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We consider a family with respect to a small parameter of nonlinear boundary-value problems as well as the corresponding spectral
problems in a domain perforated periodically along a part of the boundary. We prove the convergence of solution of the original
problems to the solution of the respective homogenized problem in this domain.

1. Introduction

The paper is devoted to study of convergence of nonlinear
boundary-value problems in a domain perforated along the
boundary. There exist a lot of literatures, where boundary-
value problems in perforated domains were studied. We refer
to works [1–33]. In these papers and monographs the authors
studied different kinds of perforation for linear as well as
for nonlinear differential operators. Usually it is considered a
family of problems depending on small parameter that char-
acterizes the size of perforation.Themain goal of the research
is to find a homogenized (limit) model which is close to orig-
inally considered problems posed in the perforated domain.
The general technique of homogenization method can be
found in [23, 24, 27, 28].

The present paper will deal with convergence of bound-
ary-value problems in perforated domains for nonlinear 𝑝-
Laplace operator. Some problems for nonlinear operators
were homogenized, for example, in [1, 20, 21, 30–33].We con-
sider a family of boundary-value problems in 𝑛-dimensional
domain, 𝑛 > 2, which is periodically perforated along the
boundary by small sets. It is assumed that the diameter of each
set and the distance between themhave the same order. In our
problemwe suppose that the Dirichlet condition holds on the
boundary of cavities, while the Naumann boundary condi-
tion is fulfilled on the boundary of the domain.We derive the
limit (homogenized) problem for the original problems when
the small parameter characterizing the size of perforation

tends to zero. Moreover, we establish the strong convergence
in 𝑊1,𝑝 of the solutions for the considered problems to the
corresponding solution of the limit problem. In addition we
have obtained an estimate of the solution in a neighborhood
of the eigenvalue of a corresponding spectral problem.

One of our goals is to prove the asymptotic behavior
for the eigenvalue problem for 𝑝-Laplace operator in our
perforated domain. Many authors considered spectral prob-
lems for 𝑝-Laplace operator; see, for example, [33–38]. These
papers contain the results on qualitative properties of the 𝑝-
Laplace spectral problems, convergence of eigenvalue prob-
lems, and some estimates for the difference between con-
sidered eigenvalues. The applications of our problem do not
require the knowledge about the full spectrumof eigenvalues.
Therefore we have proved the homogenization theorems only
for the first eigenelement of the spectral problem in perfo-
rated domain. More precisely, we have proved that the first
eigenelement of the spectral problems converges to the cor-
responding eigenelement of the spectral limit problem. An
analogous problem for linear elliptic operators for the two-
dimensional domain was considered in [15] and for dimen-
sion three in [10].

The crucial point in our analysis is the validity of the
Friedrichs inequality for functions in perforated domains.
We prove this nontrivial result which is of an independent
interest. Some papers devoted to this inequality in domains
with microinhomogeneous structure are [8–10, 18, 19].
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Figure 1: Structure of Ω
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2. Preliminaries and the Main Results

Let Ω ⊂ R𝑛−1 × {𝑥
𝑛
> 0}, 𝑛 > 2, be a domain with boundary

𝜕Ω = Γ. We assume that Γ is piece-wise smooth and consists
of the parts Γ

𝑖
, 𝑖 = 1, 2, 3, 4 : Γ = Γ

1
∪ Γ
2
∪ Γ
3
∪ Γ
4
, where Γ

4
=

[−1/2; 1/2]
𝑛−1

∩ {𝑥
𝑛
= 0}, Γ

2
, Γ
3
are orthogonal to {𝑥

𝑛
= 0}

and belong to the planes {𝑥
1
= −1/2} and {𝑥

1
= 1/2} corre-

spondingly, and Γ \ Γ
4
is a smooth surface. In the sequel 𝜀 =

1/(2N + 1) is a small parameter,N ∈ N,N ≫ 1.
Consider the set 𝐵 ⊂ R𝑛 belonging to the ball

𝐾 = {𝜉 :

𝑛−1

∑

𝑖=1

𝜉
2

𝑖
+ (𝜉
𝑛
−
1

2
)

2

< 𝑎
2
} , 0 < 𝑎 <

1

2
(1)

and having a smooth boundary. If one multiplies each coor-
dinate of 𝐵 with parameter 𝜀 and does integer translations of
this set along Γ

4
, we obtain the set denoted by𝐵

𝜀
. Let Γ

𝜀
= 𝜕𝐵
𝜀
.

Define the perforated domainΩ
𝜀
asΩ\𝐵

𝜀
. See the illustration

for cut of Ω
𝜀
on Figure 1.

Denote by𝑊1,𝑝(Ω
𝜀
, Γ
𝜀
) a set of functions from𝑊

1,𝑝
(Ω
𝜀
)

with zero trace on Γ
𝜀
. Analogously, by𝑊1,𝑝(Ω, Γ

4
)we define a

set of functions from𝑊
1,𝑝
(Ω) with zero trace on Γ

4
. We also

consider the space 𝐶∞
0
(Ω, Γ
4
), which is the set of functions

from 𝐶
∞
(Ω), vanishing in the neighborhood of Γ

4
. Analo-

gously,𝐶∞
0
(Ω
𝜀
, Γ
𝜀
) denotes the set of functions from𝐶

∞
(Ω
𝜀
),

vanishing in a neighborhood of Γ
𝜀
.

Remark 1. One can extend the functions 𝑢
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
)

into 𝐵
𝜀
by zero. For the extended function we keep the same

notation. It is true that 𝑢
𝜀
belongs to𝑊1,𝑝(Ω); see [24].

Definition 2. For 2 ≤ 𝑝 < 𝑛 define the operator

Δ𝑢
𝑝
(𝑥) ≡

𝑛

∑

𝑗=1

𝜕

𝜕𝑥
𝑗

(|∇𝑢 (𝑥)|
𝑝−2 𝜕𝑢 (𝑥)

𝜕𝑥
𝑗

) . (2)

We consider the following spectral problem:

−Δ
𝑝
𝑢
𝜀
(𝑥) = 𝜆

𝜀

𝑢𝜀

𝑝−2

𝑢
𝜀

in Ω
𝜀
,

𝑢
𝜀
= 0 on Γ

𝜀
,

𝜕𝑢
𝜀

𝜕
𝑝
]
≡ |∇𝑢|

𝑝−2
(∇𝑢, ]) = 0 on 𝜕Ω,

(3)

where ] is the unit outward normal vector to the boundary of
Ω.

Definition 3. One says that 𝜆
𝜀
is an eigenfunction to problem

(3) if there exists 𝑢
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
)\{0}, satisfying the integral

identity

∫
Ω
𝜀

𝑛

∑

𝑗=1

∇𝑢𝜀 (𝑥)

𝑝−2 𝜕𝑢𝜀 (𝑥)

𝜕𝑥
𝑗

𝜕𝜑
𝜀
(𝑥)

𝜕𝑥
𝑗

𝑑𝑥

= 𝜆
𝜀
∫
Ω
𝜀

𝑢𝜀

𝑝−2

𝑢
𝜀
𝜑
𝜀
𝑑𝑥

(4)

for every 𝜑
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
).The couple (𝑢

𝜀
, 𝜆
𝜀
) is called the

solution to (3).

