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We combine the Adomian decomposition method (ADM) and Adomian’s asymptotic decomposition method (AADM) for solving
Riccati equations. We investigate the approximate global solution by matching the near-field approximation derived from the
Adomian decomposition method with the far-field approximation derived from Adomian’s asymptotic decomposition method
for Riccati equations and in such cases when we do not find any region of overlap between the obtained approximate solutions
by the two proposed methods, we connect the two approximations by the Padé approximant of the near-field approximation. We
illustrate the efficiency of the technique for several specific examples of the Riccati equation for which the exact solution is known

in advance.

1. Introduction
It is well known that the Riccati equation as
u' (x) = p(x)+qg(x)u(x)+r(x) u” (x) @

finds surprisingly many applications in physics and math-
ematics such as random processes, optimal control, and
diffusion problems [1]. In fact, the Riccati equation naturally
arises in many fields of quantum mechanics, such as in quan-
tum chemistry [2], the Wentzel-Kramers-Brillouin approx-
imation [3], and super symmetry theories [4]. In addition,
the Riccati equation plays a prominent role in variational
calculus [5], nonlinear physics [6], renormalization group
equations for coupling constants in quantum field theories
[7, 8], and thermodynamics [9]. It is well known that one-
dimensional static Schrodinger equation is closely related to
the Riccati equation. Solitary wave solutions of a nonlinear
partial differential equation can be expressed as a polynomial
in two elementary functions satisfying a projective Riccati
equation [10]. Beside important engineering and scientific
applications that are well known, the newer applications
include areas such as mathematical finance [11, 12].

Adomian and his coauthors have presented a systematic
methodology for practical solution of linear or nonlinear
and deterministic or stochastic operator equations, including
algebraic equations, ordinary differential equations, partial
differential equations, and integral and integrodifferential
equations [13-18]. Adomian decomposition method is a
powerful technique, which provides efficient algorithms for
analytic approximate solutions and numerical simulations for
real-world applications in the applied sciences and engineer-
ing. Using the ADM, we calculate a series solution, but, in
practice, we approximate the solution by a truncated series.
The series sometimes coincides with the Taylor expansion of
the exact solution in the neighborhood of the point x = 0.
Although the series can be rapidly convergent in a small
region, it has a slower convergence rate in the wider region.

Several investigators have proposed a variety of
approaches to solve the Riccati equation, approximately
[19-24]. In order to obtain the global approximate solution
of the Riccati equation, we combine the Padé approximant
of the near-field approximation as derived from the ADM
with the far-field approximation as derived from the AADM
[25-28] to overcome the difficulty of a finite domain
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of convergence. Adomian introduced a variation of his
decomposition method in [25] that can be used to obtain the
asymptotic value of solutions. In this method, the recursion is
the same as that in the ADM, but it uses a different canonical
form of the differential equation such that it yields to a steady
state solution of the equation. In fact, rather than nested
integrations as in decomposition, we have nested differenti-
ations, which will be expounded later. Haldar and Datta [29]
applied the AADM to calculate integrals neither expressible
in terms of elementary functions nor adequately tabulated.

This paper is arranged as follows. In the next section, we
present a brief review of the ADM for nonlinear IVPs. In
Section 3, we present a description of the AADM for solving
the Riccati equation. In Section 4, we investigate several
numerical examples. In Section 5, we present our conclusions
and summarize our findings.

2. Review of the Adomian
Decomposition Method

We review the salient features of the Adomian decomposition
method in solving IVPs for first-order nonlinear ordinary
differential equations as

L) el u) @) =g, o

u(x) = ¢

where the functions «, g, and f are analytic.
We rewrite (2) in Adomian’s usual operator-theoretic
form

Lu+Ru+ Nu = g, 3)

where L = (d/dx)(-)and then L™ = J:}(-)dx, Ru = a(x)u(x),
and Nu = f(u(x)). Next we rewrite (3) as

Lu=g— Ru- Nu, (4)
and we apply the integral operator L™ to both sides of (4):
L'lu=L"g-L"Ru-L "Ny, (5)
where L' Lu = u — @ since L® = 0. In the case of a first-
order ordinary differential equation, we have ® = u(x,) = ¢,.
Therefore
u=0+L"'g-L"'"Ru-L"'Nu. (6)

For the sake of simplicity, we define the y function as y =
® + L' g, and then, upon substitution, we obtain

u= y—L_lRu—L_lNu. (7)

In the ADM, the solution u(x) is represented by a series; say

u(x) = ) uy, (x) ®)
n=0
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and the nonlinearity comprises the Adomian polynomials

Nu= YA, 9)
n=0
where
A, =A, (up vy, ... u,) (10)

is called an Adomian polynomial, which were first defined by
Adomian [13] as

1 d° S Lk
A, = T [N (l;)uk)\ ):l , n=0. (11)
= A=0

For convenient reference, we list the first five Adomian
polynomials

Ay = N(“o)»

A= N' (”o)”p

2
u
A, = N' (up) uy + N" (up) 2_:’

3
Az = N' (up) us + N" (up) tguy + N" (up) %’ 12)

2
Ay =N (up)u, + N" (u) <Z—? + u1u3)

2 4
uu u
+N" (u,) —12! 2+ N9 (1) —4; .

