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The outer synchronization problem between two complex networks with nondelayed and time-varying delayed couplings via
two different control schemes, namely, pinning control and impulsive control, is considered. Firstly, by applying pinning control
to a fraction of the network nodes and using a suitable Lyapunov function, we obtain some new and useful synchronization
criteria, which guarantee the outer synchronization between two complex networks. Secondly, impulsive control is added to the
nodes of corresponding response network. Based on the generalized inequality about time-varying delayed different equation, the
sufficient conditions for outer synchronization are derived. Finally, some examples are presented to demonstrate the effectiveness
and feasibility of the results obtained in this paper.

1. Introduction

As an important and typical collective behavior of complex
networks, synchronization has been studied extensively in
various research fields since it has been observed widely in
potential applications in many different areas such as popu-
lation dynamic, power system, chemical process simulation,
and automatic control [1–7]. In real worlds, a great number of
complex networks cannot achieve synchronization by them-
selves. Therefore, many kinds of effective control methods,
for instance, adaptive control [8, 9], pinning control [10–13],
impulsive control [14], and so forth, have been developed
to drive complex networks to reach synchronization. Some
control schemes based on imposing the controllers on all
the nodes in the networks, which is difficult to implement
and impractical for some large scale networks. Considering
these drawbacks, pinning control is proposed as a powerful
technique because it is effective and relatively easily realized
by controlling a small percentage of the nodes instead of all
the nodes in whole network. As a result, some authors have
devoted themselves to investigating different pinning control
schemes for various complex dynamical networks. Chen

et al. [10] investigated both specific and random pinning
schemes for linearly and diffusively coupled networks. Xiang
and Zhu proved that a single controller can pin a coupled
complex network to homogeneous solutions in [11]. Com-
pared with existing continuous or discrete pinning control
schemes, impulsive control, another type of control methods,
has attracted lots of researchers because of its potential
advantage over general continuous control schemes [14–17].
For instance, Lu et al. in [15] proposed a new approach for
analyzing pinning stability in a complex dynamical network
via impulsive control. In [16], the authors addressed a directed
dynamical network with impulsive coupling by a single
impulsive controller.

It should be noted that the aforementioned works on
network synchronization have mainly focused on analyzing
the synchronization behavior within a network, which is
regarded as “inner synchronization.” In fact, there is another
type of network synchronization for networks, which is
known as “outer synchronization.” Generally speaking, it is
a type of synchronization between two or more coupled
networks [14, 18–22], which means the corresponding nodes
of coupled networks will achieve synchronization regardless
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of synchronization of the inner networks. A typical example
is the acquired immune deficiency syndrome, AIDS for brief,
which originally outbroke among gorillas and afterwards
was contagious to human beings unexpectedly, where cows
groups and human beings could be regarded as two different
networks in terms of network language. In recent years, some
researchers began to put their interests on synchronization
between two coupled complex networks. In [18], the authors
first analyzed synchronization between two interacting popu-
lations of different phase oscillators. In [20], Sun et al. proved
that outer synchronization can be asymptotically reached
by using arbitrary coupling strength for two networks with
balanced structure topology. Moreover, mixed outer syn-
chronization between two complex dynamical networks with
nonidentical nodes and output coupling is investigated via
impulsive hybrid control in [23]. However, these research
works exclude time-delay couplings, which cannot be ignored
since they are ubiquitous in the real world. Considering these
reasons, Zheng and Shao discussed the inner-outer synchro-
nization between two complex networks with nondelayed
and delayed coupling in [24] by applying the pinning control
method. It should be mentioned that the time delay in [24] is
fixed. For the varying time delay, in [22], Zheng investigates
the problem of outer synchronization between two complex
networks with the same topological structure and time-
varying coupling delay. The authors of [25] investigated the
outer synchronization problem of complex networks with
multiple coupling time-varying delays. However, in order to
fit with the real world, complex networks with nondelayed
and delayed coupling when the delay time is varying should
be considered. To the best of our knowledge, there are few
(if any) results concerning outer synchronization of complex
networks with nondelayed and coupling time-varying delays
until now. Therefore, how to solve the outer synchronization
problem for complex networkswith nondelayed and coupling
time-varying delays still remains largely challenging.

Motivated by the above considerations, this paper aims
to analyze the outer synchronization between two coupled
complex networks with nondelayed and time-varying delays
by two different control schemes. The main contribution in
our work is as follows: firstly, the configuration matrices
are not required to be assumed symmetric which means
the networks can be either undirected or directed in the
networks. Secondly,we dealwith the situation of the networks
with nondelayed and time-varying delayed couplings, which
is more practical and can describe the actual applications
better. Thirdly, based on Lyapunov stability theorem and
linear matrix inequality (LMI), we investigate the networks
and derive some criteria for the outer synchronization by
using some pinning control scheme. Finally, we discuss the
networks where the nondelayed coupling matrix does not
need to be irreducible, and some sufficient conditions are
obtained for achieving the outer synchronization by imposing
the impulsive controllers.

The outline of this paper is organized as follows. In
Section 2, we present the complex dynamical network model
and introduce some necessary definitions, lemmas, and
assumptions. In Section 3, we present the main theoretical
analysis for outer synchronization by two methods. First,

we discuss outer mixed synchronization through pinning
control, and, then, we discuss outer synchronization via
impulsive control. Numerical simulations to show the validity
of the obtained theoretical results are also presented in
Section 4. Finally, this paper is concluded in Section 5.

2. Model Description and Preliminaries

In this paper, we consider two coupled complex dynamical
networks consisting of linearly coupled𝑁 identical dynami-
cal nodes, with each node being an 𝑛-dimensional dynamic
system, respectively.

