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This paper is devoted to studying the boundary behavior of self-affine sets. We prove that the boundary of an integral self-affine set
has Lebesgue measure zero. In addition, we consider the variety of the boundary of a self-affine set when some other contractive
maps are added.We show that the complexity of the boundary of the new self-affine set may be the same, more complex, or simpler;
any one of the three cases is possible.

1. Introduction

Let (𝑋, 𝜌) be a complete matric space. Recall that a map 𝑆 :

𝑋 → 𝑋 is contractive if there exists a constant 0 < 𝑟 < 1 such
that 𝜌(𝑆(𝑥), 𝑆(𝑦)) ≤ 𝑟𝜌(𝑥, 𝑦).We call a finite set of contractive
maps {𝑆𝑗}

𝑚
𝑗=1 an iterated function system (IFS). It is well known

[1] that there exists a unique nonempty compact subset 𝐾 ⊂

𝑋 such that 𝐾 = ⋃
𝑚
𝑗=1 𝑆𝑗(𝐾). We call 𝐾 the invariant set or

attractor of the IFS.Moreover, if we associate the IFSwith a set
of probability weights {𝑝𝑖 > 0 : 𝑖 = 1, . . . , 𝑚}, then there exists
a unique probability measure 𝜇 supported on𝐾 satisfying the
equation

𝜇 (⋅) =

𝑚

∑
𝑗=1

𝑝𝑗𝜇 (𝑆
−1
𝑗 (⋅)) . (1)

We call 𝜇 the invariant measure.
Let 𝐴 be a 𝑑 × 𝑑 expanding real matrix; that is, all

its eigenvalues have modules larger than one. Let 𝜆 be the
smallest absolute value of 𝐴’s eigenvalues, choose 𝑐 ∈ (1, 𝜆),
and define ‖𝑥‖ for each 𝑥 ∈ R𝑑 as

‖𝑥‖ =

∞

∑
𝑛=1

𝑐
𝑛 𝐴
−𝑛
𝑥
 , (2)

where | ⋅ | is the Euclidian norm in R𝑑. Then ‖ ⋅ ‖ is a norm
in R𝑑. Let 𝜌(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ be the induced metric. It is easy

to check that the map 𝑆(𝑥) = 𝐴
−1(𝑥 + 𝑐) with 𝑥, 𝑐 ∈ R𝑑 is

contractive under the metric 𝜌.
Let 𝐴 be a 𝑑 × 𝑑 expanding real matrix and D =

{𝑑1, 𝑑2, . . . , 𝑑𝑚} ⊂ R𝑑. We call the family of maps on R𝑑

𝑆𝑖 (𝑥) = 𝐴
−1
(𝑥 + 𝑑𝑖) , 𝑖 = 1, 2, . . . , 𝑚 (3)

a self-affine IFS. The corresponding invariant set 𝐾 and
invariant measure 𝜇 are called a self-affine set and a self-affine
measure of the IFS, respectively. Furthermore, if the matrix𝐴
in (3) is an orthonormalmatrixmultiple a constant, then such
IFS is called self-similar, and the invariant set and invariant
measure are called self-similar set and self-similar measure of
the IFS, respectively.

Our main interests in this note are the structures and
properties of the boundary 𝜕𝐾 of a self-affine set 𝐾. For
self-similar IFS, Lau and Xu [2] showed that dim𝐻(𝜕𝐾) <

𝑑 provided that the self-similar IFS satisfies the open set
condition (OSC). He et al. [3] studied the calculation of
dim𝐻(𝜕𝐾) for integral self-similar IFS. Furthermore, the
overlapping cases were considered by Lau and Ngai in [4].
For self-affine sets, however, less is known about 𝐾 and 𝜕𝐾
(see [5–7]). There is no method to compute the Hausdorff
dimension and the Lebesgue measure L(𝜕𝐾) of 𝜕𝐾 for
overlapping self-affine set.