Several algorithms for the Adomian polynomials have
been developed by Rach [30, 31], Adomian and Rach
[32], Wazwaz [33], Biazar et al. [34], and several others.
New, efficient algorithms with their subroutines written in
Mathematica for rapid computer-generation of the Adomian
polynomials have been provided by Duan in [35-37].

From (7)-(9) the solution components are determined by
the classic Adomian recursion scheme:

Uy (x) =y (%),
(13)
u,  (x)=-L'Ru, (x)-L"A, (x), n=0.
Thus the m-term approximation ¢,,(x) = an:_ol u,(x) as

obtained from the ADM can serve as the near-field approxi-
mation of the solution u(x), where x is in the neighborhood
of the initial point x = x,,.

We remark that the convergence of the Adomian
decomposition series has been previously proven by sev-
eral researchers [30, 38-41]. For example, Abdelrazec and
Pelinovsky [41] have recently published a rigorous proof of
convergence for the ADM in accordance with the Cauchy-
Kovalevskaya theorem.

3. Description of Adomian’s Asymptotic
Decomposition Method

In this section, we advocate Adomian’s asymptotic decompo-
sition method for solving the Riccati equation. We remark
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that Adomian’s asymptotic decomposition method does not
need use of the initial condition to obtain the asymptotic solu-
tion or the solution in the large, which is another, convenient
advantage in computations using this technique. Rather than
nested integrations as required by decomposition, we now
have nested differentiations. In effect our aim is to solve for
the solution by not inverting the linear differential operator
L, but instead by decomposing the nonlinear operator Nu
and hence determining the asymptotic solution u. Toward
this end, we rewrite (1) as

r)u’(x) = —px)—qX)ulx)+u (x).  (14)
For the case when the coefficient r(x) # 0, we can divide both
sides of (14) by r(x), and we have
p(x) qx) 1
r® w0
Substituting the respective decomposition series (i.e., u(x) =
¥ty (x) and t*(x) = Y00 A, (x)), we obtain

© W 4w
QA0 == = 2 )

u (x).  (15)

' (x) = -

n=0
(16)
r( 2 Zu (x),
from which we design the asymptotic recursion scheme
Ay =22, )
r(x)
A =1y s L), nzo )

re r(x) "

We note that the Adomian polynomials A, for the quadratic
nonlinearity f(u) = u? are

2
Ay = ug,
A, = 2uyuy,
A, = 2ugu, + 1
2 = slglly T Uy,
A; = 2ugus + 2uqu,,

, (19)
Ay = 2uguy + 2uyus + U5,

n
n= zuiun—i'
i=0

Using the form of the Adomian polynomials in (19), we
rewrite the recursion schemes (17) and (18) as

2 __p(x)
g (x) = = o’ (20)
n+1
_ 1) R
;ui () Uy () = = o (%) + e (x), on
n>0.

In view of (21) and after appropriate manipulations, we obtain

n+l

Dy (%) thyy g (%) = thg () Uy ()

i=0

n

+ Zui (%) U1 (%)
i=1 (22)
+ Uy (%) Uy (x)

=2uy (x) U, (%)
+ Z”i (%) Uypq; ().
i=1

Consequently, with this result, the solution components are
given by the following recursion scheme:

Uy (x) = \/—%

! (q(") W+ ——u () (23)

T o\ ) Y T

- i”i (%) 1 (x)> , nx=0.

i=1

Thus the obtained m-terms asymptotic approximation
@(x) = Z;":_Ol u,,(x) for the Riccati equation can serve as the
far-field approximation, where x is far from the initial point
X = X.

4. Numerical Examples

In this section, several numerical examples are given to
illustrate the efficiency of our technique as presented in this
paper. We remark that all calculations are performed by
Mathematica package 8.

Example 1. Consider the following Riccati equation:
U () +u(x) =1+, (24)

subject to initial condition u(0) = 1.
The exact solution is known in advance to be
e
u (x)=x+ ———. (25)
1+ fox e dt

In Adomian’s operator notation, we have
Lu+ Nu=g, (26)

where L = d/dx, N =u?,and g = 1 + x°.
To apply Adomian decomposition method, equation (26)

should be written as the following,

Lu=g—- Nu. (27)



Applying the inverse operator L) = on (-)dx to both sides
yields

u=u(0)+L"'g-L"'Nu. (28)

Next we consider the solution as a series u(x) = Yoo u,(x)
and the nonlinearity f(u) = ut = Y20 Au(x), and upon
substitution, we obtain

Zun (x) = u(0) +L_lg—L_IZAn (x). (29)
n=0 n=0

The components of the series solution are given by the
recursion scheme

uy =u(0) + L_lg,
(30)

Uy =-L"A, (x), n=0.