We will show that the problem

−Δ
𝑝
𝑢
0
(𝑥) = 𝜆

0

𝑢0

𝑝−2

𝑢
0

in Ω,

𝑢
0
= 0 on Γ

4
,

𝜕𝑢
0

𝜕
𝑝
]
≡
∇𝑢0


𝑝−2 𝜕𝑢0

𝜕]
= 0 on 𝜕Ω \ Γ

4

(5)

is homogenized (the limit one) for (3).
As usual, we understand the solution to this boundary-

value problem in the weak sense, that is, iff 𝑢
0
∈ 𝑊
1,𝑝
(Ω, Γ
4
) \

{0} satisfies

∫
Ω

𝑛

∑

𝑗=1

∇𝑢0 (𝑥)

𝑝−2 𝜕𝑢0 (𝑥)

𝜕𝑥
𝑗

𝜕𝜑 (𝑥)

𝜕𝑥
𝑗

𝑑𝑥

= 𝜆
0
∫
Ω

𝑢0

𝑝−2

𝑢
0
𝜑𝑑𝑥

(6)

for every 𝜑 ∈ 𝑊1,𝑝(Ω, Γ
4
).

Moreover, we prove the following results.

Theorem 4. Assume that 𝐹 ∈ 𝑊−1,𝑞(Ω), 1/𝑝 + 1/𝑞 = 1, 2 ≤
𝑝 < ∞, 𝑞 > 1, and 𝐾 is an arbitrary compact set belonging
to the complex plane C; 𝐾 does not contain the eigenvalues of
problem (5). Then the following statements hold:

(1) There exists a number 𝜀
0
> 0, such that the unique

solution to the problem

−Δ
𝑝
𝑈
𝜀
(𝑥) = 𝜆

𝑈𝜀

𝑝−2

𝑈
𝜀
+ 𝐹 in Ω

𝜀
,

𝑈
𝜀
= 0 on Γ

𝜀
,

𝜕𝑈
𝜀

𝜕
𝑝
]
≡
∇𝑈𝜀


𝑝−2

(∇𝑈
𝜀
, ]) = 0 on 𝜕Ω

(7)

does exist for all 𝜀 < 𝜀
0
and for all 𝜆 ∈ 𝐾.Moreover, the

uniform (in 𝜀 and 𝜆) estimate
𝑈𝜀

𝑊1,𝑝 ≤ 𝐶 ‖𝐹‖𝐿𝑞 (8)

is valid, where 𝐶 does not depend on 𝑈
𝜀
and 𝐹.
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(2) It yields that
𝑈𝜀 − 𝑈0

𝑊1,𝑝 → 0 when 𝜀 → 0, (9)

where 𝑈
0
is the unique solution of the problem

−Δ
𝑝
𝑈
0
(𝑥) = 𝜆

𝑈0

𝑝−2

𝑈
0
+ 𝐹 in Ω,

𝑈
0
= 0 on Γ

4
,

𝜕𝑈
0

𝜕
𝑝
]
≡
∇𝑈0


𝑝−2 𝜕𝑈0

𝜕]
= 0 on 𝜕Ω \ Γ

4
.

(10)

Here the solutions to problems (7) and (10) are under-
stood in the weak sense, that is, iff 𝑈

𝛿
, 𝛿 = { 𝜀,

0
satisfies the

integral identity

∫
Ω

𝑛

∑

𝑗=1

∇𝑈𝛿 (𝑥)

𝑝−2 𝜕𝑈𝛿 (𝑥)

𝜕𝑥
𝑗

𝜕𝜑 (𝑥)

𝜕𝑥
𝑗

𝑑𝑥

= 𝜆∫
Ω

𝑈𝛿

𝑝−2

𝑈
𝛿
𝜑𝑑𝑥 + ∫

Ω

𝐹𝜑𝑑𝑥

(11)

for every 𝜑 ∈ 𝑊1,𝑝(Ω, Γ
4
).

Theorem 5. The spectrum of problems (3) and (5) is nonempty
closed set. Let 𝜆1

𝜀
, 𝜆
1

0
be the first eigenvalues of problems (3) and

(5), respectively. Then

𝜆
1

𝜀
→ 𝜆
1

0
as 𝜀 → 0. (12)

Moreover, if 𝑢
𝜀
, 𝑢
0
are corresponding eigenfunctions, normal-

ized in 𝐿
𝑝
, then up to a subsequence,

𝑢𝜀 − 𝑢0
𝑊1,𝑝 → 0. (13)

The proofs of analogous theorems for linear boundary-
value problems were given in [6, 12–15] for different types of
singular perturbations.The following lemma,which is proved
in Section 3.1, is necessary for our analysis.

Lemma 6. Let V
𝜀
be a sequence of functions from𝑊

1,𝑝
(Ω
𝜀
, Γ
𝜀
)

and assume that V
𝜀
⇀ V∗ weakly in 𝑊1,𝑝(Ω) when 𝜀 → 0.

Then V∗ ∈ 𝑊1,𝑝(Ω, Γ
4
).

For the questions on existence of solutions to the dis-
cussed problems we will refer to the following general result
(see [39]).

Theorem 7. Let 𝑉 be reflexive separable Banach space.
Assume that the operator 𝐴 : 𝑉 → 𝑉

 has the following
properties:

(i) 𝐴 is bounded and semicontinuous: ‖𝐴‖ < ∞, ∀𝑢,
V, 𝑤 ∈ 𝑉; the function 𝑠 → (𝐴(𝑢+𝑠V), 𝑤) is continuous
as a function mapping R into R.

(ii) 𝐴 is monotone: (𝐴(𝑢) − 𝐴(V), 𝑢 − V) ≥ 0 ∀𝑢, V ∈ 𝑉.
(iii) Consider

(𝐴 (𝑢) , 𝑢)

‖𝑢‖
→ +∞ as ‖𝑢‖ → +∞. (14)

Then for any 𝑓 ∈ 𝑉 there exists 𝑢 ∈ 𝑉 such that 𝐴(𝑢) = 𝑓.
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Figure 2: Parts of Ω
𝜀
.

3. The Friedrichs Inequality

In our analysis we will need the Friedrichs inequality for
functions V

𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
).We prove this result.

Theorem 8. The inequality

∫
Ω
𝜀

V𝜀

𝑝

𝑑𝑥 ≤ 𝐾∫
Ω
𝜀

∇V𝜀

𝑝

𝑑𝑥 (15)

holds for any functions V
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
), where the constant

𝐾 does not depend on 𝜀.

Proof. To demonstrate the technique of proving and avoiding
the heavy 𝑛-dimensional notations we assume that 𝑛 = 2.The
case of arbitrary 𝑛 > 2 can be done by repeating all lines of
the present proof.