Motivated by these results, we consider the Lebesgue
measures of the boundaries of integral self-affine sets. We
prove that they have Lebesgue measure zero.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 573604, 3 pages
http://dx.doi.org/10.1155/2015/573604

http://dx.doi.org/10.1155/2015/573604


2 Abstract and Applied Analysis

Theorem 1. Let {𝐴−1(𝑥 + 𝑑𝑗)}
𝑚
𝑗=1 be a self-affine IFS defined

onR𝑑. Assume that𝐴 and 𝑑𝑗 are all integral. Let𝐾 be the self-
affine set of the IFS; thenL(𝜕𝐾) = 0.

Consider two IFSs {𝑆𝑗}
𝑚
𝑗=1 and {𝑆𝑗}

𝑛
𝑗=1, 𝑚 < 𝑛 (they

may not be self-affine). Let 𝐾1 and 𝐾2 be the invariant sets,
respectively; then𝐾1 ⊆ 𝐾2, so dim(𝐾1) ≤ dim(𝐾2). We think
about the natural question: what is the relationship between
𝜕𝐾1 and 𝜕𝐾2?

We prove that any one case of dim𝐻(𝜕𝐾2) = dim𝐻(𝜕𝐾1),
dim𝐻(𝜕𝐾2) < dim𝐻(𝜕𝐾1), and dim𝐻(𝜕𝐾2) > dim𝐻(𝜕𝐾1)
may occur.

2. Proofs of Results

For an IFS {𝑆𝑗}
𝑛
𝑗=1 on R𝑑, we use the following notations

throughout the paper. Let Σ𝑚 = {1, . . . , 𝑚} (or Σ if there is
no confusion), and Σ∗ = ⋃𝑛≥1 Σ

𝑛. For any 𝐼 = 𝑖1𝑖2 ⋅ ⋅ ⋅ 𝑖𝑛 ∈ Σ
𝑛

and 𝐽 = 𝑗1𝑗2 ⋅ ⋅ ⋅ 𝑗𝑘 ∈ Σ
𝑘, let 𝐼𝐽 = 𝑖1𝑖2 ⋅ ⋅ ⋅ 𝑖𝑛𝑗1𝑗2 ⋅ ⋅ ⋅ 𝑗𝑘 and

𝑝𝐼 = 𝑝𝑖
1

𝑝𝑖
2

⋅ ⋅ ⋅ 𝑝𝑖
𝑛

, 𝑆𝐼 = 𝑆𝑖
1

∘ 𝑆𝑖
2

∘ ⋅ ⋅ ⋅ ∘ 𝑆𝑖
𝑛

,

𝑑𝐼 = 𝑑𝑖
𝑛

+ 𝐴𝑑𝑖
𝑛−1

+ ⋅ ⋅ ⋅ + 𝐴
𝑛−1

𝑑𝑖
1

,

D𝑛 = D + 𝐴D + ⋅ ⋅ ⋅ + 𝐴
𝑛−1

D.

(4)

Also, we use L(𝐸), 𝐸𝑜, and 𝜕𝐸 to denote the Lebesgue
measure, the interior, and the boundary of a subset 𝐸 ⊂ R𝑑,
respectively.

Theorem 2. Let {𝜙𝑗}
𝑚
𝑗=1 and {𝜓𝑖}

𝑘
𝑖=1 be two contractive IFSs

on R𝑑 under some norm ‖ ⋅ ‖ with the invariant sets 𝐾1 and
𝐾2, respectively. If the invariant set𝐾1 contains interior points,
then there exist 𝑎, 𝑛 ∈ N and 𝛼 ∈ Z𝑑 such that the IFSs
F = {𝜑𝑖

1
𝑖
2
⋅⋅⋅𝑖
𝑛

: 1 ≤ 𝑖𝑗 ≤ 𝑚} and F ∪ G generate the same
attractor 𝑎𝐾1 + 𝛼, where G = {𝜓𝑗

1
𝑗
2
⋅⋅⋅𝑗
𝑛

: 1 ≤ 𝑗𝑖 ≤ 𝑘} and
𝜑𝑗(𝑥) = 𝑎𝜙𝑗(𝑎

−1(𝑥 − 𝛼)) + 𝛼, 𝑗 = 1, . . . , 𝑚.

