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The objective of this work is to make the numerical analysis, through the finite element method with Lagrange’s triangles of type
1, of a continuous optimal control problem governed by an elliptic variational inequality where the control variable is the internal
energy 𝑔. The existence and uniqueness of this continuous optimal control problem and its associated state system were proved
previously. In this paper, we discretize the elliptic variational inequality which defines the state system and the corresponding cost
functional, and we prove that there exist a discrete optimal control and its associated discrete state system for each positive ℎ (the
parameter of the finite element method approximation). Finally, we show that the discrete optimal control and its associated state
system converge to the continuous optimal control and its associated state system when the parameter ℎ goes to zero.

1. Introduction

We consider a bounded domain Ω ⊂ R𝑛 whose regular
boundary 𝜕Ω = Γ

1
∪ Γ
2
consists of the union of two disjoint

portions Γ
1
and Γ

2
with 𝑚𝑒𝑎𝑠(Γ

1
) > 0. We consider the

following free boundary problem (𝑆):

𝑢 ≥ 0;

𝑢 (−Δ𝑢 − 𝑔) = 0;

−Δ𝑢 − 𝑔 ≥ 0

in Ω;

(1)

𝑢 = 𝑏 on Γ
1
;

−
𝜕𝑢

𝜕𝑛
= 𝑞 on Γ

2
,

(2)

where the function 𝑔 in (1) can be considered as the internal
energy in Ω, 𝑏 is the constant temperature on Γ

1
, and 𝑞 is

the heat flux on Γ
2
. The variational formulation of the above

problem is given as follows: find 𝑢 = 𝑢
𝑔
∈ 𝐾 such that ∀V ∈ 𝐾

𝑎 (𝑢, V − 𝑢) ≥ (𝑔, V − 𝑢)
𝐻
− ∫
Γ
2

𝑞 (V − 𝑢) 𝑑𝑠, (3)

where
𝑉 = 𝐻

1

(Ω) ,

𝐾 = {V ∈ 𝑉 : V ≥ 0 in Ω, V = 𝑏 on Γ
1
} ,

𝑉
0
= {V ∈ 𝑉 : V = 0 on Γ

1
} ,

𝐻 = 𝐿
2

(Ω) ,

𝑄 = 𝐿
2

(Γ
2
) ,

(𝑢, V)
𝑄
= ∫
Γ
2

𝑢V 𝑑𝑠 ∀𝑢, V ∈ 𝑄,

(𝑢, V)
𝐻
= ∫
Ω

𝑢V 𝑑𝑥 ∀𝑢, V ∈ 𝐻,

𝑎 (𝑢, V) = ∫
Ω

∇𝑢 ⋅ ∇V 𝑑𝑥 ∀𝑢, V ∈ 𝑉.

(4)

We note that 𝑎 is bilinear, continuous, and symmetric on 𝑉
and a coercive form on 𝑉

0
[1]; that is to say, there exists a

constant 𝜆 > 0 such that

𝑎 (V, V) ≥ 𝜆 ‖V‖2
𝑉

∀V ∈ 𝑉
0
. (5)
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In [2], the following continuous distributed optimal control
problem associatedwith (𝑆) or the elliptic variational inequal-
ity (3) was considered as follows.

Problem (𝑃). Find the continuous distributed optimal control
𝑔op ∈ 𝐻 such that [3–5]

𝐽 (𝑔op) = min
𝑔∈𝐻

𝐽 (𝑔) , (6)

where the quadratic cost functional 𝐽 : 𝐻 → R+
0
is defined

by

𝐽 (𝑔) =
1

2


𝑢
𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻
(7)

with 𝑀 > 0, a given constant, and 𝑢
𝑔
is the corresponding

solution of the elliptic variational inequality (3) associated
with the control 𝑔.

Several continuous optimal control problems are gov-
erned by elliptic variational inequalities, for example, the
process of biological waste-water treatment; reorientation
of a satellite by propellers; and economics: the problem of
consumer regulation of a monopoly and so forth. There
exists an abundant literature for optimal control problems
governed by elliptic variational equalities or inequalities
[6–12], for numerical analysis of variational inequalities or
optimal control problems [13–16].

The objective of this work is to make the numerical
analysis of the optimal control problem (𝑃)which is governed
by the elliptic variational inequality (3) by proving the
convergence of a discrete solution to the continuous optimal
control problems.

In Section 2, we establish the discrete elliptic variational
inequality (10) which is the discrete formulation of the
continuous elliptic variational inequality (3), and we obtain
that these discrete problems have unique solutions for all
positive ℎ. Moreover, on the adequate functional spaces these
solutions are convergent when ℎ → 0

+ to the solutions of the
continuous elliptic variational inequality (3).