Let the length of projection of𝐵 on axis 𝜉
1
equal 𝑏. Denote

𝐵
𝑖

𝜀
= {𝑥 ∈ Ω : 𝜀

−1
(𝑥
1
− 𝑖, 𝑥
2
) ∈ 𝐵} , 𝑖 ∈ Z. (16)

Represent the domain Ω
𝜀
as follows:

Ω
𝜀
=

N

⋃

𝑖=−N

(Π
𝑖+

1,𝜀
∪ Π
𝑖−

1,𝜀
) ∪

N

⋃

𝑖=−N−1

Π
𝑖

2,𝜀
∪ 𝑅
𝜀
, (17)

where Π𝑖+
1,𝜀

is the domain (a part of the vertical strip) of the
length 𝑏𝜀, bounded from below by the upper part of the
boundary𝐵𝑖

𝜀
and bounded from above by a part of the bound-

ary Γ
1
; the domain Π𝑖−

1,𝜀
is the strip of the length 𝑏𝜀, bounded

from above by the lower part of 𝐵𝑖
𝜀
and bounded from below

by the line 𝑥
2
= 0; Π𝑖

2,𝜀
, 𝑖 = −N, . . . ,N − 1, is the strip of

the length (1 − 𝑏)𝜀, bounded from below by the line 𝑥
2
= 0

and bounded from above by a part of Γ
1
and having the

common vertical bounds with Π𝑖+
1,𝜀
, Π
𝑖+1+

1,𝜀
(see Figure 2); the

domains Π−N−1
2,𝜀

and ΠN
2,𝜀

are vertical strips bounded from
below by 𝑥

2
= 0 and bounded from above by a part of Γ

1
and

having the common vertical bounds with Π−N+
1,𝜀

and ΠN+
1,𝜀

,
correspondingly.The sumof widths forΠ−N−1

2,𝜀
andΠN

2,𝜀
is (1−

𝑏)𝜀. Finally, 𝑅
𝜀
is the remaining part of Ω

𝜀
having the bound

belonging to Γ
1
.

Let 𝜔 > 𝜀. Define by Π𝜔,𝑖+
1,𝜀

a domain Π𝑖+
1,𝜀
⋂{𝑥
2
< 𝜔} (see

Figure 2). Moreover, let Γ𝜔,𝑖
1,𝜀

be the segment of the line 𝑥
𝑛
= 𝜔,
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Figure 3: Tangential lines.

which is upper bound for Π𝜔,𝑖+
1,𝜀
. Analogously we define the

sets Γ𝜔,𝑖
2,𝜀

and Π𝜔,𝑖
2,𝜀
. Without loss of generality we can assume

that V
𝜀
is real-valued function.Denote by𝐶1

0
(Ω
𝜀
, Γ
𝜀
) functions

from 𝐶
1
(Ω
𝜀
), vanishing in the neighborhood of Γ

𝜀
. Assume

first that V
𝜀
∈ 𝐶
1

0
(Ω
𝜀
, Γ
𝜀
). Let (𝑥

1
, 𝜔) ∈ Π

𝑖+

1,𝜀
, and point (𝑥

1
, 𝑥
2
)

belongs to the bottom of Π𝑖+
1,𝜀
. Since V

𝜀
(𝑥
1
, 𝑥
2
) = 0, then the

Newton-Leibnitz formula gives

V
𝜀
(𝑥
1
, 𝜔) = ∫

𝜔

𝑥
2

𝜕V
𝜀

𝜕𝑥
2

𝑑𝑥
2
. (18)

Taking the power 𝑝 on both sides of that equality and using
the Hölder inequality, we have

V𝜀 (𝑥1, 𝜔)

𝑝

=



∫

𝜔

𝑥
2

𝜕V
𝜀

𝜕𝑥
2

𝑑𝑥
2



𝑝

≤ 𝜔
𝑝/𝑞
∫

𝜔

𝑥
2



𝜕V
𝜀

𝜕𝑥
2



𝑝

𝑑𝑥
2

≤ 𝜔
𝑝/𝑞
∫

𝜔

𝑥
2

∇V𝜀

𝑝

𝑑𝑥
2
.

(19)

Integrate both sides of that inequality over Γ𝜔,𝑖
1,𝜀

with respect
to 𝑥
1
and assume that the function V

𝜀
is extended by zero into

𝐵
𝑖

𝜀
∪ Π
𝑖−

1,𝜀
. One gets

∫
Γ
𝜔,𝑖

1,𝜀

V𝜀 (𝑥1, 𝜔)

𝑝

𝑑𝑥
1
≤ 𝜔
𝑝/𝑞
∫
Π
𝜔,𝑖+

1,𝜀

∇V𝜀

𝑝

𝑑𝑥. (20)

Consider now the rectangle Π𝑖
2,𝜀
, 𝑖 = −N, . . . ,N, which

touches 𝐵𝑖
𝜀
from the right. Draw the tangential lines to 𝐵𝑖

𝜀

from both ends of segment Γ𝜔,𝑖
2,𝜀

(see Figure 3).
It is easy to see that the angle 𝛼 between the tangential

lines and 𝑂𝑥
1
belongs to (𝛼

0
, 𝜋/2), where 𝛼

0
> 0 does not

depend on 𝜀 and 𝜔.We remember that our assumption was
𝜔 > 𝜀. This follows from the fact that the diameter of the set
and the distance between themare of the sameorder. Connect
all points of Γ𝜔,𝑖

2,𝜀
with boundary of 𝐵𝑖

𝜀
such that the intersec-

tion of these lines coincides with the intersection point of
tangents. Thus, we have a beam of lines with directors 𝑙(𝑥).
The angle between each line and 𝑂𝑥

1
belongs to (𝛼

0
, 𝜋/2).

Let (𝑥
1
, 𝜔) ∈ Γ

𝜔,𝑖

2,𝜀
, and (𝑥

1
, 𝑥
2
) ∈ 𝜕𝐵

𝑖

𝜀
∩ 𝑙(𝑥
1
, 𝜔). Since V

𝜀
(𝑥
1
,

𝑥
2
) = 0, then

V
𝜀
(𝑥
1
, 𝜔) = ∫

(𝑥
1
,𝜔)

(𝑥
1
,𝑥
2
)

𝜕V
𝜀

𝜕𝑙
𝑑𝑙. (21)

Analogously to (19), taking the power 𝑝 on both sides of that
formula and using the Hölder inequality, one obtains

V𝜀 (𝑥1, 𝜔)

𝑝

≤



𝜔

sin𝛼
0



𝑝/𝑞

∫

(𝑥
1
,𝜔)

(𝑥
1
,𝑥
2
)



𝜕V
𝜀

𝜕𝑙



𝑝

𝑑𝑙

≤



𝜔

sin𝛼
0



𝑝/𝑞

∫

(𝑥
1
,𝜔)

(𝑥
1
,𝑥
2
)

∇V𝜀

𝑝

𝑑𝑙.

(22)

Integrating both sides of that inequality over Γ𝜔,𝑖
2,𝜀

with respect
to 𝑥
1
and replacing the right-hand side by the greater integral,

we get

∫
Γ
𝜔,𝑖

2,𝜀

V𝜀 (𝑥1, 𝜔)

𝑝

𝑑𝑥
1

≤



𝜔

sin𝛼
0



𝑝/𝑞

∫
Π
𝜔,𝑖

2,𝜀
∪Π
𝜔,𝑖+

1,𝜀
∪Π
𝜔,𝑖−

1,𝜀

∇V𝜀

𝑝

𝑑𝑥,

𝑖 = −N, . . . ,N.

(23)

It remains to estimate the integral over Γ𝜔,−N−1
2,𝜀

. We use
the same technique as for Γ𝜔,𝑖

2,𝜀
, 𝑖 = −N, . . . ,N. In this case one

needs to consider the domain𝐵−N
𝜀

which is borderedwith the
strip Π−N−1

2,𝜀
from the right. Analogously, we get

∫
Γ
𝜔,−N−1
2,𝜀

V𝜀 (𝑥1, 𝜔)

𝑝

𝑑𝑥
1

≤ 𝐶𝜔
𝑝/𝑞
∫
Π
𝜔,−N−1
2,𝜀
∪Π
𝜔,−N+
1,𝜀
∪Π
𝜔,−N−
1,𝜀

∇V𝜀

𝑝

𝑑𝑥.