Proof. Observe that

𝑚

⋃
𝑗=1

𝜑𝑗 (𝑎𝐾1 + 𝛼) =

𝑚

⋃
𝑗=1

(𝑎𝜙𝑗 (𝐾1) + 𝛼)

= 𝑎(

𝑚

⋃
𝑗=1

𝜙𝑗 (𝐾1)) + 𝛼 = 𝑎𝐾1 + 𝛼.

(5)

This means that 𝑎𝐾1 + 𝛼 is the invariant set of {𝜑𝑗}
𝑚
𝑗=1 for any

𝑎 > 0 and 𝛼 ∈ R𝑑. Hence it is also the invariant set of the IFS
F. Now we need only to prove that 𝑎𝐾1 + 𝛼 is the invariant
set ofF ∪G for some 𝑎, 𝑛 ∈ N and 𝛼 ∈ Z𝑑.

Note that 𝐾1 contains interior points; we can find a
constant 𝑟 > 0 and a point 𝑥0 ∈ 𝐾1 with rational entries such
that 𝐵2𝑟(𝑥0) ⊂ 𝐾1. Hence 𝐵2𝑎𝑟(0) ⊂ 𝑎𝐾1 − 𝑎𝑥0 for all positive
real number 𝑎 > 0. Since {𝜓𝑖}

𝑘
𝑖=1 are contractive in the norm

‖ ⋅ ‖, we can choose integers 𝑎, 𝑛 ∈ N large enough such that
𝐾2 ⊂ 𝐵𝑎𝑟(0) and |𝜓𝐽(𝑎𝐾1 + 𝛼)| < 𝑎𝑟 for all 𝐽 ∈ Σ∗𝑘 with

|𝐽| ≥ 𝑛, where |𝐸| is the diameter of the set 𝐸 ⊂ R𝑑 under the
norm ‖ ⋅ ‖. Also, we can assume that 𝛼 = −𝑎𝑥0 ∈ Z𝑑. Noting
𝐾2 ⊆ 𝐵𝑎𝑟(0) ⊆ 𝐵2𝑎𝑟(0) ⊆ 𝑎𝐾1 + 𝛼, |𝜓𝑗

1
𝑗
2
⋅⋅⋅𝑗
𝑛

(𝑎𝐾1 + 𝛼)| < 𝑎𝑟

and observing

𝜓𝑗
1
𝑗
2
⋅⋅⋅𝑗
𝑛

(𝑎𝐾1 + 𝛼) ∩ 𝐾2 ⊇ 𝜓𝑗
1
𝑗
2
⋅⋅⋅𝑗
𝑛

(𝐾2) ̸= 0, (6)

we have

𝜓𝑗
1
𝑗
2
⋅⋅⋅𝑗
𝑛

(𝑎𝐾1 + 𝛼) ⊆ 𝑎𝐾1 + 𝛼. (7)

Therefore

𝑎𝐾1 + 𝛼 = ⋃
𝑓∈F

𝑓 (𝑎𝐾1 + 𝛼) ⊆ ⋃
𝑓∈F∪G

𝑓 (𝑎𝐾1 + 𝛼) ⊆ 𝑎𝐾1 + 𝛼.

(8)

We see that 𝑎𝐾1 + 𝛼 is the invariant set of F ∪ G. This
completes the proof.

InTheorem 2, IFSF is a subset of IFSF∪G and they have
the same invariant set 𝑎𝐾1 + 𝛼. So do the same boundary of
the invariant set. On the other hand, the invariant set of G
is 𝐾2. Obviously, either dim𝐻(𝜕(𝑎𝐾1 + 𝛼)) < dim𝐻(𝜕𝐾2) or
dim𝐻(𝜕(𝑎𝐾1 + 𝛼)) > dim𝐻(𝜕𝐾2)may occur.