In Section 3, we define the discrete optimal control
problem (31) corresponding to continuous optimal control
problem (6). We prove the existence of a discrete solution for
the optimal control problem (𝑃

ℎ
) for each parameter ℎ andwe

obtain the convergence of this family with its corresponding
discrete state system to the continuous optimal control with
the corresponding continuous state system of the problem
(𝑃).

2. Discretization of the Problem (𝑆)

LetΩ ⊂ R𝑛 be a bounded polygonal domain; 𝑏 a positive con-
stant; and 𝜏

ℎ
a regular triangulation with Lagrange triangles

of type 1, constituted by affine-equivalent finite elements of
class 𝐶0 over Ω, ℎ being the parameter of the finite element
approximation which goes to zero [17, 18]. We take ℎ equal

to the longest side of the triangles 𝑇 ∈ 𝜏
ℎ
and we can

approximate the sets 𝑉 and𝐾 by

𝑉
ℎ
= {V
ℎ
∈ 𝐶
0

(Ω) : V
ℎ
∈ P
1
(𝑇) on 𝑇, ∀𝑇 ∈ 𝜏

ℎ
} ,

𝑉
ℎ0
= {V
ℎ
∈ 𝑉
ℎ
: V
ℎ
= 0 on Γ

1
} ,

𝐾
ℎ
= {V
ℎ
∈ 𝑉
ℎ
: V
ℎ
≥ 0, V

ℎ
= 𝑏 on Γ

1
} ,

(8)

where P
1
(𝑇) is the set of the polynomials of degree less than

or equal to 1 in the triangle 𝑇. Let Π
ℎ
: 𝑉 → 𝑉

ℎ
be the

corresponding linear interpolation operator and 𝑐
0
> 0 a

constant (independent of the parameter ℎ) such that, ∀V ∈
𝐻
𝑟

(Ω), 1 < 𝑟 ≤ 2 [17]:
V − Πℎ (V)

𝐻 ≤ 𝑐0ℎ
𝑟

‖V‖
𝑟
,

V − Πℎ (V)
𝑉 ≤ 𝑐0ℎ

𝑟−1

‖V‖
𝑟
.

(9)

The discrete variational inequality formulation (𝑆
ℎ
) of system

(𝑆) is defined as follows: find 𝑢
ℎ𝑔
∈ 𝐾
ℎ
such that ∀V

ℎ
∈ 𝐾
ℎ

𝑎 (𝑢
ℎ𝑔
, V
ℎ
− 𝑢
ℎ𝑔
) ≥ (𝑔, V

ℎ
− 𝑢
ℎ𝑔
)
𝐻

− (𝑞, V
ℎ
− 𝑢
ℎ𝑔
)
𝑄

. (10)

Theorem 1. Let 𝑔 ∈ 𝐻, 𝑏 > 0, and 𝑞 ∈ 𝑄; then there
exists unique solution of the problem (𝑆

ℎ
) given by the elliptic

variational inequality (10).

Proof. It follows from the application of Lax-MilgramTheo-
rem [1].

Lemma 2. Let 𝑔
1
, 𝑔
2
∈ 𝐻 and 𝑢

ℎ𝑔
1

, 𝑢
ℎ𝑔
2

∈ 𝐾
ℎ
be the solutions

of (𝑆
ℎ
) for 𝑔

1
and 𝑔

2
, respectively; then one has that

(a) there exists a constant 𝐶 independent of ℎ such that

𝑢
ℎ𝑔

𝑉
≤ 𝐶, ∀ℎ > 0; (11)

(b) ∀ℎ > 0

𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1

𝑉
≤
1

𝜆

𝑔2 − 𝑔1
𝐻 ;

(12)

(c) if 𝑔
𝑛
⇀ 𝑔 in𝐻 weak, then 𝑢

ℎ𝑔
𝑛

→ 𝑢
ℎ𝑔

in 𝑉 strong for
each fixed ℎ > 0.

Proof. (a) If we consider V
ℎ
= 𝑏 ∈ 𝐾

ℎ
in the discrete elliptic

variational inequality (10) we have

𝜆

𝑢
ℎ𝑔
− 𝑏


2

𝑉

≤ 𝑎 (𝑢
ℎ𝑔
− 𝑏, 𝑢
ℎ𝑔
− 𝑏)

≤ (𝑔, 𝑢
ℎ𝑔
− 𝑏)
𝐻

+ (𝑞, 𝑏 − 𝑢
ℎ𝑔
)
𝑄

≤ (
𝑔
𝐻 +

𝑞
𝑄
𝛾0
)

𝑢
ℎ𝑔
− 𝑏
𝑉
,

(13)

where 𝛾
0
is the trace operator and therefore (11) holds.

