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We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as
biology, medical sciences, oil exploitation, and chemical engineering.Many authors focused their studymostly on the deterministic
case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic
level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is,
a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of
the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

1. Introduction

The theory of linear poroelasticity has been introduced and
rigorously improved by many authors, among others, Biot
[1–4], Bear and Bachmat [5], Bémer et al. [6], Barucq et al.
[7], and Zenisek [8]. Nowadays, this theory leads to many
applications in different disciplines, such as oil exploration,
biological phenomena, medical sciences [9], and military
applications [10].

In our work, we are interested in the study of fluid-
saturated porous media, subject to a random disturbance
when the phenomenon of consolidation is realized (see [11,
12]). The study of poroelastic properties or the problem
of acoustic wave propagation in saturated porous media,
for example, in the oil exploration, has been based on
two approaches (see, e.g., [9, 10, 13]). The first focuses on
microscopic laws; that is, the pore becomes an entire field
of study and then derives the macroscopic laws that are
involved across the porous media as a whole. This is where
the homogenization techniques are used, by considering the
fact that the microscopic structure is repeated periodically
which leads to the periodicity of the solutions [14]. The
second approach, the more classical, was due to Biot in the
50s, where he suggested to ignore everything that happens
at the microscopic level, to apply the continuum mechanics
principles at the macroscopic level.

2. The Model

Let Ω be a porous medium and 𝜌(𝑥) the density; we
consider the porous matrix (porous or skeleton) to be filled
with a relatively incompressible viscous fluid which diffuses
through. The small movements of both solid and liquid
phases are verified, neglecting the speed of filtration.Wewrite
the coupled system of hyperbolic-parabolic type as

𝜌 (𝑥)
𝜕
2
𝑢

𝜕𝑡2
− ∇(𝜆

∗
(𝑥)

𝜕

𝜕𝑡
div 𝑢)

− ∇ ((𝜆 (𝑥) + 𝜇 (𝑥)) div 𝑢) − div (𝜇 (𝑥) ∇𝑢)

+ 𝛼∇𝑝 = 𝑓 (𝑡, 𝑥) ,

𝑐
0
(𝑥)

𝜕𝑝

𝜕𝑡
+ 𝛼 div 𝜕𝑢

𝜕𝑡
− div (𝑘 (𝑥) ∇𝑝) = ℎ (𝑡, 𝑥) ,

(1)

where 𝑢(𝑡, 𝑥), 𝑝(𝑡, 𝑥), and 𝑓(𝑡, 𝑥) are the velocity of the
solid matrix, the fluid pressure, and the external forces
acting on the macroscopic element, for all 𝑥 in Ω and
all 𝑡 > 0, respectively, with ℎ(𝑡, 𝑥) a source term. The
parameters 𝜆(𝑥) and 𝜇(𝑥) denote the expansion and the shear
modulus, respectively, whereas the coefficients 𝜆∗(𝑥), 𝑐

0
(𝑥),

and 𝑘(𝑥) are positive such that 𝜆∗(𝑥) is associated with the
consolidation side effects and may cancel, 𝑐

0
(𝑥) ≥ 0 is the

coefficient that combines the porosity of the medium and

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 482410, 8 pages
http://dx.doi.org/10.1155/2015/482410

http://dx.doi.org/10.1155/2015/482410


2 Abstract and Applied Analysis

the compressibility of the fluid-solid structure and 𝑘(𝑥) is
the one which takes into account the permeability of the
medium and the viscosity of the fluid, since it is a measure
of flow obeying the Darcy law for a given pressure gradient.
The constant 𝛼 is a positive real number, representing the
Biot-Willis constant which takes into account the effects of
coupling the deformation and the pressure: it is actually a
measure of the amount of fluid that can be placed in the
porous matrix by increasing the pressure at constant volume.