The first few components are as follows:

5 4x®  2x* X0 19x°
Us=x"+—+—+—+

7 8
N 22x + X (31)
3 3 3 90 315 56

+38x9 251!
2835 2079’

The partial sums ¢,,(x) = Y/ 'u,(x) of the Adomian
decomposition series can serve as a near-field approximate
solution.

Solving (26) by Adomian’s asymptotic decomposition

method, we first rewrite it as
Nu =g - Lu. (32)

Next we assume the series u = Y u, and the nonlinearity
= YO AL %)

Upon substitution and using the form of the Adomian
polynomials in (19), we obtain the solution components of
the far-field approximation ¢, (x) according to the recursion
scheme (23)

Uy = V1 + x2,
0

u et —L

P21+ x2)
Lo 23 (33)
Pg(1+ a2
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FIGURE 1: The near-field approximation ¢,,(x) (dot-dashed line),
far-field approximation ¢, (x) (dashed line), and exact solution 1" (x)
(solid line).

from which we conclude that u(x) ~ x is the slant asymptote
of the exact solution; that is, lim, _, ., [u"(x) — x] = 0.

Computation shows that this Adomian decomposition
series has a finite radius of convergence. By plotting the
curves of ¢,,(x) and ¢, (x) for several values of m and n, we
do not find any regions of overlap. In this case, we connect
the two approximations by the Padé approximant of ¢,,,(x) or
simply replace ¢,,,(x) by its Padé approximant and then match
the Padé approximant with ¢, (x). For example, we investigate
¢, and ¢,. The curves of the near-field approximation ¢, (x),
the far-field approximation ¢,(x), and the exact solution
u” (x) are plotted in Figure 1.

We calculated the Padé approximant [9/10]{¢,,(x)}
by Mathematica and found that the Padé approximant
[9/10]{¢p,;(x)} and the far-field approximation ¢,(x) overlap
in the approximate region 1.5 < x < 5.5; see Figure 2. Thus
we can match them as

1) =[] 9w O E-0) 49, A G-, ()

which is a global approximation, where & belongs to the
region of overlap and h(x) is the unit step function; that is,

1, x<0,
1
h (X) =1-, x=0, (35)
2
1, x>0.

Example 2. Consider the following Riccati equation:
u () +ud(x) =1, (36)

with the initial value u(0) = 0.
The exact solution is known in advance to be

u” (x) = tanh x. (37)

By the Adomian decomposition method and applying the
integral operator L) = '[Ox(‘)dx, we have

u=x-L"" (38)
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FIGURE 2: The Padé approximant [9/10]{¢,,(x)} (dot-dashed line),
far-field approximation ¢, (x) (dashed line), and exact solution u" (x)
(solid line).

2
As before, we decompose u and u” as

(o)
u=Yu,
n=0

(o]
2 _
u = ZAn.
n=0

Thus the solution components of the near-field approxima-
tion ¢,,(x) are determined recursively as

Uy = X,
3
x
U =-—,
3

(40)

X
u, =— L A, dx, n>1

By Adomian’s asymptotic decomposition method according
to the recursion scheme (23), the solution components of the
far-field approximation ¢, (x) are computed as

Uy, =1,

u, =0,

u, =0, (41)
from which we conclude that u(x) = 1 is the horizontal

asymptote of the exact solution when the independent vari-
able x approaches infinity.

The curves of the near-field approximation ¢,,(x), the far-
field approximation ¢,(x), and the exact solution 1" (x) are
plotted in Figure 3.

We calculated the Padé approximant [13/12]{¢,,(x)}
by Mathematica and found that the Padé approximant

1

0.5 !

=05

—-1.0

FIGURE 3: The near-field approximation ¢,,(x) (dot-dashed line),
far-field approximation ¢, (x) (dashed line), and exact solution 1" (x)
(solid line).
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FIGURE 4: The Padé approximant [13/12]{¢,,(x)} (dot-dashed line),
far-field approximation ¢, (x) (dashed line), and exact solution v (x)
(solid line).

[13/12]{¢h,;(x)} and the far-field approximation ¢5(x) over-
lap almost in the approximate region 7 < x < 11; see Figure 4.
Thus we can match them as

100 =[22] b I E -0 + g Ih -9, @)

which is a global approximation, where & belongs to the
region of overlap.

5. Conclusion

In this work, we combined the ADM and the AADM to
approximate the global solution of the Riccati equation. We
evaluated the approximate solution by matching the Padé
approximant of the near-field approximation derived from
the ADM with the far-field approximation derived from the
AADM. Furthermore we have shown that the AADM can
be an important complement in analysis of the solution’s
asymptote.
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