The drive coupled complex network is characterized by
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The response complex dynamical network with controllers is
given as follows:
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(𝑡), . . . ,
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𝑖
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∈ 𝑅
𝑛 is the response state variables of the 𝑖th node,

𝑡 ∈ [0, +∞). The constants 𝑐
1
> 0 and 𝑐

2
> 0 denote the

nondelayed and delayed coupling strength, respectively. The
intrinsic function 𝑓(⋅) : R𝑛 → R𝑛 (𝑖 = 1, 2, . . . , 𝑁) is
continuous, which describes the local dynamics of nodes 𝑖,
and Γ
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, . . . , 𝛾

𝑛

2
)

are positive definite diagonal inner coupling matrices. 𝐴 =

(𝑎
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 and 𝐵 = (𝑏
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 are the nondelayed
and delayed weight configuration matrices, respectively. If
there is a connection from the node 𝑖 to the node 𝑗 (𝑗 ̸= 𝑖),
𝑎
𝑖𝑗

̸= 0; otherwise, 𝑎
𝑖𝑗
= 0. So is the case with matrix

𝐵. Here, 𝐴 and 𝐵 are not required to be symmetric, which
correspond to the direct network in the real world. 𝑎

𝑖𝑖
=

−∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝑎
𝑖𝑗
, and 𝑏

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸=𝑖
𝑏
𝑖𝑗
, (𝑖 = 1, 2, . . . , 𝑁).

The coupling time-varying delay 𝜏(𝑡) is a bounded and
continuously differentiable function. Suppose that there exist
positive constants 𝛼 and 𝜏 satisfying 0 ≤ ̇𝜏(𝑡) ≤ 𝛼 < 1 and
0 ≤ 𝜏(𝑡) ≤ 𝜏. 𝑢

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑁) is the linear controller for

𝑖 to design later.
Suppose 𝐶([−𝜏, 0], 𝑅𝑛) is the Banach space of continuous

vector-valued functions mapping the interval [−𝜏, 0] into 𝑅𝑛
with the norm ‖𝜙‖ = sup

−𝜏<𝑠<0
‖𝜙(𝑠)‖. For the functional

differential equation (1), its initial conditions are given by
𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅

𝑛
). It is assumed that (1) has a
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unique solution with respect to these initial conditions. For
the functional differential equation (2), its initial conditions
are given by 𝑦

𝑖
(𝑡) = 𝜓

𝑖
(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅

𝑛
). And, at least, there

exists a constant 𝑖 (𝑖 = 1, 2, . . . , 𝑁) such that 𝜙
𝑖
(𝑡) ̸= 𝜓

𝑖
(𝑡) for

𝑡 ∈ [−𝜏, 0]. ‖ ⋅ ‖ refers to the Euclidean vector norm or the
induced matrix 2-norm.

In the following, some preliminaries such as definitions,
lemmas, and assumptions will be given, which would be used
throughout the paper.

Definition 1. The drive networks (1) and the response net-
works (2) are said to be achieving complete outer synchro-
nization, if, for any initial sates 𝜙

𝑖
(𝑡) and 𝜓

𝑖
(𝑡),

lim
𝑡→∞

𝑦𝑖 (𝑡, 𝜓𝑖) − 𝑥𝑖 (𝑡, 𝜙𝑖)
 = 0, 𝑖 = 1, 2, . . . , 𝑁. (3)

Definition 2. Matrix 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑅

𝑁×𝑁 is said to belong to
class 𝐴1, denoted as 𝐴 ∈ 𝐴1, if
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𝑎
𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁,

(2) 𝐴 is irreducible.

If 𝐴 ∈ 𝐴1 is symmetrical, then one says that 𝐴 belongs to
class 𝐴2, denoted as 𝐴 ∈ 𝐴2.

Lemma 3 (see [25]). If matrix 𝐴 ∈ 𝐴1, then the following are
valid.

(1) Real parts of the eigenvalues of A are negative except an
eigenvalue 0 with multiplicity 1.

(2) A has right eigenvalues (1, 1, . . . , 1)𝑇 corresponding to
the eigenvalue 0.

(3) Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑁
)
𝑇 be the left eigenvector of 𝐴

corresponding to the eigenvalue 0 satisfying∑𝑁
𝑖=1
𝜉
𝑖
= 1,

and then one can let 𝜉
𝑖
> 0 hold for all 𝑖 = 1, 2, . . . , 𝑁.

Lemma 4 (see [15]). The following linear matrix inequality
(LMI):

(

𝑆
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𝑆
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𝑆
𝑇
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𝑆
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) < 0, (4)

is equivalent to the following conditions:
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(5)

where 𝑆
11
and 𝑆
22
are symmetric matrices and 𝑆

12
is a matrix

with suited dimensions.

Lemma 5. Let 𝑢(𝑡) : [𝑡
0
− 𝜏,∞) → [0,∞) satisfy the scalar

impulsive differential inequality:

�̇� (𝑡) ≤ 𝑝𝑢 (𝑡) + 𝑞𝑢 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡
𝑘
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𝑘
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𝑘
, 𝑘 = 1, 2, . . . ,

𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] ,

(6)

where 𝑝, 𝑞 > 0, 𝛼
𝑘
> 0, 𝑢(𝑡) is continuous at 𝑡 ̸= 𝑡
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𝑘
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0
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0
], 𝑅
+
). 𝜏(𝑡) is a bounded and continuously

differentiable function, and 0 ≤ ̇𝜏(𝑡) ≤ 𝛼 < 1 and 0 ≤ 𝜏(𝑡) ≤ 𝜏.
Then

𝑢 (𝑡) ≤ (

𝑘

∏

𝑖=1

𝛼
𝑖
)𝑒
(𝑝+𝑞/(1−𝛼))(𝑡−𝑡

0
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[ sup
𝑡
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0

𝜑 (𝑠)] (7)

for 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
).