(24)

Let Γ𝜔
4
= Ω ∩ {𝑥

2
= 𝜔} be the segment connecting the

points (−1/2, 𝜔) and (1/2, 𝜔); it means that Γ𝜔
4
= ⋃
𝑖
Γ
𝜔,𝑖

1,𝜀
∪Γ
𝜔,𝑖

2,𝜀
.

Summing up inequalities (20), (23), and (24), one gets

∫
Γ
𝜔

4

V𝜀 (𝑥)

𝑝

𝑑𝑥
1
≤ 𝐶
1
𝜔
𝑝/𝑞
∫
Ω
𝜀

∇V𝜀

𝑝

𝑑𝑥. (25)

Finally, integrating (25) with respect to 𝜔, we obtain that

∫
Ω
𝜀

V𝜀 (𝑥)

𝑝

𝑑𝑥
1
𝑑𝑥
2
≤ 𝐾∫

Ω
𝜀

∇V𝜀

𝑝

𝑑𝑥. (26)

Approximating the functions from 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
) by

smooth functions, we conclude that inequality (26) is valid
for V
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
).The proof is complete.

Remark 9. (1) Extending functions from𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
) by zero

into⋃
𝑖
𝐵
𝑖

𝜀
we obtain the Friedrichs inequality inΩ:

V𝜀

𝑝

𝐿
𝑝
(Ω)

≤ 𝐾
∇V𝜀


𝑝

𝐿
𝑝
(Ω)

for V
𝜀
∈ 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
) . (27)
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(2) The validity of Friedrichs inequality means that one can
introduce in𝑊1,𝑝(Ω

𝜀
, Γ
𝜀
) the norm ‖V‖

𝑊
1,𝑝 ≡ ‖∇V‖

𝐿
𝑝

which
is equivalent to

‖V‖
𝑊
1,𝑝 ≡ ‖V‖𝐿

𝑝

+ ‖∇V‖𝐿
𝑝

. (28)

3.1. Proof of Lemma 6

Proof. First we point out that with the same method of proof
inequality (25) is valid also for the case of an arbitrary 𝑛 > 2,
where

Γ
𝜔

4
= Ω ∩ {𝑥

𝑛
= 𝜔} . (29)

Approximating the functions from 𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
) by smooth

functions, we conclude that inequality (25) is valid for V
𝜀
∈

𝑊
1,𝑝
(Ω
𝜀
, Γ
𝜀
). Using (25) and keeping in mind the uniform

boundedness of the sequence V
𝜀
, we obtain that

∫
Γ
𝜔

4

V𝜀 (𝑥1, . . . , 𝑥𝑛−1, 𝜔)

𝑝

𝑑𝑥 ≤ 𝜔
𝑝/𝑞
𝐶. (30)

Now, we can pass to the limit in (30) when 𝜀 → 0 and
find that

∫
Γ
𝜔

4

V
∗
𝑝

𝑑𝑥 ≤ 𝜔
𝑝/𝑞
𝐶
3
. (31)

Due to the fact that 𝜔 is an arbitrary small positive number
and V∗ ∈ 𝑊1,𝑝(Ω), it follows from (31) that V∗ = 0 on Γ

4
.The

proof is complete.

4. Proof of Theorem 4

For the proof we need the following lemma.

Lemma 10. Let 𝑄 be an arbitrary compact set in the complex
plane and 𝜆 ∈ 𝑄. Suppose that the estimate

𝑈𝜀
𝑝 ≤ 𝐶 ‖𝐹‖𝑞 (32)

holds uniformly in 𝜀 and 𝜆 for any solution𝑈
𝜀
of the boundary-

value problem (7), which is normalized in 𝐿
𝑝
(Ω). Then

estimate (32) holds also for any solution of problem (7) when
𝜆 ∈ 𝑄.

Proof. Let us remember first that we denote by ‖ ⋅ ‖
𝑝
the norm

in 𝐿
𝑝
space. If ‖𝑈

𝜀
‖
𝑝

̸= 1, then by setting 𝑉
𝜀
= 𝑈
𝜀
/‖𝑈
𝜀
‖
𝑝
, we

obtain that
𝑉𝜀
𝑝 = 1 (33)

and the function 𝑉
𝜀
satisfies the identity

∫
Ω

𝑛

∑

𝑗=1

∇𝑉𝜀 (𝑥)

𝑝−2 𝜕𝑉𝜀 (𝑥)

𝜕𝑥
𝑗

𝜕𝜑 (𝑥)

𝜕𝑥
𝑗

𝑑𝑥

= 𝜆∫
Ω

𝑉𝜀

𝑝−2

𝑉
𝜀
𝜑𝑑𝑥 + ∫

Ω

𝐹
𝜀
𝜑𝑑𝑥,

(34)

where

𝐹
𝜀
=

𝐹

𝑈𝜀

𝑝−1

𝑝

. (35)

Hence, due to the assumptions we see that the estimate

𝑉𝜀
𝑝 ≤ 𝐶

𝐹𝜀
𝑞 (36)

holds for 𝑉
𝜀
. Multiplying the last inequality by ‖𝑈

𝜀
‖
𝑝
and

using (33) and (35), we obtain the estimate (32) (probablywith
a different constant) for any 𝑈

𝜀
.The proof is complete.

4.1. Proof of Part 1

Step 1. The existence of the solution to problem (7) can
be proved with help of Theorem 7. Indeed, we take 𝑉 =

𝑊
1,𝑝
(Ω, Γ
𝜀
). Introduce the operator 𝐴(𝑢) = −∑

𝑖
(𝜕/𝜕𝑥

𝑖
)(|𝜕𝑢/

𝜕𝑥
𝑖
|
𝑝−2
(𝜕𝑢/𝜕𝑥

𝑖
)). For 𝑢, V ∈ 𝑊1,𝑝(Ω, Γ

𝜀
) we define

(𝐴 (𝑢) , V) = −∫
Ω

∑

𝑖

𝜕

𝜕𝑥
𝑖

(



𝜕𝑢

𝜕𝑥
𝑖



𝑝−2
𝜕𝑢

𝜕𝑥
𝑖

) V 𝑑𝑥

= ∫
Ω

∑

𝑖



𝜕𝑢

𝜕𝑥
𝑖



𝑝−2
𝜕𝑢

𝜕𝑥
𝑖

𝜕V
𝜕𝑥
𝑖

𝑑𝑥.

(37)

Moreover, for 𝑢 ∈ 𝑊1,𝑝(Ω, Γ
𝜀
) it holds that 𝜆|𝑢|𝑝−1𝑢 ∈ 𝐿

𝑞
(Ω,

Γ
𝜀
), and for 𝐹 ∈ 𝐿

𝑞
(Ω) we can introduce the functional on

𝑊
1,𝑝
(Ω, Γ
𝜀
):

(𝜆 |𝑢|
𝑝−1

𝑢 + 𝐹, V) = ∫
Ω

𝜆 |𝑢|
𝑝−1

𝑢V 𝑑𝑥 + ∫
Ω

𝐹V 𝑑𝑥. (38)

It is clear that 𝑈
𝜀
is the solution to (7) iff (𝐴(𝑈

𝜀
), V) =

(𝜆|𝑈
𝜀
|
𝑝−1
𝑈
𝜀
+ 𝐹, V) for any V ∈ 𝑊1,𝑝(Ω, Γ

𝜀
). Let us verify the

properties of operator 𝐴.We take 𝑢 ∈ 𝑊1,𝑝 with ‖𝑢‖
𝑊
1,𝑝 = 1.