In the following, we consider the Lebesguemeasure of 𝜕𝐾
for the self-affine IFS (3). We will prove Theorem 1; that is,
L(𝜕𝐾) = 0 if𝐴 and 𝑑𝑗 are all integral. For this, we first prove
some lemmas.

Lemma 3. Let the IFS in (3) be integral; that is, all entries of
𝐴 and 𝑑𝑗 are integers. Assume that the self-affine set 𝐾 has
positive Lebesgue measure; then𝐾𝑜 ̸= 0.

Proof. Note that the fact that𝐴 and 𝑑𝑗 are all integral implies
that the IFS is uniformly discrete, and the assertion follows
from [7, Theorem 3.1].

Lemma 4. Let the IFS in (3) be integral. Suppose that {𝑑𝑗}
𝑚
𝑗=1

contains a complete set of residues (modAZd). Then the self-
affine measure 𝜇 in (1) is absolutely continuous with respect to
the Lebesgue measure provided that

∑

𝑗:(𝑑
𝑖
−𝑑
𝑗
)∈𝐴Z𝑑

𝑝𝑗 =
1

|det (𝐴)|
, 𝑖 = 1, . . . , 𝑚. (9)

Proof. Without loss of generality, assume that D̃ =

{𝑑1, . . . , 𝑑ℓ} is a complete set of residues (mod𝐴Z𝑑) with
| det(𝐴)| = ℓ.Then D̃𝑛 := D̃+𝐴D̃+⋅ ⋅ ⋅+𝐴𝑛−1D̃ is a complete
set of residues (mod 𝐴𝑛Z𝑑).

For each 𝑖 ∈ {1, . . . , ℓ}, let 𝐼𝑖 = {𝑗 : 1 ≤ 𝑗 ≤ 𝑚, (𝑑𝑗 − 𝑑𝑖) ∈
𝐴Z𝑑} and 𝑝𝑗 = 1/ℓ#𝐼𝑖 if 𝑗 ∈ 𝐼𝑖; then we have

∑
𝑗∈𝐼
𝑖

𝑝𝑗 =
1

|det (𝐴)|
, 𝑖 = 1, . . . , ℓ. (10)

Hence such probability weights {𝑝𝑖}
𝑚
𝑖=1 satisfying (9) always

exist.
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To prove the absolute continuity of 𝜇, by making use of
[8, Theorem 3.5], we need only to show that

∑
𝐽∈Σ𝑛,𝑑

𝐽
=𝑧

𝑝𝐽 ≤ |det (𝐴)|
−𝑛
, ∀𝑛 > 0, 𝑧 ∈ Z

𝑑
. (11)

We will prove this by induction on 𝑛. By (9), the inequality
(11) holds for 𝑛 = 1. Assume that (11) holds for 𝑛 = 𝑘. Let
𝑧 = 𝑑𝑖 + 𝐴𝑧1 with 𝑑𝑖 ∈ D̃ and 𝑧1 ∈ Z𝑑. If 𝐽 ∈ Σ𝑘, 𝑗 ∈ Σ, and
𝑑𝐽𝑗 = 𝑧, then 𝑑𝑗 +𝐴𝑑𝐽 = 𝑑𝑖 +𝐴𝑧1, so (𝑑𝑗 − 𝑑𝑖) ∈ 𝐴Z

𝑑, and let
𝑑𝑗 = 𝑑𝑖 + 𝐴𝑒𝑗 with 𝑒𝑗 ∈ Z𝑑; we have 𝑒𝑗 + 𝑑𝐽 = 𝑧1. Therefore

∑

𝐽𝑗∈Σ𝑘+1,𝑑
𝐽𝑗
=𝑧

𝑝𝐽𝑗 ≤ ∑

𝑗∈Σ,(𝑑
𝑗
−𝑑
𝑖
)∈𝐴Z𝑑

𝑝𝑗 ∑

𝐽∈Σ𝑘,𝑑
𝐽
=𝑧
1
−𝑒
𝑗

𝑝𝐽

≤ |det (𝐴)|−𝑘 ∑

𝑗∈Σ,(𝑑
𝑗
−𝑑
𝑖
)∈𝐴Z𝑑

𝑝𝑗 ≤ |det (𝐴)|
−(𝑘+1)

.