3. One-Dimensional Biot Model

We are interested in the one-dimensional nonlinear model of
the following form:

𝜌𝜕
2

𝑡
𝑢 − 𝜆
∗
𝜕
𝑡
𝜕
2

𝑥
𝑢 − (𝜆 + 2𝜇) 𝜕

2

𝑥
𝑢 − 𝜇
∗
𝜕
𝑥
(
󵄨󵄨󵄨󵄨𝜕𝑥𝑢

󵄨󵄨󵄨󵄨

𝑞−2

𝜕
𝑥
𝑢)

+ 𝛼𝜕
𝑥
𝑝 = 𝑓,

𝑐
0
𝜕
𝑡
𝑝 + 𝛼𝜕

𝑡
𝜕
𝑥
𝑢 − 𝑘𝜕

2

𝑥
𝑝 = ℎ.

(2)

The nonlinear term in the first equation of (2) is due to
the local geometry of the medium, such as sudden changes in
contact areas or occlusions of cracks, with 𝜇∗(𝑥) ≥ 0. Here
𝑞 ≥ 0 and 𝜆∗ is a positive constant if 𝑞 ̸= 2 and vanishes when
𝑞 = 2. Besides the system physical parameters are assumed to
be constant and independent of the space variable.

This system appears when we consider the particular case
of a wave propagating in a single direction. In this case the
displacement depends only on one variable denoted by 𝑥 and
the scalar 𝑢 represents the component along the 𝑥-direction
and the same for the pressure 𝑝.

Let us consider Ω = [𝑎, 𝑏], 𝑎, 𝑏 ∈ R, 𝑎 < 𝑏, to be the
saturated porous medium which occurs in the propagation
of the wave and let 𝑄 be the cylinder 𝑄 = [0, 𝑇] × Ω.

When 𝜌 = 0, the system is transformed into a quasistatic
system as follows:

− 𝜆
∗
𝜕
𝑡
𝜕
2

𝑥
𝑢 − (𝜆 + 2𝜇) 𝜕

2

𝑥
𝑢 − 𝜇
∗
𝜕
𝑥
(
󵄨󵄨󵄨󵄨𝜕𝑥𝑢

󵄨󵄨󵄨󵄨

𝑞−2

𝜕
𝑥
𝑢)

+ 𝛼𝜕
𝑥
𝑝 = 𝑓,

𝑐
0
𝜕
𝑡
𝑝 + 𝛼𝜕

𝑡
𝜕
𝑥
𝑢 − 𝑘𝜕

2

𝑥
𝑝 = ℎ

(3)

with the initial conditions

(𝑢 (0, 𝑥) , 𝑝 (0, 𝑥)) = (𝑢
0
(𝑥) , 𝑝

0
(𝑥)) . (4)

In addition, when 𝜌 > 0, we can write

𝜕𝑢 (0, 𝑥) = 𝑢
1
(𝑥) (5)

and the homogeneous Dirichlet boundary conditions

𝑢 (𝑡, 𝑎) = 𝑢 (𝑡, 𝑏) = 𝑝 (𝑡, 𝑎) = 𝑝 (𝑡, 𝑏) = 0. (6)

Note that 𝜆, 𝜇, 𝛼, and 𝑐
0
are strictly positive constants.

3.1. Galerkin Method. The Galerkin method is used to prove
the existence of the discrete solution. We consider a family

of vector spaces (𝑉
𝑚
)
𝑚∈N∗ that approaches an infinite dimen-

sional Hilbert space 𝑉 satisfying the following:

(i) (𝑉
𝑚
)
𝑚∈N∗ ⊂ 𝑉;

(ii) 𝑉
𝑚
→ 𝑉 when 𝑚 → +∞ in the sense that there

exists a dense subspace V of𝑉, such that, for all V ∈ 𝑉,
we can find a sequence (V

𝑚
)
𝑚∈N∗ satisfying: for all𝑚,

V
𝑚
∈ 𝑉
𝑚
, and V

𝑚
→ V in 𝑉 when𝑚 → +∞.

These approximation spaces are generated using a fam-
ily (𝑤

𝑗
)
𝑗∈N∗ for 𝑉 such that, for 𝑚 ∈ N∗, 𝑉

𝑚
=

Vect{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
}. According to the choice of this family,

we can construct solutions to problems that can be more or
less regular.

In order to have sufficient regularity for the nonlinear
term treatment, we make use of the eigenfunctions of the
Laplace operator in𝐿2(Ω). First let us set the following results.