Then

‖𝐴 (𝑢)‖𝑊−1,𝑞 = (𝐴 (𝑢) , 𝑢) = ‖∇𝑢‖
𝑝

𝐿
𝑝

≤ 𝐶 ‖𝑢‖
𝑝

𝑊
1,𝑝
≤ 𝐶. (39)

One can check the semicontinuity and monotonicity of
operator 𝐴 either directly or by using the following general
result (see [39]).

Proposition 11. If convex functional V → 𝐽(V) is differen-
tiable in Gato sense, that is, there exists such continuous linear
mapping V → 𝐽


(𝑢) ⋅ V of space 𝑉 onto R such that

lim
𝑠→0

1

𝑠
(𝐽 (𝑢 + 𝑠V) − 𝐽 (𝑢)) = 𝐽 ⋅ V, (40)

then the mapping 𝑢 → 𝐽

(𝑢) is monotone and semicontinu-

ous.

Let us define the functional

𝐽 (V) =
1

𝑝

2

∑

𝑖=1

∫
Ω



𝜕V
𝜕𝑥
𝑖



𝑝

𝑑𝑥 (41)
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on the space 𝑉 = 𝑊
1,𝑝
(Ω, Γ
𝜀
). It is easy to check that 𝐽 is

convex and differentiable in Gato sense and 𝐽(𝑢) = 𝐴(𝑢).

Hence, 𝐴 is semicontinuous and monotone operator. Finally,
taking into account Remark 9 we calculate that

(𝐴 (𝑢) , 𝑢)

‖𝑢‖
=

‖∇𝑢‖
𝑝

𝐿
𝑝

‖𝑢‖𝑊1,𝑝
= 𝐶 ‖𝑢‖

𝑝−1

𝑊
1,𝑝
→ +∞

as ‖𝑢‖𝑊1,𝑝 → +∞.

(42)

Therefore byTheorem 7 for any 𝐹 ∈ 𝐿
𝑞
there exists a function

𝑈
𝜀
satisfying 𝐴(𝑈

𝜀
) = 𝜆|𝑈

𝜀
|
𝑝−2

+ 𝐹.

Step 2. Let us derive now estimate (8). Substitute 𝜑with𝑈
𝜀
in

(11). Then it follows that

∫
Ω

∇𝑈𝜀 (𝑥)

𝑝

𝑑𝑥 = 𝜆∫
Ω

𝑈𝜀

𝑝

𝑑𝑥 + ∫
Ω

𝐹𝑈
𝜀
𝑑𝑥,

𝑈𝜀

𝑝

𝑊
1,𝑝
= (𝜆 + 1) ∫

Ω

𝑈𝜀

𝑝

𝑑𝑥 + ∫
Ω

𝐹𝑈
𝜀
𝑑𝑥

≤ |𝜆 + 1|
𝑈𝜀


𝑝

𝐿
𝑝

+ ‖𝐹‖𝐿
𝑞

𝑈𝜀
𝐿
𝑝

≤ 𝐶
𝑈𝜀

𝑊1,𝑝 (
𝑈𝜀


𝑝−1

𝐿
𝑝

+ ‖𝐹‖𝐿
𝑝

) .

(43)

Hence,
𝑈𝜀


𝑝−1

𝑊
1,𝑝
≤ 𝐶(

𝑈𝜀

𝑝−1

𝐿
𝑝

+ ‖𝐹‖𝐿
𝑞

) . (44)

Assume now that estimate (8) does not hold, that is, that there
exists a sequence {𝜀

𝑘
} 𝜀
𝑘
→ 0when 𝑘 → ∞,𝐹

𝑘
∈ 𝐿
𝑞
(Ω) and

𝜆
𝑘
such that the inequality


𝑈
𝜀
𝑘

𝑊1,𝑝
> 𝑘

𝐹𝑘
𝑞 (45)

holds for the solutions to problem (7), where

𝜀 = 𝜀
𝑘
,

𝜆 = 𝜆
𝑘
,

𝐹 = 𝐹
𝑘
.

(46)

Due to Lemma 10 we may assume without loss of gener-
ality that the sequence {𝑈

𝜀
} is normalized in 𝐿

𝑝
(Ω), that is,

that

𝑈
𝜀
𝑘

𝑝
= 1. (47)

Then, by using (44) and (45), we obtain that

𝑈
𝜀
𝑘

𝑊1,𝑝
≤ 𝐶,

𝐹𝑘
𝑞 <

𝐶

𝑘
,

(48)

when 𝑘 → ∞.

Hence, there exists a subsequence {𝑘} of indexes {𝑘} and
𝑈
∗
∈ 𝑊
1,𝑝
(Ω), 𝜆∗ such that

𝜆
𝑘
 → 𝜆

∗
∈ 𝐾,

𝑈
𝜀
𝑘


⇀ 𝑈
∗ in 𝑊1,𝑝 (Ω) when 𝑘 → +∞.

(49)

By (47) and (49) we have that

𝑈
∗
̸= 0. (50)

Moreover, since the operator 𝐴 is bounded, it follows that
‖𝐴(𝑈
𝜀
𝑘


)‖
𝑊
−1,𝑞 ≤ 𝐶. Therefore we conclude the existence of

𝜒 ∈ 𝑊
−1,𝑞 such that 𝐴(𝑈

𝜀
𝑘


) ⇀ 𝜒 weakly in𝑊−1,𝑞. Suppose
that V is an arbitrary fixed function from𝐶

∞

0
(Ω, Γ
𝜀
). Then V ∈

𝑊
1,𝑝
(Ω, Γ
𝜀
) for all small 𝜀. Substitute in the integral identity

(11) V as a test function; 𝑈 = 𝑈
𝜀
𝑘


, 𝜆 = 𝜆
𝑘
 , and 𝐹 = 𝐹

𝑘
 ,

when 𝜀 = 𝜀
𝑘
 . We have that

∫
Ω

𝑛

∑

𝑗=1


∇𝑈
𝜀
𝑘


(𝑥)


𝑝−2
𝜕𝑈
𝜀
𝑘


(𝑥)

𝜕𝑥
𝑗

𝜕V (𝑥)
𝜕𝑥
𝑗

𝑑𝑥

= 𝜆
𝑘
 ∫
Ω


𝑈
𝜀
𝑘




𝑝−2

𝑈
𝜀
𝑘


V 𝑑𝑥 + ∫
Ω

𝐹
𝑘
V 𝑑𝑥.

