, “Nonexistence of non-
trivial solutions for super-critical equations of mixed elliptic-
hyperbolic type,” Progress in Nonlinear Differential Equations
andTheir Applications, vol. 66, pp. 371–390, 2006.

[20] A. Ashyralyev and H. A. Yurtsever, “The stability of difference
schemes of second-order of accuracy for hyperbolic-parabolic
equations,”Computers &Mathematics with Applications, vol. 52,
no. 3-4, pp. 259–268, 2006.

[21] A. Ashyralyev and Y. Ozdemir, “On stable implicit difference
scheme for hyperbolic-parabolic equations in a Hilbert space,”
NumericalMethods for Partial Differential Equations, vol. 25, no.
5, pp. 1100–1118, 2009.

[22] A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes
for Partial Differential Equations, vol. 148 of Operator The-
ory Advances and Applications, Birkhäuser, Basel, Switzerland,
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