Proof. For 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
), integrating both sides of inequality

(6) from 𝑡
𝑘
to 𝑡, we can obtain

𝑢 (𝑡) − 𝑢 (𝑡𝑘) ≤ ∫

𝑡

𝑡
𝑘

(𝑝𝑢 (𝑠) + 𝑞𝑢 (𝑠 − 𝜏 (𝑠))) 𝑑𝑠. (8)

It is easy to get

𝑢 (𝑡) ≤ 𝑢 (𝑡𝑘) + ∫

𝑡

𝑡
𝑘
−𝜏

(𝑝 +
𝑞

1 − 𝛼
) 𝑢 (𝑠) 𝑑𝑠. (9)

We will prove the conclusion of Lemma 5 by induction. From
inequality (6), when 𝑡 ∈ [𝑡

0
, 𝑡
1
), we can get

�̇� (𝑡) ≤ 𝑝𝑢 (𝑡) + 𝑞 sup
𝑡−𝜏≤𝑠≤𝜏

𝑢 (𝑠)

≤ 𝑝𝑢 (𝑡) +
𝑞

1 − 𝛼
sup
𝑡−𝜏≤𝑠≤𝜏

𝑢 (𝑠) .

(10)

By Lemma 3 in [26], for 𝑡 ∈ [𝑡
0
, 𝑡
1
), we have

𝑢 (𝑡) ≤ ( sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

𝜑 (𝑠)) 𝑒
(𝑝+𝑞/(1−𝛼))(𝑡−𝑡

0
)
. (11)

This implies that the conclusion of Lemma 5 holds for 𝑘 = 0.
Under the inductive assumption that the conclusion (6)

holds for some 𝑘 > 0, we will show that (6) still holds for 𝑘+1.
For 𝑡 ∈ [𝑡

𝑘+1
, 𝑡
𝑘+2
), without loss of generality, we assume that

there are 𝑙 first class intermittent points, and then (9) can be
rewritten as

𝑢 (𝑡) ≤ 𝑢 (𝑡𝑘+1) + ∫

𝑡
𝑘−𝑙+1
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𝑘+1
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) 𝑢 (𝑠) 𝑑𝑠.

(12)

Using the same method as the proof of Lemma 1 in [13], we
can get, for 𝑡 ∈ [𝑡

𝑘+1
, 𝑡
𝑘+2
),

𝑢 (𝑡) ≤ 𝑢 (𝑡𝑘+1) 𝑒
(𝑝+𝑞/(1−𝛼))(𝑡−𝑡

𝑘+1
+𝜏) (13)

and by the inductive assumption and the second inequality of
(6), we have

𝑢 (𝑡) ≤ 𝛼𝑘+1𝑢 (𝑡
−

𝑘+1
) 𝑒
(𝑝+𝑞/(1−𝛼))(𝑡−𝑡
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𝛼
𝑖
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(14)
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Hence, by induction, the conclusion of the lemma is attained
for all 𝑘 ≥ 0.

Assumption 6. Suppose there exists a positive constant 𝐿 such
that

𝑓 (𝑦) − 𝑓 (𝑥)
 ≤ 𝐿

𝑦 − 𝑥
 , 𝑖 = 1, 2, . . . , 𝑁, (15)

for any 𝑥, 𝑦 ∈ 𝑅𝑛, and the norm ‖𝑥‖ = √𝑥𝑇𝑥.

Remark 7. In fact, there are many classical chaotic systems,
such as Lorenz system, Chen system, Lü system, and Chua’s
circuit system, whose corresponding dynamical functions all
satisfy the above assumption.

3. Outer Synchronization Analysis

3.1. Complete Outer Synchronization of Complex Networks by
Pinning Control. In this subsection, we first investigate outer
synchronization issue for two linear coupled complex net-
works with delay and nondelay by pinning control; here, the
nondelay coupled matrix 𝐴 is not assumed to be symmetric,
but it has to be irreducible.Then, we introduce some notation
employed throughout this paper.

The error vector is as follows:

𝑒
𝑖 (𝑡) = 𝑦𝑖 (𝑡) − 𝑥𝑖 (𝑡) ,

𝑒
𝑘
(𝑡) = (𝑒

𝑘

1
(𝑡) , 𝑒
𝑘

2
(𝑡) , . . . , 𝑒

𝑘

𝑁
(𝑡))
𝑇

,

𝑒
𝑘
(𝑡 − 𝜏 (𝑡))

= (𝑒
𝑘

1
(𝑡 − 𝜏 (𝑡)) , 𝑒

𝑘

2
(𝑡 − 𝜏 (𝑡)) , . . . , 𝑒

𝑘

𝑁
(𝑡 − 𝜏 (𝑡)))

𝑇

,

(16)

and we design the negative feedback controllers correspond-
ing to the response network (2) as

𝑢
𝑖 (𝑡) = {

−𝑐
1
𝑑
𝑖
Γ
1
𝑒
𝑖 (𝑡) , 1 ≤ 𝑖 ≤ 𝑙 < 𝑁,

0, 1 + 𝑙 ≤ 𝑖 ≤ 𝑁,
(17)

where 𝑑
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, are the feedback control gains

that can be suitably chosen.Without loss of generality, we can
control the first 𝑙 (𝑙 < 𝑁) nodes.