(51)

Now we want to pass to the limit as 𝜀
𝑘
 → 0. Due to the

definition of 𝐴(⋅), we see that

(𝜒, V) = lim
𝜀
𝑘
 →0

(𝜆
𝑘



𝑈
𝜀
𝑘




𝑝−2

𝑈
𝜀
𝑘


+ 𝐹
𝑘
 , V) . (52)

From the other hand,

(𝐴 (𝑈
𝜀
𝑘


) , 𝑈
𝜀
𝑘


) → (𝜒,𝑈
∗
) ,

(

𝑈
𝜀
𝑘




𝑝−2

𝑈
𝜀
𝑘


, 𝑈
𝜀
𝑘


) → (
𝑈
∗
𝑝−2

𝑈
∗
, 𝑈
∗
) .

(53)

Let us show now that 𝜒 = 𝐴(𝑈
∗
). The monotonicity of

operator 𝐴 implies

(𝐴 (𝑈
𝜀
𝑘


) − 𝐴 (𝑈) , 𝑈
𝜀
𝑘


− 𝑈) ≥ 0

∀𝑈 ∈ 𝑊
1,𝑝
(Ω, Γ
4
) .

(54)

Passing to the limit, it yields that

(𝜒 − 𝐴 (𝑈) , 𝑈
∗
− 𝑈) ≥ 0 ∀𝑈 ∈ 𝑊

1,𝑝
(Ω) . (55)

If we take 𝑈 = 𝑈∗ − 𝑠𝑊, 𝑠 > 0,𝑊 ∈ 𝑊
1,𝑝
(Ω, Γ
4
), we get

𝑠 (𝜒 − 𝐴 (𝑈
∗
− 𝑠𝑊) ,𝑊) ≥ 0

⇒ (𝜒 − 𝐴 (𝑈
∗
− 𝑠𝑊) ,𝑊) ≥ 0.

(56)

Let 𝑠 → 0.Then

(𝜒 − 𝐴 (𝑈
∗
− 𝑠𝑊) ,𝑊) ≥ 0 ∀𝑈 ∈ 𝑊

1,𝑝
(Ω, Γ
4
) . (57)

This exactly means that 𝜒 = 𝐴(𝑈∗).Thus, passing to the limit
in the integral identity (51) as 𝜀

𝑘
 → 0, using (48), (49), and

Lemma 6, we obtain that

∫
Ω

∇𝑈
∗
(𝑥)

𝑝−2

∇𝑈
∗
(𝑥) ∇V (𝑥) 𝑑𝑥

= 𝜆
∗
∫
Ω

𝑈
∗
𝑝−2

𝑈
∗V 𝑑𝑥 for V ∈ 𝐶∞ (Ω, Γ

4
) .

(58)
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From the density of the embedding 𝐶∞(Ω, Γ
𝜀
) into𝑊1,𝑝(Ω,

Γ
4
) we can conclude that this inequality holds also for V ∈

𝑊
1,𝑝
(Ω, Γ
4
). It follows from Lemma 6 that 𝑈∗ ∈ 𝑊1,𝑝(Ω, Γ

4
).

Due to the fact that 𝑈∗ ̸= 0 and V is an arbitrary function
from𝑊

1,𝑝
(Ω, Γ
4
), it follows that 𝜆∗ ∈ 𝐾 is the eigenvalue of

the limit problem (5). But we assumed that𝐾 did not contain
the eigenvalues of the limit problem (5). This contradiction
proves estimate (8).

Step 3. Let us prove now the uniqueness of the solution of (7).
Let 𝑈1
𝜀
and 𝑈2

𝜀
be two different solutions. Then

𝑈
1

𝜀
− 𝑈
1

𝜀
= 0 on Γ

𝜀
,


∇𝑈
1

𝜀



𝑝−2 𝜕𝑈
1

𝜀

𝜕]
−

∇𝑈
2

𝜀



𝑝−2 𝜕𝑈
2

𝜀

𝜕]
= 0 on 𝜕Ω.

(59)

This together with equation

(𝐴 (𝑈
1

𝜀
) − 𝐴 (𝑈

2

𝜀
) , 𝑈
1

𝜀
− 𝑈
2

𝜀
) = 0

= ∑

𝑖

∫
Ω

(



𝜕𝑈
1

𝜀

𝜕𝑥
𝑖



𝑝−2

𝜕𝑈
1

𝜀

𝜕𝑥
𝑖

−



𝜕𝑈
2

𝜀

𝜕𝑥
𝑖



𝑝−2

𝜕𝑈
2

𝜀

𝜕𝑥
𝑖

)

⋅ (
𝜕𝑈
1

𝜀

𝜕𝑥
𝑖

−
𝜕𝑈
2

𝜀

𝜕𝑥
𝑖

)𝑑𝑥

(60)

implies that

𝜕𝑈
1

𝜀

𝜕𝑥
𝑖

=
𝜕𝑈
2

𝜀

𝜕𝑥
𝑖

⇒ 𝑈
1

𝜀
= 𝑈
2

𝜀
(61)

due to the boundary conditions. The uniqueness of the
solution to (10) can be proved identically.

4.2. Proof of Part 2. Let 𝜆 ∈ 𝐾 be an arbitrary fixed number
and assume that the sequence {𝜀

𝑘
} → 0 when 𝑘 → +∞.

Thinking analogously as in Part 1 of the proof, we have
existence of a subsequence {𝑘} and a function 𝑈∗ such that
𝑈
𝜀
𝑘


⇀ 𝑈
∗ in 𝑊1,𝑝(Ω, Γ

4
) (and strongly in 𝐿

𝑝
(Ω)) when

𝑘

→ +∞. In addition, 𝐴(𝑈

𝜀
𝑘


) ⇀ 𝜒 weakly in 𝑊−1,𝑞. It
can be shown exactly in the same way that 𝜒 = 𝐴(𝑈∗).

Now by using Lemma 6 we obtain that the limit function
𝑈
∗
∈ 𝑊
1,𝑝
(Ω, Γ
4
). Passing to the limit in the integral identity

(51) by means of the same reasoning as in the proof of Part 1
of the theorem, we get that

∫
Ω

∇𝑈
∗
(𝑥)

𝑝−2

∇𝑈
∗
(𝑥) ∇V (𝑥) 𝑑𝑥

= 𝜆∫
𝑈
∗
𝑝−2

𝑈
∗V 𝑑𝑥 + ∫

Ω

𝐹V 𝑑𝑥,
(62)

which coincides with the integral identity of problem (10).
Since the solution to problem (10) is unique we conclude that
𝑈
∗
= 𝑈
0
. In addition, from (49) we find that

𝑈
𝜀
𝑘

→ 𝑈
0
strongly in 𝐿

𝑝
(Ω)

and weakly in 𝑊1,𝑝 (Ω) ,

𝐴 (𝑈
𝜀
𝑘

) ⇀ 𝐴 (𝑈
0
) in 𝑊−1,𝑞 when 𝜀 → 0.

(63)

From the integral identities we have that

∫
Ω

(

∇𝑈
𝜀
𝑘



𝑝−2

∇𝑈
𝜀
𝑘

−
∇𝑈0


𝑝−2

∇𝑈
0
)

⋅ ∇ (𝑈
𝜀
𝑘

− 𝑈
0
) 𝑑𝑥

= 𝜆∫
Ω


𝑈
𝜀
𝑘



𝑝−2

𝑈
𝜀
𝑘

𝑈
0
𝑑𝑥

− ∫
Ω

∇𝑈0

𝑝−2

∇𝑈
0
(∇𝑈
𝜀
𝑘

− ∇𝑈
0
) 𝑑𝑥

+ ∫
Ω

𝐹 (𝑈
𝜀
𝑘

− 𝑈
0
) 𝑑𝑥.