(b) As 𝑢
ℎ𝑔
1

and 𝑢
ℎ𝑔
2

are, respectively, the solutions of
discrete elliptic variational inequalities (10) for 𝑔

1
and 𝑔

2
, we

have

𝑎 (𝑢
ℎ𝑔
𝑖

, V
ℎ
− 𝑢
ℎ𝑔
𝑖

) ≥ (𝑔
𝑖
, V
ℎ
− 𝑢
ℎ𝑔
𝑖

)
𝐻

− (𝑞, V
ℎ
− 𝑢
ℎ𝑔
𝑖

)
𝑄

, ∀V
ℎ
∈ 𝐾
ℎ

(14)
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for 𝑖 = 1, 2. By coerciveness of 𝑎 we deduce

𝜆

𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1



2

𝑉

≤ 𝑎 (𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1

, 𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1

)

≤ (𝑔
2
− 𝑔
1
, 𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1

)
𝐻

≤
𝑔2 − 𝑔1

𝐻


𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1

𝑉

∀ℎ > 0;

(15)

thus (12) holds.
(c) Let ℎ > 0. From item (a) we have that ‖𝑢

ℎ𝑔
𝑛

‖ ≤ 𝐶 ∀𝑛;
then there exist 𝜂 ∈ 𝑉 such that 𝑢

ℎ𝑔
𝑛

⇀ 𝜂 in 𝑉 weak (in 𝐻
strong). If we consider the discrete elliptic inequality (10) we
have

𝑎 (𝑢
ℎ𝑔
𝑛

, V
ℎ
− 𝑢
ℎ𝑔
𝑛

) ≥ (𝑔
𝑛
, V
ℎ
− 𝑢
ℎ𝑔
𝑛

)
𝐻

− (𝑞, V
ℎ
− 𝑢
ℎ𝑔
𝑛

)
𝑄

(16)

and using the fact that 𝑎 is a lower weak semicontinuous
application then, when 𝑛 goes to infinity, we obtain that

𝑎 (𝜂, V
ℎ
− 𝜂) ≥ (𝑔, V

ℎ
− 𝜂)
𝐻
− (𝑞, V

ℎ
− 𝜂)
𝑄

(17)

and from uniqueness of the solution of problem (𝑆
ℎ
), we

deduce that 𝜂 = 𝑢
ℎ𝑔
∈ 𝐾
ℎ
.

Now, it is easily to see that

𝑎 (𝑢
ℎ𝑔
𝑛

− 𝑢
ℎ𝑔
, 𝑢
ℎ𝑔
𝑛

− 𝑢
ℎ𝑔
) ≤ − (𝑔 − 𝑔

𝑛
, 𝑢
ℎ𝑔
𝑛

− 𝑢
ℎ𝑔
)
𝐻

(18)

and from the coerciveness of 𝑎 we obtain

𝜆

𝑢
ℎ𝑔
𝑛

− 𝑢
ℎ𝑔



2

𝑉

≤ (𝑔 − 𝑔
𝑛
, 𝑢
ℎ𝑔
𝑛

− 𝑢
ℎ𝑔
)
𝐻

. (19)

As 𝑢
ℎ𝑔
𝑛

→ 𝑢
ℎ𝑔
in𝐻 and 𝑔

𝑛
⇀ 𝑔 in𝐻, by passing to the limit

when 𝑛 → ∞ in the previous inequality, we obtain

lim
𝑛→∞


𝑢
ℎ𝑔
𝑛

− 𝑢
𝑔

𝑉
= 0. (20)

Henceforth we will consider the following definitions [2]:
given 𝜇 ∈ [0, 1] and 𝑔

1
, 𝑔
2
∈ 𝐻, we have the convex

combinations of two data items

𝑔
3
(𝜇) = 𝜇𝑔

1
+ (1 − 𝜇) 𝑔

2
∈ 𝐻, (21)

the convex combination of two discrete solutions

𝑢
ℎ3
(𝜇) = 𝜇𝑢

ℎ𝑔
1

+ (1 − 𝜇) 𝑢
ℎ𝑔
2

∈ 𝐾
ℎ
, (22)

and we define 𝑢
ℎ4
(𝜇) as the associated state system which is

the solution of the discrete elliptic variational inequality (10)
for the control 𝑔

3
(𝜇).