3.2. Known Results for Laplace’s Operator

Proposition 1. There exists a sequence (𝑤
𝑗
)
𝑗∈N∗ such that

∀𝑗 ∈ N
∗
, 𝑤
𝑗
∈ 𝐻
1

0
(Ω) ∩ 𝐻

2
(Ω)

−Δ𝑤
𝑗
= 𝜆
𝑗
𝑤
𝑗

(7)

with 𝑤
𝑗
̸= 0. The set (𝑤

𝑗
)
𝑗∈N∗ is a Hilbertian basis for 𝐿2(Ω)

and the space of the finite linear combinations of 𝑤
𝑗
is dense in

𝐻
1

0
(Ω) and in𝐻1

0
(Ω) ∩ 𝐻

2
(Ω).

Proposition 2. Let 𝑉
𝑚

= Vect{𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
} where

(𝑤
𝑗
)
𝑗∈N∗ is defined by (7) and let 𝑃𝑚 be the projection onto 𝑉

𝑚

defined on (𝐻1
0
(Ω) ∩ 𝐻

2
(Ω))
󸀠 by

𝑃
𝑚
(V) =

𝑚

∑

𝑖=1

⟨V, 𝑤
𝑖
⟩𝑤
𝑖
, (8)

where ⟨⋅, ⋅⟩ denotes the duality product between 𝐻1
0
(Ω) ∩

𝐻
2
(Ω) and its dual. Then the restriction of 𝑃

𝑚
to 𝐿
2
(Ω) on 𝑉

𝑚

is 𝑃
𝑚
∈ L(𝐿

2
(Ω)) with ‖𝑃

𝑚
‖L(𝐿

2
(Ω))

= 1. In addition, the
following properties

𝑃
𝑚
∈L (𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω)) ,

𝑃
𝑚
∈L ((𝐻

1

0
(Ω) ∩ 𝐻

2
(Ω))
󸀠

)

(9)

are satisfied and the norms ‖𝑃
𝑚
‖L((𝐻1

0
(Ω)∩𝐻

2
(Ω))
󸀠

)
and

‖𝑃
𝑚
‖L(𝐻1

0
(Ω)∩𝐻

2
(Ω))

are independent of𝑚.

4. One-Dimensional Nonlinear
Stochastic Biot Model

Here we are interested in studying the Biot model in the
presence of a stochastic perturbation.The idea is to develop a
mathematical analysis of the above equations with a stochas-
tic perturbation. This is based on analyzing the problem in a
weak form by making use of appropriate functional spaces.
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4.1. Weak Formulation. We study the model of consolidation
in the case where 𝜌 ≥ 0 and 𝑞 ≥ 2 by using the weak
formulation.

Find (𝑢, 𝑝) ∈ 𝐿∞([0, 𝑇]; 𝑊1,𝑞
0
(Ω)) × 𝐿

∞
([0, 𝑇];𝐻

1

0
(Ω))