Transforming the system yields the following error
dynamical system:

̇𝑒
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑒
𝑗 (𝑡)

+ 𝑐
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𝑁

∑
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𝑏
𝑖𝑗
Γ
2
𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝑐1𝑑𝑖Γ1𝑒𝑖 (𝑡) ,

𝑖 = 1, 2, . . . , 𝑙,

̇𝑒
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑒
𝑗 (𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1 + 𝑙, . . . , 𝑁.

(18)

Then we have the following results.

Theorem 8. Suppose that Assumption 6 holds and the drive
network (1) with response network (2) can realize outer
synchronization if the following condition is satisfied:

𝐿Ξ +
1

1 − 𝛼
𝐼
𝑁
+ 𝑐
1
𝛾
𝑘

1
(Ξ𝐴)
𝑠

+

𝑐
2

2
(𝛾
𝑘

2
)
2

Ξ𝐵(Ξ𝐵)
𝑇

4
< 0

(19)

for 𝑘 = 1, 2, . . . , 𝑛, whereΞ = diag{𝜉
1
, . . . , 𝜉

𝑁
},𝐴 = 𝐴−𝐷,𝐷 =

diag{𝑑
1
, . . . , 𝑑

𝑙
, 0, . . . , 0} ∈ 𝑅

𝑁×𝑁, and (Ξ𝐴)𝑠 = (Ξ𝐴+𝐴𝑇Ξ)/2.

Proof. Construct a Lyapunov-Krasovskii function in the form

𝑉 (𝑡) =
1

2

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) +

1

1 − 𝛼

𝑛

∑

𝑘=1

∫

𝑡

𝑡−𝜏(𝑡)

(𝑒
𝑘
(𝑠))
𝑇

𝑒
𝑘
(𝑠) 𝑑𝑠.

(20)

Then the derivative of 𝑉(𝑡) along the trajectories of (18) is

�̇� (𝑡) =

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) ̇𝑒𝑖 (𝑡) +

1

1 − 𝛼

×

𝑛

∑

𝑘=1

[(𝑒
𝑘
(𝑡))
𝑇

𝑒
𝑘
(𝑡) − (1 − ̇𝜏 (𝑡))

× 𝑒
𝑘
(𝑡 − 𝜏 (𝑡))

𝑇
𝑒
𝑘
(𝑡 − 𝜏 (𝑡)) ]

≤

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) [

[

(𝑓 (𝑦
𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡))) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑒
𝑗 (𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑒
𝑗 (𝑡 − 𝜏 (𝑡))

]

]

− 𝑐
1

𝑙

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑑𝑖Γ1𝑒𝑖 (𝑡)

+

𝑛

∑

𝑘=1

[
1

1 − 𝛼
(𝑒
𝑘
(𝑡))
𝑇

𝑒
𝑘
(𝑡)

−(𝑒
𝑘
(𝑡 − 𝜏 (𝑡)))

𝑇

𝑒
𝑘
(𝑡 − 𝜏 (𝑡))] .

(21)
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According to Assumption 6, one can obtain

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) (𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡))) ≤ 𝐿

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

= 𝐿

𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

Ξ𝑒
𝑘
(𝑡) .

(22)

Note that

𝑐
1

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑎𝑖𝑗Γ1𝑒𝑗 (𝑡) = 𝑐1

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
[

𝑛

∑

𝑘=1

𝑒
𝑘

𝑖
(𝑡) 𝛾
𝑘

1
𝑒
𝑘

𝑗
(𝑡)]

= 𝑐
1

𝑛

∑

𝑘=1

𝛾
𝑘

1
[

[

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝜉
𝑖
𝑒
𝑘

𝑖
(𝑡) 𝑒
𝑘

𝑗
(𝑡)]

]

=

𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

𝑐
1
𝛾
𝑘

1
(Ξ𝐴)
𝑠
𝑒
𝑘
(𝑡) .

(23)

Then, it follows that

𝑐
1

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑎𝑖𝑗Γ𝑒𝑗 (𝑡) − 𝑐1

𝑙

∑

𝑖=1

𝜉
𝑖
𝑑
𝑖
𝑒
𝑇

𝑖
(𝑡) Γ1𝑒𝑖 (𝑡)

=

𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

𝑐
1
𝛾
𝑘

1
Ξ (𝐴 − 𝐷) 𝑒

𝑘
(𝑡)

=

𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

𝑐
1
𝛾
𝑘

1
(Ξ𝐴)
𝑠

𝑒
𝑘
(𝑡) .

(24)

Using the same method as (23), we get

𝑐
2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑏𝑖𝑗Γ𝑒𝑗 (𝑡 − 𝜏 (𝑡))

= 𝑐
2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝜉
𝑖
[

𝑛

∑

𝑘=1

𝑒
𝑘

𝑖
(𝑡) 𝛾
𝑘

1
𝑒
𝑘

𝑗
(𝑡 − 𝜏 (𝑡))]

=

𝑛

∑

𝑘=1

(𝑒
𝑘
(𝑡))
𝑇

𝑐
2
𝛾
𝑘

2
Ξ𝐵𝑒
𝑘
(𝑡 − 𝜏 (𝑡)) .