Then, we have the following properties.

Lemma 3. Given the controls 𝑔
1
, 𝑔
2
∈ 𝐻, one has that

(a)
𝑢ℎ3


2

𝐻
= 𝜇


𝑢
ℎ𝑔
1



2

𝐻

+ (1 − 𝜇)

𝑢
ℎ𝑔
2



2

𝐻

− 𝜇 (1 − 𝜇)

𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1



2

𝐻

,

(23)

(b)
𝑔3 (𝜇)


2

𝐻
= 𝜇

𝑔1

2

𝐻
+ (1 − 𝜇)

𝑔2

2

𝐻

− 𝜇 (1 − 𝜇)
𝑔2 − 𝑔1


2

𝐻
.

(24)

Proof. (a) From definition (22) we get
𝑢ℎ3


2

𝐻
= 𝜇
2

𝑢
ℎ𝑔
1



2

𝐻

+ (1 − 𝜇)
2 
𝑢
ℎ𝑔
2



2

𝐻

+ 2𝜇 (1 − 𝜇) (𝑢
ℎ𝑔
1

, 𝑢
ℎ𝑔
2

)
𝐻

,


𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1



2

𝐻

=

𝑢
ℎ𝑔
2



2

𝐻

+

𝑢
ℎ𝑔
1



2

𝐻

− 2 (𝑢
ℎ𝑔
1

, 𝑢
ℎ𝑔
2

)
𝐻

,

(25)

and then we conclude (23).
(b) It follows from a similar method to part (a).

Theorem 4. If 𝑢
𝑔
and 𝑢

ℎ𝑔
are the solutions of the elliptic

variational inequalities (3) and (10), respectively, for the control
𝑔 ∈ 𝐻, then 𝑢

ℎ𝑔
→ 𝑢
𝑔
in 𝑉 strong when ℎ → 0

+.

Proof. From Lemma 2 we have that there exists a constant
𝐶 > 0 independent of ℎ such that ‖𝑢

ℎ𝑔
‖
𝑉
≤ 𝐶 ∀ℎ > 0, and

then we conclude that there exists 𝜂 ∈ 𝑉 so that 𝑢
ℎ𝑔
⇀ 𝜂 in𝑉

weak as ℎ → 0
+ and 𝜂 ∈ 𝐾. On the other hand, given V ∈ 𝐾

there exist V∗
ℎ
such that V∗

ℎ
∈ 𝐾
ℎ
for each ℎ and V∗

ℎ
→ V in 𝑉

strong when ℎ goes to zero. Now, by considering V∗
ℎ
∈ 𝐾
ℎ
in

the discrete elliptic variational inequality (10) we get

𝑎 (𝑢
ℎ𝑔
, 𝑢
ℎ𝑔
) ≤ 𝑎 (𝑢

ℎ𝑔
, V∗
ℎ
) − (𝑔, V∗

ℎ
− 𝑢
ℎ𝑔
)

+ (𝑞, V∗
ℎ
− 𝑢
ℎ𝑔
)
𝑄

(26)

and when we pass to the limit as ℎ → 0
+ in (26) by using the

fact that bilinear form 𝑎 is lower weak semicontinuous in 𝑉
we obtain

𝑎 (𝜂, 𝜂) ≤ 𝑎 (𝜂, V) − (𝑔, V − 𝜂) + (𝑞, V − 𝜂)
𝑄
; (27)

that it is to say,

𝑎 (𝜂, V − 𝜂) ≥ (𝑔, V − 𝜂) − (𝑞, V − 𝜂)
𝑄

∀V ∈ 𝐾 (28)

and, from the uniqueness of the solution of the discrete
elliptic variational inequality (3), we obtain that 𝜂 = 𝑢

𝑔
.

Now, we will prove the strong convergence. If we consider
V = 𝑢
ℎ𝑔
∈ 𝐾
ℎ
⊂ 𝐾 in the elliptic variational inequality (3) and

V
ℎ
= Π
ℎ
(𝑢
𝑔
) ∈ 𝐾

ℎ
in (10), from the coerciveness of 𝑎 and by

some mathematical computation, we obtain that

𝜆

𝑢
ℎ𝑔
− 𝑢
𝑔



2

𝑉

≤ 𝑎 (𝑢
ℎ𝑔
− 𝑢
𝑔
, 𝑢
ℎ𝑔
− 𝑢
𝑔
)

≤ 𝑎 (𝑢
ℎ𝑔
, Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)

− (𝑔,Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)

+ (𝑞, Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)
𝑄

;

(29)

then by passing to the limit when ℎ → 0
+ it results in

lim
ℎ→0

+‖𝑢
ℎ𝑔
− 𝑢
𝑔
‖
𝑉
= 0.