(12)

Hence (11) is also true for 𝑛 = 𝑘+1. This completes the proof.

Remark. Lemma 4 gives a sufficient condition for the exis-
tence of 𝐿1-solutions of integral refinement equations:

𝑓 (𝑥) = |det (𝐴)|
𝑚

∑
𝑗=1

𝑝𝑗𝑓 (𝐴𝑥 − 𝑑𝑗) (13)

provided that {𝑑1, . . . , 𝑑𝑚} ⊂ Z𝑑 contains a complete
set of residues (mod𝐴Z𝑑). Condition (9) ensures that the
refinement equation has a unique (up to a scalar multiple)
bounded 𝐿1-solution with compact support if 𝑝𝑗’s satisfy (9).
Condition (9) is an extension of the “sum role.”

Lemma 5. Let the IFS in (3) be integral. Suppose {𝑑𝑗}
𝑚
𝑗=1

contains a complete set of residues (mod𝐴Z𝑑); 𝐾 is the cor-
responding self-affine set. ThenL(𝜕𝐾) = 0.

Proof. Lemma 4 implies that there exist probability weights
{𝑝𝑗}
𝑚
𝑗=1 such that the corresponding self-affine measure 𝜇 is

absolutely continuous with respect to the Lebesgue measure
and soL(𝐾) > 0.

Lemma 3 implies that 𝐾𝑜 ̸= 0, so 𝐾𝑜 is a nonempty
invariant open set (i.e., ⋃𝑚𝑗=1 𝑆𝑗(𝐾

𝑜) ⊆ 𝐾𝑜) and 𝜇(𝐾𝑜) > 0.
Then [8, Theorem 4.13] implies that 𝜇(𝜕𝐾) = 0. On the other
hand, [8, Theorem 3.12] implies that the Lebesgue measure
restricted on 𝐾 is also absolutely continuous with respect to
𝜇. HenceL(𝜕𝐾) = 0.

Now we can prove the main theorem of the paper.

Proof of Theorem 1. If 𝐾𝑜 = 0, then 𝜕𝐾 = 𝐾 and Lemma 3
implies thatL(𝜕𝐾) = 0.

Nowwe consider the case𝐾𝑜 ̸= 0. Let𝜙𝑗(𝑥) = 𝐴
−1(𝑥+𝑑𝑗),

𝜑𝑗(𝑥) = 𝑎𝜙𝑗(𝑎
−1(𝑥 − 𝛼)) + 𝛼 = 𝐴−1(𝑥 − 𝛼 + 𝑎𝑑𝑗 + 𝐴𝛼),

𝑗 = 1, . . . , 𝑚, and𝜓𝑖(𝑥) = 𝐴
−1(𝑥+𝑧𝑖), 𝑖 = 1, . . . , 𝑘, whereZ =

{𝑧1 = 0, . . . , 𝑧𝑘} is a complete set of residues (mod𝐴Z𝑑).

Making use ofTheorem 2 and the notations there, there exist
𝑎, 𝑛 ∈ N and 𝛼 ∈ Z𝑑 such that the IFSs F and F ∪ G
have the same attractor 𝑎𝐾 + 𝛼. Let D̃ = 𝑎D − 𝛼 + 𝐴𝛼.
Then F ∪ G = {𝐴

−𝑛(𝑥 + 𝑑) : 𝑑 ∈ D̃𝑛 ∪ Z𝑛}. Note that
D̃𝑛 ∪Z𝑛 contains a complete setZ𝑛 of residues (mod 𝐴Z𝑑);
Lemma 5 implies that L(𝜕𝐾) = 𝑎−𝑑L(𝜕(𝑎𝐾 + 𝛼)) = 0. We
complete the proof.
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