(64)

Due to convergences (63) the right-hand side tends to zero in
the limit; therefore

lim
𝑘→∞

∫
Ω

(

∇𝑈
𝜀
𝑘



𝑝−2

∇𝑈
𝜀
𝑘

−
∇𝑈0


𝑝−2

∇𝑈
0
)

⋅ ∇ (𝑈
𝜀
𝑘

− 𝑈
0
) 𝑑𝑥 = 0.

(65)

By using the inequality

2
1−𝑝

|𝑎 − 𝑏|
𝑝
≤ (|𝑎|

𝑝−2
𝑎 − |𝑏|

𝑝−2
𝑏) ⋅ (𝑎 − 𝑏) ,

𝑝 ≥ 2,

(66)

with 𝑎 = ∇𝑈
𝜀
𝑘

and 𝑏 = ∇𝑈
0
we can show the strong conver-

gence of gradients:

lim
𝑘→∞

∫
Ω


∇𝑈
𝜀
𝑘

− ∇𝑈
0



𝑝

𝑑𝑥 = 0. (67)

Thus, we have proved that, up to a subsequence,
𝑈𝜀 − 𝑈0

𝑊1,𝑝 → 0. (68)

The proof is complete.

5. Proof of Theorem 5

Define by Σ the spectrum of problem

−Δ
𝑝
𝑢 (𝑥) = 𝜆 |𝑢|

𝑝−2
𝑢 in Ω,

𝑢 = 0 on 𝛾, where 𝛾 ⊂ 𝜕Ω,

𝜕𝑢

𝜕
𝑝
]
≡ |∇𝑢|

𝑝−2
(∇𝑢, ]) = 0 on 𝜕Ω \ 𝛾.

(69)

That is, Σ = {𝜆 ∈ R : the problem (69) has the nontrivial
weak solution}.

Theorem 12. The spectrum Σ is nonempty closed set, Σ ⊂

(0,∞).

Proof. To show that the spectrum is nonempty, one needs
to prove the existence of weak solution to problem (69). We
can make use of Theorem 7. We take 𝑉 = 𝑊

1,𝑝
(Ω, 𝛾) and
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𝐴(𝑢) = −∑
𝑖
(𝜕/𝜕𝑥

𝑖
)(|𝜕𝑢/𝜕𝑥

𝑖
|
𝑝−2
(𝜕𝑢/𝜕𝑥

𝑖
)). For 𝑢, V ∈ 𝑊1,𝑝(Ω,

𝛾) we define

(𝐴 (𝑢) , V) = −∫
Ω

∑

𝑖

𝜕

𝜕𝑥
𝑖

(



𝜕𝑢

𝜕𝑥
𝑖



𝑝−2
𝜕𝑢

𝜕𝑥
𝑖

) V 𝑑𝑥

= ∫
Ω

∑

𝑖



𝜕𝑢

𝜕𝑥
𝑖



𝑝−2
𝜕𝑢

𝜕𝑥
𝑖

𝜕V
𝜕𝑥
𝑖

𝑑𝑥.

(70)

One needs to verify the properties of operator 𝐴. First, the
boundedness is fulfilled since

(𝐴 (𝑢) , 𝑢) ≤ 𝐶 ‖𝑢‖
𝑝

𝑊
1,𝑝
. (71)

To check the semicontinuity, monotonicity of the operator,
and the property (𝐴(𝑢), 𝑢)/‖𝑢‖ → +∞ as ‖𝑢‖

𝑊
1,𝑝 → +∞

one can in the same way as in the proof of Theorem 4. Let us
omit the details.

As soon as we conclude that the conditions of Theorem 7
are fulfilled, we conclude the existence of the solution. Thus,
the spectrum is nonempty. Check now the positiveness of
Σ. Let 𝜆 ∈ Σ and the corresponding eigenfunction 𝑢 ∈

𝑊
1,𝑝
(Ω, 𝛾). It yields that

∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 = 𝜆∫

Ω

|𝑢|
𝑝
𝑑𝑥,

therefore 𝜆 =
∫
Ω
|∇𝑢|
𝑝
𝑑𝑥

∫
Ω
|𝑢|
𝑝
𝑑𝑥

> 0.

(72)

Let 𝜆
𝑘
∈ Σ correspond to eigenfunctions 𝑢

𝑘
and 𝜆

𝑘
→ 𝜆.

Without loss of generality one may assume that ‖𝑢
𝑘
‖
𝐿
𝑝

= 1.

Since {𝜆
𝑘
} is bounded, it follows from

∫
Ω

∇𝑢𝑘

𝑝

𝑑𝑥 = 𝜆
𝑘
∫
Ω

𝑢𝑘

𝑝

𝑑𝑥 (73)

that ‖𝑢
𝑘
‖
𝑊
1,𝑝
(Ω,𝛾)

≤ 𝐶 which implies the existence of 𝑢 ∈

𝑊
1,𝑝
(Ω, 𝛾) such that up to a subsequence

𝑢
𝑘
⇀ 𝑢 weakly in 𝑊1,𝑝 (Ω, 𝛾) ,

𝑢
𝑘
→ 𝑢 strongly in 𝐿

𝑝
(Ω) .

(74)

Moreover,
𝐴 (𝑢𝑘)

 = (𝐴 (𝑢𝑘) , 𝑢𝑘) ≤ 𝐶
𝑢𝑘

𝑝−1

𝐿
𝑝

, (75)

and therefore there exists 𝜒 such that

𝐴 (𝑢
𝑘
) ⇀ 𝜒 weakly in 𝑊−1,𝑞 (Ω, 𝛾) . (76)

These convergences imply that ‖𝑢‖
𝐿
𝑝

= 1 and

∫
Ω

𝜒∇V 𝑑𝑥 = 𝜆∫
Ω

|𝑢|
𝑝−2

𝑢V 𝑑𝑥 for V ∈ 𝑊1,𝑝 (Ω, 𝛾) . (77)

Thus it remains to show that

∫
Ω

𝜒∇V 𝑑𝑥 = ∫
Ω

|∇𝑢|
𝑝−2

∇𝑢∇V 𝑑𝑥. (78)

For every V ∈ 𝑊1,𝑝(Ω, 𝛾) it holds that

0 ≤ ∫
Ω

(
∇𝑢𝑘


𝑝−2

∇𝑢
𝑘
− |∇V|𝑝−2 ∇V, ∇𝑢𝑘 − ∇V) 𝑑𝑥

= ∫
Ω

𝜆
𝑘

𝑢𝑘

𝑝−2

𝑢
𝑘
(𝑢
𝑘
− V) 𝑑𝑥

− ∫
Ω

|∇V|𝑝−2 ∇V (∇𝑢𝑘 − ∇V) 𝑑𝑥.

(79)

Passing to the limit as 𝑘 → ∞, one obtains that

0 ≤ ∫
Ω

𝜆 |𝑢|
𝑝−2

𝑢 (𝑢 − V) 𝑑𝑥

− ∫
Ω

|∇V|𝑝−2 ∇V (∇𝑢 − ∇V) 𝑑𝑥

= ∫
Ω

𝜒 (∇𝑢 − ∇V) 𝑑𝑥 − ∫
Ω

|∇V|𝑝−2 ∇V (∇𝑢 − ∇V) 𝑑𝑥.