4 International Journal of Differential Equations

3. Discretization of the Optimal
Control Problem

Now, we consider the continuous optimal control problem
which was established in (6). The associated discrete cost
functional 𝐽

ℎ
: 𝐻 → R+

0
is defined by the following

expression:

𝐽
ℎ
(𝑔) =

1

2


𝑢
ℎ𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻
(30)

and we establish the discrete optimal control problem (𝑃
ℎ
) as

follows: find 𝑔op
ℎ

∈ 𝐻 such that

𝐽
ℎ
(𝑔op

ℎ

) = min
𝑔∈𝐻

𝐽
ℎ
(𝑔) , (31)

where 𝑢
ℎ𝑔

is the associated state system solution of the
problem (𝑆

ℎ
) which was described for the discrete elliptic

variational inequality (10) for a given control 𝑔 ∈ 𝐻.

Theorem 5. Given the control 𝑔 ∈ 𝐻, one has

(a)

lim
‖𝑔‖
𝐻
→∞

𝐽
ℎ
(𝑔) = ∞; (32)

(b) 𝐽
ℎ
(𝑔) ≥ (𝑀/2)‖𝑔‖

2

𝐻
− 𝐶‖𝑔‖

𝐻
for some constant 𝐶

independent of ℎ;
(c) the functional 𝐽

ℎ
is a lower weakly semicontinuous

application in𝐻;
(d) there exists a solution of the discrete optimal control

problem (31) for all ℎ > 0.

Proof. (a) From the definition of 𝐽
ℎ
(𝑔) we obtain (a) and (b).

(c) Let 𝑔
𝑛
⇀ 𝑔 in 𝐻 weak; then by using the equality

‖𝑔
𝑛
‖
2

𝐻
= ‖𝑔
𝑛
− 𝑔‖
2

𝐻
− ‖𝑔‖
2

𝐻
+ 2(𝑔
𝑛
, 𝑔)
𝐻
we obtain that ‖𝑔‖

𝐻
≤

lim inf
𝑛→∞

‖𝑔
𝑛
‖
2

𝐻
. Therefore, we have

lim inf
𝑛→∞

𝐽
ℎ
(𝑔
𝑛
) ≥

1

2


𝑢
ℎ𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻
= 𝐽
ℎ
(𝑔) . (33)

(d) It follows from [4].

Lemma 6. If the continuous state system has the regularity
𝑢
𝑔
∈ 𝐻
𝑟

(Ω) (1 < 𝑟 ≤ 2) then one has the following estimations
∀𝑔 ∈ 𝐻:

(a)


𝑢
ℎ𝑔
− 𝑢
𝑔

𝑉
≤ 𝐶ℎ
(𝑟−1)/2

, (34)

(b)

𝐽ℎ (𝑔) − 𝐽 (𝑔)
 ≤ 𝐶ℎ

(𝑟−1)/2

, (35)

where 𝐶’s are constants independent of ℎ.

Proof. (a) As 𝑢
𝑔
∈ 𝐾, we have that Π

ℎ
(𝑢
𝑔
) ∈ 𝐾

ℎ
⊂ 𝐾. If we

consider V
ℎ
= Π
ℎ
(𝑢
𝑔
) in (10), by using the inequalities (29),

we obtain

𝜆

𝑢
ℎ𝑔
− 𝑢
𝑔



2

𝑉

≤ 𝑎 (𝑢
ℎ𝑔
− 𝑢
𝑔
, 𝑢
ℎ𝑔
− 𝑢
𝑔
)

≤ 𝑎 (𝑢
ℎ𝑔
, Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)

− (𝑔,Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)

+ (𝑞, Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔
)
𝑄

≤ 𝐶

Π
ℎ
(𝑢
𝑔
) − 𝑢
𝑔

𝑉
≤ 𝐶


𝑢
𝑔

𝑟
ℎ
𝑟−1

≤ 𝐶ℎ
𝑟−1

,

(36)

and then (34) holds.
(b) From the definitions of 𝐽 and 𝐽

ℎ
, it results in

𝐽
ℎ
(𝑔) − 𝐽 (𝑔) =

1

2
(

𝑢
ℎ𝑔



2

𝐻

−

𝑢
𝑔



2

𝐻

)

=
1

2
[

𝑢
ℎ𝑔
− 𝑢
𝑔



2

𝐻

+ (𝑢
𝑔
, 𝑢
ℎ𝑔
− 𝑢
𝑔
)]

(37)

and therefore

𝐽ℎ (𝑔) − 𝐽 (𝑔)


≤ (
1

2


𝑢
ℎ𝑔
− 𝑢
𝑔

𝐻
+

𝑢
𝑔

𝐻
)

𝑢
ℎ𝑔
− 𝑢
𝑔

𝐻

≤ 𝐶ℎ
(𝑟−1)/2

.