(25)

Substituting inequalities (22), (24), and (25) into (21), we
obtain

�̇� (𝑡) ≤

𝑛

∑

𝑘=1

[(𝑒
𝑘
(𝑡))
𝑇

(𝐿Ξ +
1

1 − 𝛼
𝐼
𝑁
+ 𝑐
1
𝛾
𝑘

1
(Ξ𝐴)
𝑠

) 𝑒
𝑘
(𝑡)

+ (𝑒
𝑘
(𝑡))
𝑇

𝑐
2
𝛾
𝑘

2
Ξ𝐵𝑒
𝑘
(𝑡 − 𝜏 (𝑡))

− (𝑒
𝑘
(𝑡 − 𝜏 (𝑡)))

𝑇

𝐼
𝑁
𝑒
𝑘
(𝑡 − 𝜏 (𝑡))]

=

𝑛

∑

𝑘=1

[(𝑒
𝑘
(𝑡))
𝑇

, (𝑒
𝑘
(𝑡 − 𝜏 (𝑡)))

𝑇

] Ξ
1
(

𝑒
𝑘
(𝑡)

𝑒
𝑘
(𝑡 − 𝜏 (𝑡))

) ,

(26)

where

Ξ
1
= (

𝐿Ξ +
1

1 − 𝛼
𝐼
𝑁
+ 𝑐
1
𝛾
𝑘

1
Ξ𝐴

𝑐
2
𝛾
𝑘

2
Ξ𝐵

2

𝑐
2
𝛾
𝑘

2
(Ξ𝐵)
𝑇

2
−𝐼
𝑁

), (27)

from Lemma 4 and the condition of Theorem 8, is equating
to Ξ
1
< 0. So we obtain �̇�

𝑖
(𝑡) ≤ 0. This implies

lim
𝑡→∞

𝑒𝑖 (𝑡)
 = lim
𝑡→∞

𝑦𝑖 (𝑡) − 𝑥𝑖 (𝑡)
 = 0, 𝑖 = 1, 2, . . . , 𝑁.

(28)

According to the Lyapunov stability theorem, the outer
synchronization of network is achieved. This completes the
proof.

Remark 9. In a large body of the existing literature, the
coupling matrix is supposed to be symmetric, which is not
practical. However, in this paper, the configuration matrix
need not be symmetric.This means that the networks (1) and
(2) are directed networks. The complex network structure in
this paper is general and this theorem can be applied to a great
many complex networks in the real world.

When the coupling delay is absent in the complex
network, that is, 𝐵 = 0, the drive coupled complex network is
characterized by

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑥
𝑗 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁, (29)

and the response coupled complex dynamical network is as
follows:

̇𝑦
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑦
𝑗 (𝑡) + 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(30)

where 𝑢
𝑖
(𝑡) is the same as (17).

Corollary 10. Under Assumption 6, if the condition

𝐿Ξ + 𝑐𝛾
𝑘

1
(Ξ𝐴)
𝑠

< 0 (31)

holds, then the drive systems (29)with response system (30) can
achieve outer synchronization.

For the proof of Corollary 10, we choose the Lyapunov
function as

𝑉 (𝑡) =

𝑁

∑

𝑖=1

𝜉
𝑖
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) . (32)

Then, we can follow the proof of Theorem 8 to get the results
above. We omitted details here.

Remark 11. The results in Corollary 10 correspond to The-
orem 1 in [23] when 𝐻 = 𝐼, which means the problem
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investigated in [23] reaches complete outer synchronization.
The results we obtained here are more general since the
dynamical behaviors in our complex networks (29) and (30)
are comprehensive. In some sense, the results in [23] could be
seen as a special case of our results.

When the nondelay coupled matrix 𝐴 is symmetric
and irreducible, the left eigenvector of 𝐴 corresponding to
eigenvalue 0 is 𝜉 = (1/𝑁, 1/𝑁, . . . , 1/𝑁), and we could have
the following results.

Corollary 12. Under Assumption 6, if 𝐴 is symmetric and
irreducible and the condition

(𝐿 +
1

1 − 𝛼
) 𝐼
𝑁
+ 𝑐
1
𝛾
𝑘

1
𝐴 +

𝑐
2

2
(𝛾
𝑘

2
)
2

𝐵𝐵
𝑇

4
< 0

(33)

holds, then the networks achieve outer synchronization.

3.2. Outer Synchronization of Complex Networks by Impulsive
Control. In this section, we discuss outer synchronization
for two linear coupled complex networks with delay and
nondelay by impulsive control. It should be mentioned that
the coupling matrix 𝐴 is irreducible in Theorem 8 when
we use pinning control to get outer synchronization in the
subsection above. However, in this subsection, the nondelay
coupled matrix𝐴 is not necessarily assumed to be symmetric
and irreducible when we use impulsive control strategy.

For achieving outer synchronization of two networks, the
impulsive controllers can be designed as follows:

𝑢
𝑖 (𝑡) =

∞

∑

𝑘=1

𝐵
𝑖𝑘
(𝑦
𝑖
(𝑡
−
) − 𝑥
𝑖
(𝑡
−
)) 𝛿 (𝑡 − 𝑡

𝑘
) , (34)

where the impulsive instant sequence {𝑡
𝑘
}
+∞

𝑘=1
satisfies 𝑡

𝑘−1
<

𝑡
𝑘
and lim

𝑘→∞
𝑡
𝑘
= +∞. Matrix 𝐵

𝑖𝑘
∈ 𝑅
𝑛×𝑛 is the states

impulses gain matrix at the moment 𝑡
𝑘
. And 𝛿(⋅) is the Dirac

impulsive function; that is,

𝛿 (𝑡 − 𝑡
𝑘
) = {

1, 𝑡 = 𝑡
𝑘
,

0, 𝑡 ̸= 𝑡
𝑘
.

(35)

The response network with impulsive control can be expres-
sed as follows:

̇𝑦
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑦
𝑗 (𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑦
𝑖
= 𝑦
𝑖
(𝑡
+

𝑘
) − 𝑦
𝑖
(𝑡
−

𝑘
)

= 𝐵
𝑖𝑘
(𝑦
𝑖
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

𝑦
𝑖 (𝑡) = 𝜓𝑖 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(36)

where 𝑦
𝑖
(𝑡
+

𝑘
) = lim

𝑡→ 𝑡
+

𝑘

𝑦
𝑖
(𝑡) and 𝑦

𝑖
(𝑡
−

𝑘
) = lim

𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡). Here,

we suppose that 𝑦
𝑖
(𝑡
𝑘
) = 𝑦

𝑖
(𝑡
+

𝑘
), which means that the

solution𝑦(𝑡) of (36) is right-hand continuous at the impulsive
moment 𝑡

𝑘
.