(80)

Take now V = 𝑢 − 𝑡𝑤, 𝑤 ∈ 𝑊1,𝑝(Ω, 𝛾), 𝑡 ∈ R
+
.Then

0 ≤ ∫
Ω

(𝜒 − |∇ (𝑢 − 𝑡𝑤)|
𝑝−2

∇ (𝑢 − 𝑡𝑤)) ∇𝑤𝑑𝑥. (81)

Passing to the limit as 𝑡 → +0, we get

0 ≤ ∫
Ω

(𝜒 − |∇𝑢|
𝑝−2

∇𝑢)∇𝑤𝑑𝑥. (82)

From this inequality we deduce the validity of (78).

Let us mention the properties of the first eigenvalue to
spectral problem (69).The following theoremdirectly follows
from the results in [34].

Theorem 13. The smallest eigenvalue

𝜆
1
:= inf
𝑢∈𝑊
1,𝑝
(Ω,𝛾)\{0}

∫
Ω
|∇𝑢|
𝑝
𝑑𝑥

∫
Ω
|𝑢|
𝑝
𝑑𝑥

(83)

is simple and isolated. Moreover, if 𝑢
1
, 𝑢
2
are two eigenfunc-

tions corresponding to 𝜆1, then they are proportional: 𝑢
1
= 𝑘𝑢
2
.

Now we come back to our spectral problems (3) and (5).
The existence of normalized solution and properties of spec-
trum follows by Theorems 12 and 13. The uniqueness of the
normalized solution is a direct consequence of Theorem 13.
Concerning the regularity, the known fact (see [40]) says that
if eigenfunctions 𝑢 ∈ 𝑊1,𝑝

0
, then 𝑢 ∈ 𝐿∞.The statements of

Theorem 5 can be proved similarly to the proof of statement
(2) of Theorem 4.

Indeed, since 𝜆1
𝜀
is isolated, that is, ∃𝛿 > 0 : |𝜆1

𝜀
− 𝜆
2

𝜀
| > 𝛿

(𝜆2
𝜀
is the second eigenvalue to (3)), there exists a compact

containing𝜆1
𝜀
.Hence, there exists a subsequence {𝜀

𝑘
}
∞

𝑘=1
→ 0

such that 𝜆1
𝜀
𝑘

→ 𝜆
∗
.The boundedness of 𝑢

𝜀
𝑘

in 𝐿
𝑝
implies

the existence of limit 𝑢∗ (strong in 𝐿
𝑝
and weak in 𝑊1,𝑝).
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The boundedness of operator 𝐴(𝑢
𝜀
𝑘

) in the dual space𝑊−1,𝑞
gives the existence of weak limit

𝜒 = lim
𝑘→∞

𝐴(𝑢
𝜀
𝑘

)

= lim
𝑘→∞

𝜕

𝜕𝑥
𝑗

(

𝑛

∑

𝑗=1


∇𝑢
𝜀
𝑘

(𝑥)


𝑝−2 𝜕𝑢𝜀
𝑘

(𝑥)

𝜕𝑥
𝑗

) .

(84)

Thus, passing to the limit in the identity

∫
Ω

𝑛

∑

𝑗=1


∇𝑢
𝜀
𝑘

(𝑥)


𝑝−2 𝜕𝑢𝜀
𝑘

(𝑥)

𝜕𝑥
𝑗

𝜕V (𝑥)
𝜕𝑥
𝑗

𝑑𝑥

= 𝜆
1

𝜀
𝑘

∫
Ω


𝑢
𝜀
𝑘



𝑝−2

𝑢
𝜀
𝑘

V 𝑑𝑥,

(85)

we obtain

∫
Ω

𝑛

∑

𝑗=1

∇𝑢
∗
(𝑥)

𝑝−2 𝜕𝑢

∗
(𝑥)

𝜕𝑥
𝑗

𝜕V (𝑥)
𝜕𝑥
𝑗

𝑑𝑥

= 𝜆
∗
∫
Ω

𝑢
∗
𝑝−2

𝑢
∗V 𝑑𝑥.

(86)

Having in mind the same arguments as in the proof of
Theorem 4 one can show that 𝜆∗ = 𝜆

1

0
, 𝑢
∗
= 𝑢
0
, and 𝜒 =

𝐴(𝑢
0
) = −∑

𝑖
(𝜕/𝜕𝑥

𝑖
)(|𝜕𝑢
0
/𝜕𝑥
𝑖
|
𝑝−2
(𝜕𝑢
0
/𝜕𝑥
𝑖
)) which means

that problem (5) is the limit one for (3). Analogously as in
Theorem 4 one can derive that


𝑢
𝜀
𝑘

− 𝑢
0

𝑊1,𝑝
→ 0. (87)

Thus, Theorem 5 is completely proved.
The question on convergence of the full spectrum for

similar 𝑝-Laplace boundary-value problem is studied, for
example, in [33, 35]. We do not cover this studying for our
problem since in the applications of the results of the present
paper we will use only the fact about converging of the first
eigenelements.

6. The Estimate of the Solution in
a Neighborhood of the Eigenvalue

Let us derive an estimate for the solution to problem (7) in a
neighborhood of 𝜆1

0
.

Lemma 14. Let 𝜆 be close to 𝜆1
0
and 𝜆1

𝜀
converges to 𝜆1

0
.Then

the following estimate holds:

𝑈𝜀

𝑝

𝑊
1,𝑝
≤ 𝐶

‖𝐹‖
2

𝐿
𝑞

𝜆
1

𝜀
− 𝜆



. (88)

Proof. Since the function 𝑈
𝜀
∈ 𝑊

1,𝑝
(Ω
𝜀
, Γ
𝜀
), it satisfies

Friedrichs inequality ‖𝑈
𝜀
‖
𝑝

𝐿
𝑝

≤ 𝐾‖∇𝑈
𝜀
‖
𝑝

𝐿
𝑝

. Moreover, it is
clear that the best constant in the inequality is 1/𝜆1

𝜀
, where

𝜆
1

𝜀
is the first eigenvalue to (3). Thus,

𝑈𝜀

𝑝

𝐿
𝑝

≤
1

𝜆1
𝜀

∇𝑈𝜀

𝑝

𝐿
𝑝

. (89)

By using estimates (43), (8), (89), integral identity with V =
𝑈
𝜀
, and equivalent norm in𝑊1,𝑝, it yields that

∇𝑈𝜀

𝑝

𝐿
𝑝

≤ 𝜆
𝑈𝜀


𝑝

𝐿
𝑝

+ ‖𝐹‖𝐿
𝑝

𝑈𝜀
𝐿
𝑝

≤
𝜆

𝜆1
𝜀

∇𝑈𝜀

𝑝

𝐿
𝑝

+ ‖𝐹‖
2

𝐿
𝑞

⇒

𝜆
1

𝜀
− 𝜆


∇𝑈𝜀


𝑝

𝐿
𝑝

≤ 𝐶 ‖𝐹‖
2

𝐿
𝑞

,

where 𝜆
1

𝜀


< 𝐶 = const.

(90)

Replacing ‖∇𝑈
𝜀
‖
𝑝

𝐿
𝑝

with the equivalent norm ‖𝑈
𝜀
‖
𝑝

𝑊
1,𝑝
, we

obtain (88).
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