(38)

Following the idea given in [2] we define an open
problem: given the controls 𝑔

1
, 𝑔
2
∈ 𝐻 and ∀𝜇 ∈ [0, 1],

∀ℎ > 0

0 ≤ 𝑢
ℎ4
(𝜇) ≤ 𝑢

ℎ3
(𝜇) in Ω, (39)

𝑢ℎ4 (𝜇)
𝐻 ≤

𝑢ℎ3 (𝜇)
𝐻 . (40)

Remark 7. We have that (39)⇒(40).

Remark 8. The equivalent inequality (39) for the continuous
optimal control problem (𝑃) is true; that is [2], for all 𝑔

1
, 𝑔
2
∈

𝐻, and ∀𝜇 ∈ [0, 1],

0 ≤ 𝑢
4
(𝜇) ≤ 𝑢

3
(𝜇) in Ω, (41)

where 𝑢
3
(𝜇) = 𝜇𝑢

𝑔
1

+ (1 − 𝜇)𝑢
𝑔
2

∈ 𝐾, 𝑢
𝑔
𝑖

(𝑖 = 1, 2) is the
unique solution of the elliptic variational inequality (3) when
we consider 𝑔

𝑖
instead of 𝑔 and 𝑢

4
(𝜇) is the unique solution of

the elliptic variational inequality (3) when we consider 𝑔
3
(𝜇)

instead of 𝑔.
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Remark 9. If (40) (or (39)) is true, then the functional 𝐽
ℎ
is

𝐻-elliptic and a strictly convex application because we have

𝜇𝐽
ℎ
(𝑔
1
) + (1 − 𝜇) 𝐽

ℎ
(𝑔
2
) − 𝐽
ℎ
(𝑔
3
(𝜇))

=
𝜇 (1 − 𝜇)

2
[

𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1



2

𝐻

+𝑀
𝑔2 − 𝑔1


2

𝐻
]

+
1

2
[
𝑢ℎ3


2

𝐻
−
𝑢ℎ4


2

𝐻
]

≥
𝜇 (1 − 𝜇)

2
[

𝑢
ℎ𝑔
2

− 𝑢
ℎ𝑔
1



2

𝐻

+𝑀
𝑔2 − 𝑔1


2

𝐻
] > 0

(42)

and therefore, the uniqueness for the discrete optimal control
problem (𝑃

ℎ
) holds in Theorem 5.

Now, we will show the convergence result for optimal
control problems governed by elliptic variational inequalities
in order to generalize the result for optimal control problems
governed by elliptic variational equalities [19]. We remark
that there exist a few numbers of papers for the numerical
analysis of optimal control problems governed by elliptic
variational inequalities, for example [20–22].

Theorem 10. Let 𝑢
𝑔
𝑜𝑝

∈ 𝐾 be the continuous state system
associated with the optimal control 𝑔

𝑜𝑝
∈ 𝐻 which is the

solution of the continuous distributed optimal control problem
(6). If, for each ℎ > 0, one chooses an optimal control 𝑔

𝑜𝑝
ℎ

∈ 𝐻

which is the solution of the discrete distributed optimal control
problem (31) and its corresponding discrete state system 𝑢

ℎ𝑔
𝑜𝑝
ℎ

∈

𝐾
ℎ
, one obtains that

𝑢
ℎ𝑔
𝑜𝑝
ℎ

→ 𝑢
𝑔
𝑜𝑝

𝑜𝑛 𝑉 𝑠𝑡𝑟𝑜𝑛𝑔,

𝑔
𝑜𝑝
ℎ

→ 𝑔
𝑜𝑝

𝑜𝑛 𝐻 𝑠𝑡𝑟𝑜𝑛𝑔 𝑤ℎ𝑒𝑛 ℎ → 0
+

.