such that 𝑢 ∈ 𝐿2([0, 𝑇]; 𝑊2(Ω)), 𝜕
𝑡
𝑢 ∈ 𝐿

2
([0, 𝑇]; 𝑊1

0
(Ω)),

𝜕
𝑡
𝑝 ∈ 𝐿

2
([0, 𝑇]; 𝐿

2
(Ω)), and 𝜌𝜕2

𝑡
𝑢 ∈ 𝐿

2
([0, 𝑇]; 𝑊−1,𝑞

∗

(Ω)),
satisfying

𝜌 ⟨𝜕
2

𝑡
𝑢, V⟩
𝑊
−1,𝑞
∗

(Ω),𝑊
1,𝑞

0
(Ω)
+ 𝜆
∗
∫
Ω

𝜕
𝑡
𝜕
𝑥
𝑢𝜕
𝑥
V 𝑑𝑥

− 𝛼∫
Ω

𝑝𝜕
𝑥
V 𝑑𝑥 + (𝜆 + 2𝜇)∫

Ω

𝜕
𝑥
𝑢𝜕
𝑥
V 𝑑𝑥

+ 𝜇
∗
∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑥𝑢
󵄨󵄨󵄨󵄨

𝑞−2

𝜕
𝑥
𝑢𝜕
𝑥
V 𝑑𝑥 = ∫

Ω

𝑓V 𝑑𝑥 + ∫
Ω

V 𝑑𝐺

𝑐
0
∫
Ω

𝜕
𝑡
𝑝𝑟 𝑑𝑥 + 𝛼∫

Ω

𝜕
𝑡
𝜕
𝑥
𝑢𝑟 𝑑𝑥

+ 𝑘∫
Ω

𝜕
𝑥
𝑝𝜕
𝑥
𝑟 𝑑𝑥 = ∫

Ω

ℎ𝑟 𝑑𝑥

(𝑢 (0, 𝑥) , 𝑝 (0, 𝑥)) = (𝑢
0
(𝑥) , 𝑝

0
(𝑥))

𝜕𝑢 (0, 𝑥) = 𝑢
1
(𝑥)

(10)

for almost every 𝑡 in ]0, 𝑇[ and ∀(V, 𝑟) ∈ 𝑊1,𝑞
0
(Ω) × 𝐻

1

0
(Ω).

Here 𝑞∗ is real and is defined by the relation 1/𝑞 + 1/𝑞∗ = 1.
It is assumed that the initial conditions (𝑢

0
, 𝑝
0
) and 𝑢

1
(when

𝜌 > 0) are in𝐻1
0
(Ω)∩𝐻

2
(Ω)×𝐻

1

0
(Ω) and 𝐿2(Ω), respectively,

and the source terms belong to 𝐿2([0, 𝑇]; 𝐿2(Ω)). We are also
supposed to have a major regularity for the disturbance 𝐺, so
that the resolution of the stochastic equation is reduced for
each element 𝜔 of the probability space Ω, to a deterministic
equation. Hence 𝐺 is a continuous stochastic process with
values in Ω (i.e., continuous trajectory of the disturbance)
and defined on a probability space (Ω, 𝐹, 𝑃). Any solution of
the variational formulation (10) is called the solution of the
nonlinear stochastic consolidation Biot model. This solution
is obtained by solving the equations in (10) for each 𝜔 ∈ Ω.

Theorem3. Let 𝑞 be real such that 𝑞 ≥ 2,𝑢
0
∈ 𝐻
1

0
(Ω)∩𝐻

2
(Ω),

𝑝
0
∈ 𝐻
1

0
(Ω), 𝑢

1
∈ 𝐿
2
(Ω), and𝑓 and ℎ ∈ 𝐿2([0, 𝑇]; 𝐿2(Ω)). Let

𝐺 be a stochastic process defined in Ω. There is a single pair of
random variables (𝑢, 𝑝) such that 𝑢 ∈ 𝐿∞([0, 𝑇];𝑊1,∞(Ω))
and 𝑝 ∈ 𝐿∞([0, 𝑇];𝐻1

0
(Ω)), satisfying the system of (10).

4.2. Existence of the Solution. In this section, we propose
to formulate the equations whose solutions constitute the
Faedo-Galerkin approximation type of our problem, in
𝐻
1

0
(Ω) ∩ 𝐻

2
(Ω) (for more details on the Faedo-Galerkin

approximations the reader is referred to [15, 17] and refer-
ences therein). A solution is constructed as the limit of a
sequence of approximate solutions denoted by (𝑢

𝑚
, 𝑝
𝑚
)
𝑚∈N∗ .

This sequence (𝑢
𝑚
, 𝑝
𝑚
)
𝑚∈N∗ is defined from ]0, 𝑇[ in𝑉

𝑚
×𝑉
𝑚

by

𝑢
𝑚
(𝑡) =

𝑚

∑

𝑗=1

𝑢
𝑗𝑚
(𝑡) 𝑤
𝑗
,

𝑝
𝑚
(𝑡) =

𝑚

∑

𝑗=1

𝑝
𝑗𝑚
(𝑡) 𝑤
𝑗
,

(11)

where (𝑤
𝑗
)
𝑗∈N∗ is the sequence defined in Proposition 1 of

Section 3.2. To each integer 𝑚 ∈ N∗, we associate a new dis-
crete unknown by the use of the sequence (𝑢