Let 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡), and then the error system can be

written as follows:

̇𝑒
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑒
𝑗 (𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑒
𝑖
= 𝑒
𝑖
(𝑡
+

𝑘
) − 𝑒
𝑖
(𝑡
−

𝑘
) = 𝐵
𝑖𝑘
𝑒
𝑖
(𝑡
−

𝑘
) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

𝑒
𝑖 (𝑡) = 𝜓𝑖 (𝑡) − 𝜙𝑖 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(37)

where the goal in this section is to set the control gainsmatrix
𝐵
𝑖𝑘
and the impulsive distance Δ𝑡

𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

, (𝑘 = 1, 2, . . .)
such that the error ‖𝑒

𝑖
(𝑡)‖ converges to 0, which implies the

impulsive control synchronization of (37) is completed for
arbitrary initial conditions.

Theorem 13. If Assumption 6 is satisfied, the drive system (1)
and the response system (2) can achieve outer synchronization
under the impulsive controller (34) if there exists a positive
constant 𝜂, such that

(𝛽 +
𝑐
2

1 − 𝛼
)(1 +

𝜏

𝑇min
) +

2 ln 𝜎𝑘


𝑇max
< −𝜂 (38)

holds, where

𝛽 = 2𝐿 + 𝜆
𝑚
(2𝑐
1
(𝐴 ⊗ Γ

1
)
𝑠
+ 𝑐
2
(𝐵 ⊗ Γ

2
) (𝐵 ⊗ Γ

2
)
𝑇
) , (39)

and 𝜎
𝑘
= max

1≤𝑖≤𝑁
‖𝐼
𝑛
+ 𝐵
𝑖𝑘
‖, 𝑘 ∈ 𝑍+, 𝑇min = min{𝑡

𝑘
− 𝑡
𝑘−1

|

𝑘 ∈ 𝑍
+
}, 𝑇max = max{𝑡

𝑘
− 𝑡
𝑘−1

| 𝑘 ∈ 𝑍
+
}, and 𝜆

𝑚
(⋅) is the

largest eigenvalue of a matrix.

Proof. Let 𝑒(𝑡) = (𝑒
𝑇

1
(𝑡), 𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))
𝑇. Choose the

following Lyapunov function:

𝑉 (𝑡) = 𝑒
𝑇
(𝑡) 𝑒 (𝑡) . (40)

For 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑁, taking the time derivative of the Lyapunov

function (40) along the trajectories of (37), we have

�̇� (𝑡) = 2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) ̇𝑒𝑖 (𝑡)

= 2

𝑁

∑

𝑖=1

[

[

𝑒
𝑇

𝑖
(𝑡) (𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡)))

+ 𝑐
1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ1𝑒𝑗 (𝑡)

+𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ2𝑒𝑗 (𝑡 − 𝜏 (𝑡))

]

]

.

(41)
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From Assumption 6, one can obtain

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) (𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡))) ≤ 2

𝑁

∑

𝑖=1

𝐿𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

= 2𝐿𝑉 (𝑡) .

(42)

Notice that

2𝑐
1

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑒
𝑇

𝑖
(𝑡) 𝑎𝑖𝑗Γ1𝑒𝑗 (𝑡) = 2𝑐1𝑒

𝑇
(𝑡) (𝐴 ⊗ Γ1) 𝑒 (𝑡)

≤ 2𝑐
1
𝑒
𝑇
(𝑡) (𝐴 ⊗ Γ1)

𝑠
𝑒 (𝑡) .

(43)

The third term in (41) can be rewritten as

2𝑐
2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ2𝑒𝑗 (𝑡 − 𝜏 (𝑡))

= 2𝑐
2
𝑒
𝑇
(𝑡) (𝐵 ⊗ Γ2) 𝑒 (𝑡 − 𝜏 (𝑡))

≤ 𝑐
2
[𝑒
𝑇
(𝑡) (𝐵 ⊗ Γ2) (𝐵 ⊗ Γ2)

𝑇
𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑒 (𝑡 − 𝜏 (𝑡)) ] .

(44)

Combining (43) and (44), we have

2

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[𝑐
1
𝑒
𝑇

𝑖
(𝑡) 𝑎𝑖𝑗Γ1𝑒𝑗 (𝑡) + 𝑏𝑖𝑗𝑒

𝑇

𝑖
(𝑡) Γ2𝑒𝑗 (𝑡 − 𝜏 (𝑡))]

= 𝑒
𝑇
(𝑡) ((2𝑐1𝐴 ⊗ Γ1) + 𝑐2 (𝐵 ⊗ Γ2) (𝐵 ⊗ Γ2)

𝑇
) 𝑒 (𝑡)

+ 𝑐
2
𝑉 (𝑡 − 𝜏 (𝑡))

≤ 𝜆
𝑚
(2𝑐
1
(𝐴 ⊗ Γ

1
)
𝑠
+ 𝑐
2
(𝐵 ⊗ Γ

2
) (𝐵 ⊗ Γ

2
)
𝑇
)𝑉 (𝑡)

+ 𝑐
2
𝑉 (𝑡 − 𝜏 (𝑡)) .