(43)

Proof. Let ℎ > 0 and let 𝑔op
ℎ

be a solution of (31), and let
𝑢
ℎ𝑔op
ℎ

be its associated discrete optimal state system which is
the solution of the discrete elliptic variational inequality (10)
for each ℎ > 0. From (30) we have that for all 𝑔 ∈ 𝐻

𝐽
ℎ
(𝑔op

ℎ

) =
1

2


𝑢
ℎ𝑔op
ℎ



2

𝐻

+
𝑀

2


𝑔op
ℎ



2

𝐻

≤
1

2


𝑢
ℎ𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻
.

(44)

Then, if we consider 𝑔 = 0 and 𝑢
ℎ0

its corresponding
associated state system, it results in the following:

𝐽
ℎ
(𝑔op

ℎ

) =
1

2


𝑢
ℎ𝑔op
ℎ



2

𝐻

+
𝑀

2


𝑔op
ℎ



2

𝐻

≤
1

2

𝑢ℎ0

2

𝐻
. (45)

From Lemma 2 we have that ‖𝑢
ℎ0
‖
𝐻
≤ 𝐶 ∀ℎ; then we can

obtain

𝑢
ℎ𝑔op
ℎ

𝐻
≤ 𝐶 ∀ℎ > 0,


𝑔op
ℎ

𝐻
≤

1

√𝑀

𝑢ℎ0
𝐻 ≤

𝐶

√𝑀
∀ℎ > 0.

(46)

If we consider V
ℎ
= 𝑏 ∈ 𝐾

ℎ
in inequality (10) for 𝑔op

ℎ

, we
obtain

𝑎 (𝑢
ℎ𝑔op
ℎ

, 𝑏 − 𝑢
ℎ𝑔op
ℎ

) ≥ (𝑔op
ℎ

, 𝑏 − 𝑢
ℎ𝑔op
ℎ

)

− (𝑞, 𝑏 − 𝑢
ℎ𝑔op
ℎ

)
𝑄

;

(47)

therefore

𝑎 (𝑢
ℎ𝑔op
ℎ

− 𝑏, 𝑢
ℎ𝑔op
ℎ

− 𝑏)

≤ (𝑔op
ℎ

, 𝑢
ℎ𝑔op
ℎ

− 𝑏) − (𝑞, 𝑢
ℎ𝑔op
ℎ

− 𝑏)
𝑄

,

(48)

and from the coerciveness of the application 𝑎 we have that
‖𝑢
ℎ𝑔op
ℎ

− 𝑏‖
𝑉
≤ 𝐶 and in consequence ‖𝑢

ℎ𝑔op
ℎ

‖
𝑉
≤ 𝐶.

Now we can say that there exist 𝜂 ∈ 𝑉 and 𝑓 ∈ 𝐻 such
that 𝑢

ℎ𝑔op
ℎ

⇀ 𝜂 in 𝑉 weak (in𝐻 strong), and 𝑔op
ℎ

⇀ 𝑓 in𝐻
weak when ℎ → 0

+. Then, 𝜂/Γ
1
= 𝑏 and 𝜂 ≥ 0 in Ω; that is,

𝜂 ∈ 𝐾.
Letting V ∈ 𝐾, there exist V

ℎ
∈ 𝐾
ℎ
such that V

ℎ
→ V in

𝑉 strong when ℎ → 0
+. Then, if we consider the variational

elliptic inequality (10) for 𝑔 = 𝑔op
ℎ

we have

𝑎 (𝑢
ℎ𝑔op
ℎ

, V
ℎ
) ≥ 𝑎 (𝑢

ℎ𝑔op
ℎ

, 𝑢
ℎ𝑔op
ℎ

) + (𝑔op
ℎ

, V
ℎ
− 𝑢
ℎ𝑔op
ℎ

)

− (𝑞, V
ℎ
− 𝑢
ℎ𝑔op
ℎ

)
𝑄

.

(49)

Taking into account that the application 𝑎 is a lower weak
semicontinuous application in 𝑉 and by passing to the limit
when ℎ goes to zero in (49) we obtain that

𝑎 (𝜂, V − 𝜂) ≥ (𝑓, V − 𝜂) − (𝑞, V − 𝜂)
𝑄
, ∀V ∈ 𝐾 (50)

and by the uniqueness of the solution of the problem given by
the elliptic variational inequality (3), we deduce that 𝜂 = 𝑢

𝑓
.