𝑗𝑚(𝑡)
, 𝑝
𝑗𝑚(𝑡)

)
1<𝑗<𝑚

that is defined by solving the differential system

𝜌∫
Ω

𝜕
2

𝑡
𝑢
𝑚
𝑤
𝑗
𝑑𝑥 + 𝜆

∗
∫
Ω

𝜕
𝑡
𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

+ (𝜆 + 2𝜇)∫
Ω

𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

+ 𝜇
∗
∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑥
󵄨󵄨󵄨󵄨

𝑞−2

𝑢
𝑚
𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

− 𝛼∫
Ω

𝑝
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥 = ∫

Ω

𝑓𝑤
𝑗
𝑑𝑥 + ∫

Ω

𝑤
𝑗
𝑑𝐺
𝑚
𝑝.𝑠

𝑐
0
∫
Ω

𝜕
𝑡
𝑝
𝑚
𝑤
𝑗
𝑑𝑥 + 𝛼∫

Ω

𝜕
𝑡
𝜕
𝑥
𝑢
𝑚
𝑤
𝑗
𝑑𝑥

+ 𝑘∫
Ω

𝜕
𝑥
𝑝
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥 = ∫

Ω

ℎ𝑤
𝑗
𝑑𝑥,

(12)

for all 1 ≤ 𝑗 ≤ 𝑚, with initial conditions

(𝑢
𝑚
(0) , 𝑝

𝑚
(0)) = (𝑢

0𝑚
, 𝑝
0𝑚
) ∈ 𝑉
𝑚
× 𝑉
𝑚
such that

𝑢
0𝑚
󳨀→ 𝑢
0

in 𝐻1
0
(Ω) ∩ 𝐻

2
(Ω) ,

𝑝
0𝑚
󳨀→ 𝑝

0
in 𝐻1
0
(Ω)

𝜌𝜕
𝑡
𝑢
𝑚
(0) = 𝜌𝑢

1𝑚
∈ 𝑉
𝑚
such that

𝑝
1𝑚
󳨀→ 𝑝

1
in 𝐿2 (Ω) ,

(13)

where 𝑢(𝜔, 𝑡) ∈ 𝑉
𝑚
, ∀𝑡 ∈ [0, 𝑇] 𝑝.𝑠.

𝐺
𝑚
is a continuous stochastic process with values in 𝑉

𝑚

and defined on a probability space (Ω, 𝐹, 𝑃). The solution of
(12) is obtained by solving the equations for each fixed𝜔 ∈ Ω.
Therefore we consider the following deterministic equations:

𝜌∫
Ω

𝜕
2

𝑡
𝑢
𝑚
𝑤
𝑗
𝑑𝑥 + 𝜆

∗
∫
Ω

𝜕
𝑡
𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

+ (𝜆 + 2𝜇)∫
Ω

𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

+ 𝜇
∗
∫
Ω

󵄨󵄨󵄨󵄨𝜕𝑥
󵄨󵄨󵄨󵄨

𝑞−2

𝜕
𝑥
𝑢
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

− 𝛼∫
Ω

𝑝
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥

= ∫
Ω

𝑓𝑤
𝑗
𝑑𝑥 + ∫

Ω

𝐺
𝑚
𝑤
𝑗
𝑑𝑥

𝑐
0
∫
Ω

𝜕
𝑡
𝑝
𝑚
𝑤
𝑗
𝑑𝑥 + 𝛼∫

Ω

𝜕
𝑡
𝜕
𝑥
𝑢
𝑚
𝑤
𝑗
𝑑𝑥

+ 𝑘∫
Ω

𝜕
𝑥
𝑝
𝑚
𝜕
𝑥
𝑤
𝑗
𝑑𝑥 = ∫

Ω

ℎ𝑤
𝑗
𝑑𝑥,

(12 bis)
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for all 1 ≤ 𝑗 ≤ 𝑚, with initial conditions

(𝑢
𝑚
(0) , 𝑝

𝑚
(0))

= (𝑢
0𝑚
, 𝑝
0𝑚
) ∈ 𝑉
𝑚
× 𝑉
𝑚
such that

𝑢
0𝑚
󳨀→ 𝑢
0

in 𝐻1
0
(Ω) ∩ 𝐻

2
(Ω) ,

𝑝
0𝑚
󳨀→ 𝑝

0
in 𝐻1
0
(Ω)