(45)

Referring to the inequalities (42) and (45), for 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍+,

it follows from (41) that

�̇� (𝑡) ≤ [2𝐿

+𝜆
𝑚
(2𝑐
1
(𝐴 ⊗ Γ

1
)
𝑠
+ 𝑐
2
(𝐵 ⊗ Γ

2
) (𝐵 ⊗ Γ

2
)
𝑇
)]𝑉 (𝑡)

+ 𝑐
2
𝑉 (𝑡 − 𝜏 (𝑡))

= 𝛽𝑉 (𝑡) + 𝑐2𝑉 (𝑡 − 𝜏 (𝑡)) ,

(46)

where

𝛽 = 2𝐿 + 𝜆
𝑚
(2𝑐
1
(𝐴 ⊗ Γ

1
)
𝑠
+ 𝑐
2
(𝐵 ⊗ Γ

2
) (𝐵 ⊗ Γ

2
)
𝑇
) . (47)

When 𝑡 = 𝑡
𝑘
, 𝑘 ∈ 𝑍+, one has

𝑉 (𝑡
𝑘
) =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
+

𝑘
) 𝑒
𝑖
(𝑡
+

𝑘
)

=

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
−

𝑘
) (𝐼
𝑛
+ 𝐵
𝑖𝑘
)
𝑇
(𝐼
𝑛
+ 𝐵
𝑖𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
)

≤ max
1≤𝑖≤𝑁

𝐼𝑛 + 𝐵𝑖𝑘


2
𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒
𝑖
(𝑡
−

𝑘
)

= 𝜎
2

𝑘
𝑉 (𝑡
−

𝑘
) ,

(48)

where 𝜎
𝑘
= max

1≤𝑖≤𝑁
‖𝐼
𝑛
+ 𝐵
𝑖𝑘
‖.

Thus, employing Lemma 5, from (45) and (46), for 𝑡 ∈
[𝑡
𝑘
, 𝑡
𝑘+1
), we have

𝑉 (𝑡) ≤ [ sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

𝑉 (𝑠)](

𝑘

∏

𝑖=1

𝜎
2

𝑘
)𝑒
(𝛽+𝑐
2
/(1−𝛼))(𝑡−𝑡

0
+𝑘𝜏)

. (49)

Let 𝑇min = min{𝑡
𝑘
− 𝑡
𝑘−1

| 𝑘 ∈ 𝑍
+
} and 𝑇max = max{𝑡

𝑘
− 𝑡
𝑘−1

|

𝑘 ∈ 𝑍
+
}, and then

𝑉 (𝑡) ≤ [ sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

𝑉 (𝑠)] 𝑒
(𝛽+𝑐
2
/(1−𝛼))(𝑡−𝑡

0
+𝑘𝜏)+2𝑘 ln |𝜎

𝑘
|

≤ [ sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

𝑉 (𝑠)] 𝑒
[(𝛽+𝑐
2
/(1−𝛼))(1+𝜏/𝑇min)+2(ln |𝜎𝑘|/𝑇max)](𝑡−𝑡0).

(50)
From condition (38) of Theorem 13, we get

𝑉 (𝑡) ≤ [ sup
𝑡
0
−𝜏≤𝑠≤𝑡

0

𝑉 (𝑠)] 𝑒
−𝜂(𝑡−𝑡

0
)
. (51)

Thus, we can obtain that

‖𝑒
𝑖 (𝑡) ‖ ≤ [ sup

𝑡
0
−𝜏≤𝑠≤𝑡

0

𝑉 (𝑠)]

1/2

𝑒
−(𝜂/2)(𝑡−𝑡

0
)
, 𝑖 = 1, 2, . . . , 𝑁.

(52)
This means the impulsive outer synchronization between

complex network (1) and network (2) is realized. Thus, we
complete the proof work.

When the nondelayed coupling matrix 𝐴 = 0,

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

̇𝑦
𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑐

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) ,

𝑡 ̸= 𝑡
𝑘
, 𝑡 ≥ 𝑡

0
,

Δ𝑦
𝑖
= 𝑦
𝑖
(𝑡
+

𝑘
) − 𝑦
𝑖
(𝑡
−

𝑘
) = 𝐵
𝑖𝑘
(𝑦
𝑖
(𝑡
−

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)) ,

𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . . ,

𝑦
𝑖 (𝑡) = 𝜓𝑖 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(53)
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Corollary 14. Suppose Assumption 6 is satisfied, and the
network (53) can achieve outer synchronization if there exists
a positive constant 𝜂, such that

(𝛽 +
𝑐

1 − 𝛼
)(1 +

𝜏

𝑇min
) +

2 ln 𝜎𝑘


𝑇max
< −𝜂 (54)

holds, where

𝛽 = 2𝐿 + 𝜆
𝑚
(𝑐 (𝐵 ⊗ Γ

2
) (𝐵 ⊗ Γ

2
)
𝑇
) , (55)

and 𝜎
𝑘
= max

1≤𝑖≤𝑁
‖𝐼
𝑛
+ 𝐵
𝑖𝑘
‖, 𝑇min = min{𝑡

𝑘
− 𝑡
𝑘−1

| 𝑘 ∈ 𝑍
+
},

𝑇max = max{𝑡
𝑘
−𝑡
𝑘−1

| 𝑘 ∈ 𝑍
+
}, and 𝜆

𝑚
(⋅) stands for the largest

eigenvalue of a matrix.

Remark 15. Mentions should be made onTheorem 2 in [23].
In fact, (13) in [23] corresponds to (53) in this paper if we
set 𝐻 = 𝐼

𝑛
in [23]. Both negative feedback controllers and

impulsive controllers are used in [23] to make the complex
network (53) to achieve outer synchronization. Compared
with [23], only impulsive controllers are made use of. As a
result, the criteria we presented in this paper are easier than
those in [23].