Finally, the norm on 𝐻 is a lower semicontinuous appli-
cation in the weak topology; then we can prove that

𝐽 (𝑓) =
1

2


𝑢
𝑓



2

𝐻

+
𝑀

2

𝑓

2

𝐻
≤ lim inf
ℎ→0

+

𝐽
ℎ
(𝑔op

ℎ

)

≤ lim inf
ℎ→0

+

𝐽
ℎ
(𝑔) =

1

2
lim
ℎ→0

+


𝑢
ℎ𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻

=
1

2


𝑢
𝑔



2

𝐻

+
𝑀

2

𝑔

2

𝐻
= 𝐽 (𝑔) , ∀𝑔 ∈ 𝐻

(51)

and because of the uniqueness of the optimal problem (6), it
results in 𝑓 = 𝑔op and 𝜂 = 𝑢𝑔op .

Now, if we consider V = 𝑢
ℎ𝑔op
ℎ

∈ 𝐾
ℎ
⊂ 𝐾 in the elliptic

variational inequality (3) for the control 𝑔op and we define
𝑧
ℎ
= 𝑢
ℎ𝑔op
ℎ

− 𝑢
𝑔op

, we have that

𝑎 (𝑧
ℎ
, 𝑧
ℎ
) ≤ 𝑎 (𝑢

ℎ𝑔op
ℎ

, 𝑢
ℎ𝑔op
ℎ

) − 𝑎 (𝑢
ℎ𝑔op
ℎ

, 𝑢
𝑔op
)

− (𝑔op, 𝑢ℎ𝑔op
ℎ

− 𝑢
𝑔op
)

+ (𝑞, 𝑢
ℎ𝑔op
ℎ

− 𝑢
𝑔op
)
𝑄

,

(52)
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and by considering V = Π
ℎ
(𝑢
𝑔op
) ∈ 𝐾

ℎ
for 𝑔 = 𝑔op

ℎ

in
inequality (10) we obtain

𝑎 (𝑢
ℎ𝑔op
ℎ

, 𝑢
ℎ𝑔op
ℎ

) ≤ − (𝑔op
ℎ

, Π
ℎ
(𝑢
𝑔op
) − 𝑢
ℎ𝑔op
ℎ

)

+ (𝑞, Π
ℎ
(𝑢
𝑔op
) − 𝑢
ℎ𝑔op
ℎ

)
𝑄

+ 𝑎 (𝑢
ℎ𝑔op
ℎ

, Π
ℎ
(𝑢
𝑔op
))

(53)

and then by the coerciveness of 𝑎 we get

𝜆
𝑧ℎ

2

𝑉
≤ (𝑞, Π

ℎ
(𝑢
𝑔op
) − 𝑢
𝑔op
)
𝑄

+ 𝑎 (𝑢
ℎ𝑔op
ℎ

, Π
ℎ
(𝑢
𝑔op
) − 𝑢
𝑔op
)

+ (𝑔op
ℎ

− 𝑔op, 𝑢ℎ𝑔op
ℎ

− 𝑢
𝑔op
)

− (𝑔op, Πℎ (𝑢𝑔op) − 𝑢𝑔op) .

(54)

When we pass to the limit as ℎ → 0 in (54) and by using
the strong convergence of 𝑢

ℎ𝑔op
ℎ

to 𝑢
𝑔op

on 𝐻 and the weak
convergence of 𝑔op

ℎ

to 𝑔op on𝐻, we have

lim
ℎ→0

+


𝑢
𝑔op
− 𝑢
ℎ𝑔op
ℎ

𝑉
= 0. (55)

The strong convergence of the optimal controls𝑔op
ℎ

to𝑔op
is obtained by usingTheorem 5 and 𝑔op

ℎ

⇀ 𝑔op weakly on𝐻;
that is,

𝐽 (𝑔op) =
1

2


𝑢
𝑔op



2

𝐻

+
𝑀

2


𝑔op


2

𝐻

≤ lim inf
ℎ→0

+

𝐽
ℎ
(𝑔op

ℎ

)

≤ lim inf
ℎ→0

+

𝐽
ℎ
(𝑔op)

= lim inf
ℎ→0

+

1

2


𝑢
𝑔op



2

𝐻

+
𝑀

2


𝑔op


2

𝐻

= 𝐽 (𝑔op) ;

(56)

then lim
ℎ→0

‖𝑔op
ℎ

‖
𝐻

= ‖𝑔op‖𝐻 and therefore
lim
ℎ→0

+‖𝑔op
ℎ

− 𝑔op‖𝐻 = 0.

4. Conclusions

Wehave proved the convergence of a discrete optimal control
and its corresponding discrete state system governed by a dis-
crete elliptic variational inequality to the continuous optimal
control and its corresponding continuous state system which
is also governed by a continuous elliptic variational inequality
by using the finite element method with Lagrange’s triangles
of type 1.
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