𝜌𝜕
𝑡
𝑢
𝑚
(0) = 𝜌𝑢

1𝑚
∈ 𝑉
𝑚
such that

𝑢
1𝑚
󳨀→ 𝑢
1

in 𝐿2 (Ω)

(13 bis)

with 𝑢(𝑡) ∈ 𝑉
𝑚
, ∀𝑡 ∈ [0, 𝑇], and 𝐺

𝑚
is a continuous function

with values in 𝑉
𝑚
.

Theorem 4. The existence of sequences (𝑢
0𝑚
)
𝑚∈N∗ , (𝑢1𝑚)𝑚∈N∗ ,

and (𝑝
0𝑚
)
𝑚∈N∗ satisfying the properties (13 bis) is a con-

sequence of Propositions 1 and 2 in Section 3.2. Problem
((12 bis)-(13 bis)) satisfies the Cauchy-Lipschitz conditions
and, from the nonlinear differential equations theory,
((12 bis) (13 bis)) admits a unique maximal solution
(𝑢
𝑚
, 𝑝
𝑚
)
𝑚∈N∗ in 𝐻1([0, 𝑇𝑚]; 𝐻10 (Ω) ∩ 𝐻

2
(Ω)) × 𝐻

1
([0, 𝑇
𝑚
];

𝐻
1

0
(Ω)), 𝑇

𝑚
> 0, such that 𝜌𝑢

𝑚
∈ 𝐻
2
([0, 𝑇
𝑚
]; 𝐻
1

0
(Ω) ∩

𝐻
2
(Ω)).

The idea is to show that there exists (𝑢
𝑚
, 𝑝
𝑚
)
𝑚∈N∗ that

converges to problem ((12 bis)-(13 bis)) solution (𝑢, 𝑝). It
is sufficient to extract a converging sequence (𝑢

𝑚
, 𝑝
𝑚
)
𝑚∈N∗ ,

where its existence is satisfied by a priori estimates which
prove that the sequence is bounded in suitable functional
spaces from the bounded differential equation solution’s
principle. The time 𝑇

𝑚
for which solutions exist is equal to

the initially given time 𝑇.

Lemma 5. The sequence (𝑢
𝑚
, 𝑝
𝑚
)
𝑚∈N∗ of the solutions of

problem ((12 bis)-(13 bis)) satisfies the following properties:
(i) (𝜌𝜕2

𝑡
𝑢
𝑚
)
𝑚∈N∗ is bounded in 𝐿

2
([0, 𝑇]; (𝐻

1

0
(Ω) ∩

𝐻
2
(Ω)
󸀠
)),

(ii) (𝜕
𝑡
𝑢
𝑚
)
𝑚∈N∗ is bounded in 𝐿2([0, 𝑇]; 𝐻10 (Ω)),

(iii) (√𝜌𝜕𝑡𝑢𝑚)𝑚∈N∗ is bounded in 𝐿∞([0, 𝑇]; 𝐿2(Ω)),
(iv) (𝑢

𝑚
)
𝑚∈N∗ is bounded in 𝐿∞([0, 𝑇]; 𝑊1,𝑞(Ω)),

(v) (𝜕
𝑡
𝑝
𝑚
)
𝑚∈N∗ is bounded in 𝐿2([0, 𝑇]; 𝐿2(Ω)),

(vi) (𝑝
𝑚
)
𝑚∈N∗ is bounded in 𝐿∞([0, 𝑇]; 𝐻10 (Ω)).

Each estimate is independent of the physical parameter
𝜌 but depends only on (𝑢

0
, 𝑝
0
) and 𝑢

1
from ‖𝑢

0
‖
𝑊
1,𝑞
(Ω)

,
‖𝑝
0
‖
𝐻
1
(Ω)

, and ‖𝑢
1
‖
𝐿
2
(Ω)

.