4. Numerical Simulations

In this section, we give numerical simulation to verify and
demonstrate the effectiveness of the proposed method. In
order to verify our results, we consider the driving complex
network (1) as

�̇�
𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑐1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑥
𝑗 (𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) , 𝑖 = 1, 2, 3, 4.

(56)

Example 16. We take the Lorenz system as the local node
dynamics, which is shown in Figure 1. Its dynamical equa-
tions in a dimensionless form are as follows:

�̇�
1
= 10 (𝑥

2
− 𝑥
1
) ,

�̇�
2
= 28𝑥

1
− 𝑥
2
− 𝑥
1
𝑥
3
,

�̇�
3
= 𝑥
1
𝑥
2
−
8

3
𝑥
3
,

(57)

where (𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇
∈ 𝑅
3 is the state variables group of unified

chaotic system.The initial condition is randomly chosen. We
choose 𝜏(𝑡) = 0.01 − 0.01𝑒

−𝑡, 𝛼 = 0.01, 𝑐
1
= 40, 𝑐

2
= 0.01,

Γ
1
= diag{5, 5, 5}, and Γ

2
= diag{0.2, 0.2, 0.2}. Similar to

the verification in [23] with 𝐿 = 150, clearly, Assumption 6

is verified. Choosing the asymmetric coupling configuration
matrices

𝐴 = (

−2 1 0 1

1 −3 2 0

0 3 −4 1

2 0 0 −2

) ,

𝐵 = (

−2 1 1 0

0 −2 1 1

1 0 −2 1

1 1 0 −2

)

(58)

by calculation, the left eigenvector of 𝐴 corresponding to
the eigenvalue 0 is 𝜉 = (3/8, 2/8, 1/8, 2/8)

𝑇. We control
the second node of the system with coupling strength 52
and the third node 10 with coupling strength 48 by pinning
control, and then all the conditions inTheorem 8 are satisfied,
so the asymmetric coupled network (21) can achieve outer
synchronization.The simulation results are given in Figure 2,
and we can observe that outer synchronization state is
realized.

Example 17. Now, let us consider the outer exponential
synchronization of complex networks. Again, the network
model is the same as Example 16. Hence 𝜆

𝑚
(2𝑐
1
(𝐴 ⊗ Γ

1
)
𝑠
+

𝑐
2
(𝐵 ⊗ Γ

2
)(𝐵 ⊗ Γ

2
)
𝑇
) = 6.2435, 𝑇max = 𝑇min = 0.01, let

𝐵
𝑖𝑘
= (

−1.04 0 0

0 −1.04 0

0 0 −1.04

) , (59)

and then 𝜎 = 0.04. Then all the conditions in Theorem 13
are satisfied, and 𝜂 = 31.0662, so the asymmetric coupled
network (21) can achieve outer synchronization. The simu-
lation results are given in Figure 3. It can be seen clearly from
Figure 3 that outer synchronization state is realized.

5. Conclusion

In this paper, we considered the outer synchronization
between two complex networks with time nondelayed and
time-varying delayed couplings under different control laws.
First of all, we handled the outer synchronization by pin-
ning control and derived some sufficient criteria based on
Lyapunov stability theorem and LMI. Particularly, we obtain
two corollaries, which are single nondelay coupled networks
cases, and the coupling matrixes 𝐴 and 𝐵 are symmetric and
irreducible. On the other side, we discuss the outer synchro-
nization between two networks by impulsive control. Some
sufficient conditions are derived by imposing the impulsive
controllers to the nodes. In addition, we also present some
corollaries. What is more, numerical simulations for two
coupled complex networks which are composed of unified
chaotic systems are given to demonstrate the effectiveness
and feasibility of the schemes.
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Figure 2: Time evolution between node 𝑥𝑘
𝑖
and node 𝑦𝑘

𝑖
, 𝑖 = 1, 2, 3, 4, 𝑘 = 1, 2, 3, and error evolution between drive and response networks

under pinning control.
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Figure 3: Time evolution between node 𝑥𝑘
𝑖
and node 𝑦𝑘

𝑖
, 𝑖 = 1, 2, 3, 4, 𝑘 = 1, 2, 3, and error evolution between drive and response networks

under impulsive control.
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[14] E. Montbrió, J. Kurths, and B. Blasius, “Synchronization of two
interacting populations of oscillators,” Physical Review E, vol.
70, Article ID 056125, 2004.

[15] J. Lu, D. W. C. Ho, J. Cao, and J. Kurths, “Single impulsive con-
troller for globally exponential synchronization of dynamical
networks,” Nonlinear Analysis: Real World Applications, vol. 14,
no. 1, pp. 581–593, 2013.

[16] J. D. Cao, D. W. C. Ho, and Y. Q. Yang, “Projective synchroniza-
tion of a class of delayed chaotic systems via impulsive control,”
Physics Letters A, vol. 373, no. 35, pp. 3128–3133, 2009.

[17] B. Liu, X. Liu, G. Chen, and H. Wang, “Robust impulsive
synchronization of uncertain dynamical networks,” IEEETrans-
actions on Circuits and Systems. I: Regular Papers, vol. 52, no. 7,
pp. 1431–1441, 2005.

[18] C. Li, W. Sun, and J. Kurths, “Synchronization between two
coupled complex networks,” Physical Review E, vol. 76, no. 4,
Article ID 046204, 2007.

[19] Z. Li and X. Xue, “Outer synchronization of coupled networks
using arbitrary coupling strength,” Chaos, vol. 20, no. 2, Article
ID 023106, 7 pages, 2010.

[20] W. Sun, Z. Z. Yan, S. H. Chen, and J. H. Lü, “Outer synchro-
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