Lemma 6. Let (𝑢
𝑚
, 𝑝
𝑚
)
𝑚∈N∗ be the sequence of the solutions

of ((12 bis)-(13 bis)). Then
(i) (𝜕2
𝑥
𝑢
𝑚
)
𝑚∈N∗ is bounded in 𝐿∞(0, 𝑇; 𝐿2(Ω)),

(ii) (𝑢
𝑚
)
𝑚∈N∗ is bounded in 𝐿∞(0, 𝑇;𝑊1,𝑞(Ω)).

For the proof of Lemma 6, we use the same as arguments
as [7].

For the proof of Theorem 3, we proceed as follows.

From Theorem 4 we have, for almost every 𝜔, problem
((12 bis), (13 bis))with𝐺

𝑚
= 𝐺
𝑚
(𝜔)having one andonly one

solution: (𝑢, 𝑝) = (𝑢(𝜔), 𝑝(𝜔)) ∈ 𝐶(0, 𝑇; 𝑉
𝑚
) × 𝐶
1
(0, 𝑇; 𝑉

𝑚
),

satisfying ((12), (13)). It is sufficient to prove that 𝐺
𝑚

∈

𝐶(0, 𝑇; 𝑉
𝑚
) → (𝑢, 𝑝) defined by the unique solution in

Theorem 4 is measurable. Let 𝐺
𝑚
and 𝐺

𝑚
be two elements

of 𝐶(0, 𝑇; 𝑉
𝑚
) and let (𝑢, 𝑝) be the solution of ((12 bis),

(13 bis)) corresponding to𝐺
𝑚
and𝐺

𝑚
, respectively. Using the

uniqueness of the solution we have

] = 𝑢 − 𝑢 = 0

𝜓 = 𝑝 − 𝑝 = 0.

(14)

That is to say (𝑢−𝑢) → 0 in 𝐿∞(0, 𝑇;𝑊1,𝑞
0
(Ω)) and (𝑝−𝑝) →

0 in 𝐿∞(0, 𝑇;𝐻1
0
(Ω)).

This proves that themapping:𝐺
𝑚
→ (𝑢, 𝑝) is continuous

and, from the compacity, 𝐺
𝑚
is measurable in the considered

topology.

5. Numerical Results

5.1. Discretisation and Stability of the Scheme. We consider
(2), taking 𝑞 = 2 and 𝑓 = 𝑓 + 𝑑𝑊:

−𝜆
∗
𝜕
𝑡
𝜕
2

𝑥
𝑢 − (𝜆 + 2𝜇 + 𝜇

∗
) 𝜕
2

𝑥
𝑢 + 𝛼𝜕

𝑥
𝑝 = 𝑓 + 𝑑𝑊

𝑐
0
𝜕
𝑡
𝑝 + 𝛼𝜕

𝑡
𝜕
𝑥
𝑢 − 𝑘𝜕

2

𝑥
𝑝 = ℎ.

(15)

We use the Euler scheme for the time discretisation, the
central finite differences for the space variable, and

𝑑𝑊 = 𝑊(𝑛 + 1) −𝑊 (𝑛) = √𝑛 rand 𝑛 (16)

to obtain

𝑈
𝑛+1

𝑗+1
= 𝑎
1
𝑈
𝑛+1

𝑗
+ 𝑈
𝑛+1

𝑗−1
+ 𝑎
2
𝑈
𝑛

𝑗+1
+ 𝑎
3
𝑈
𝑛

𝑗

+ 𝑎
4
𝑈
𝑛

𝑗−1
𝑎
5
𝑈
𝑛−1

𝑗
𝑎
6
(𝑃
𝑛

𝑗+1
− 𝑃
𝑛

𝑗
) + 𝑎
7

𝑃
𝑛+1

𝑗
= 𝑏
1
(𝑃
𝑛

𝑗+1
+ 𝑃
𝑛

𝑗−1
) + 𝑏
2
𝑃
𝑛

𝑗

+ 𝑏
3
(𝑈
𝑛+1

𝑗−1
− 𝑈
𝑛+1

𝑗
− 𝑈
𝑛

𝑗+1
+ 𝑈
𝑛

𝑗
) + ℎ
∗
𝑑𝑡

(17)

with 𝑎
1
= (1/𝜌

∗
𝑑𝑡+2/(𝑑𝑥)

2
); 𝑎
2
= (𝑑𝑡𝐴

∗
/𝜌
∗
(𝑑𝑥)
2
−1/(𝑑𝑥)

2
);

𝑎
3
= (2/𝜌

∗
𝑑𝑡 + 2/(𝑑𝑥)

2
− 2𝑑𝑡𝐴

∗
/𝜌
∗
(𝑑𝑥)
2
); 𝑎
4
= (𝑑𝑡𝐴

∗
/

𝜌
∗
(𝑑𝑥)
2
− 1/(𝑑𝑥)

2
); 𝑎
5
= (−1/𝜌

∗
𝑑𝑡); 𝑎

6
= (𝛼
∗
𝑑𝑡/𝜌
∗
𝑑𝑥),

𝑎
7
= (𝐵
∗
𝑑𝑡/𝜌
∗
), 𝑏
1
= 𝑑𝑡𝑘

∗
/(𝑑𝑥)
2; 𝑏
2
= (1 − 2𝑑𝑡𝑘

∗
/(𝑑𝑥)
2
),

𝑏
3
= (−𝑐

∗
/𝑑𝑥), 𝐴 = 𝜆 + 2𝜇 + 𝜇

∗; 𝐵 = 𝑓 + 𝑑𝑊; 𝑐∗ = 𝛼/𝑐
0
;

𝑘
∗
= 𝑘/𝑐

0
; ℎ∗ = ℎ/𝑐

0
; 𝜌∗ = 𝜆

∗
/𝜌; 𝐴∗ = 𝐴/𝜌; 𝛼∗ = 𝛼/𝜌;

𝐵
∗
= 𝐵/𝜌.
Using the Fourier stability analysis, we write

2

(𝑑𝑥)
2
+

1

𝜌∗𝑑𝑡
< 1. (18)
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Figure 1: A null Brownian motion and the associated velocity and pressure.

This is the so-called CFL condition, which is the stability
condition leading us to the right choice of the discretisation
time and space steps.

5.2. Numerical Results and Comments. In Figures 1–3, we
present the Brownian motion, the associated velocities, and
pressures for different space and time steps as solutions of (15)
using the finite difference scheme considered in Section 5.1.
The numerical simulations were carried out using MATLAB
with the parameters set as 𝜌 = 0.04, 𝜆 = 0.02, 𝜆∗ = 0.03,
𝜇 = 0.03, 𝜇∗ = 0.07, 𝑐

0
= 0.05, 𝛼 = 0.01, and 𝑘 = 0.03. The

data are set as 𝑓 = 10 and ℎ = 2.0.

5.2.1. Comments on the Numerical Results. According to the
numerical experimentations, in Figure 1, we present results
for the deterministic case where the Brownian motion 𝑊
is equal to 0. As shown in Figures 2 and 3, it is clear that
the velocity and the pressure of the fluid behave randomly
because of the stochastic part in (10). We also noticed that we
experimented no unstability behavior as long as we respect
the CFL condition (the stability condition) that is deducted
from the stability analysis of the finite difference scheme
considered (see Figure 3). To show this numerical instability
behavior, we present numerical results for a condition equal
to twice the CFL condition (see Figure 2).
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Figure 2: The Brownian, the associated velocity and pressure, and instable case.

5.3. Conclusion. We solved a system of two partial differen-
tial equations (PDEs) in a bounded domain, modeling the
velocity and pressure; the first equation has a nonlinear part
and another random part. A weak solution has been found in
the space 𝐻1

0
(Ω) ∩ 𝐻

2
(Ω) by the principle of the resolution

of a stochastic differential equation (SDE) trajectory path.
The velocity and the pressure were approached numerically
by the Euler method for the time and the central finite
difference for the space variable, where the time and space
discretisation steps were chosen according to the numerical
stability condition (CFL). The numerical results are resumed
in Figures 1–3 and commented on above. It has to be pointed
out that this model is quite important and can be used in
many applications, for example, in image processing, and for

this purpose a study on a comparison of this model with the
one in [16] is under consideration.
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Figure 3: The Brownian, the associated velocity and pressure, and stable case.
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