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We study the combined matrix of a nonsingular H-matrix. These matrices can belong to two different H-matrices classes: the most
common, invertible class, and one particular class namedmixed class. Different results regarding diagonal dominance of the inverse
matrix and the combined matrix of a nonsingular H-matrix belonging to the referred classes are obtained. We conclude that the
combined matrix of a nonsingular H-matrix is always diagonally dominant and then it is an H-matrix. In particular, the combined
matrix in the invertible class remains in the same class.

1. Introduction

The Hadamard product of a nonsingular general H-matrix
and its inverse transpose, that is, the combined matrix, has
been studied in several works such as [1–3]. A complete study
of the combined matrix showing its linear application can be
seen in [4]. In the last decade, new properties of the combined
matrix have been presented in [5, 6]. It is in this last reference
where the name of combinedmatrix appears for the first time.

It is well known that the sum by row or by column of
the entries of the combined matrix of a nonsingular matrix
𝐴, 𝐶(𝐴), is exactly equal to 1. Then, if 𝐶(𝐴) ≥ 𝑂, the
combined matrix is doubly stochastic. In [7, 8], the authors
studied conditions under which the combined matrix of
some classes of matrices is nonnegative. In particular, the
authors have studied the nonnegativity of the combined
matrix of totally positive (nonnegative) and totally negative
(nonpositive) matrices and of sign regular matrices.

The combined matrix has different applications. In a
process control problem, if 𝐴 represents the relation among
inputs and outputs, the combined matrix of 𝐴 represents
the relative gain array of the process. This interpretation was
given in [9] andwas applied in chemistry, for instance, in [10].
In mathematics, the combined matrix of 𝐴 is used in [11] to
compute the eigenvalues of 𝐴.

Results involving the Hadamard product of H-matrices
can be found in [12, 13].The result where the combinedmatrix
of a nonsingular M-matrix is also a nonsingular M-matrix
was obtained by Fiedler in [1]. The same statement can be
deduced from [14, 15] as Fiedler and Markham indicated in
[3]. In this work we extend this result to nonsingular H-
matrices. Firstly, we recall nonsingular H-matrices properties
and their relations with diagonal dominance. In Section 3.1,
it is proven that the combined matrix of an H-matrix of the
invertible class is also an H-matrix of this class. Moreover, in
Section 3.2, we obtain properties on diagonal dominance of
the inverse matrix and the combined matrix of a nonsingular
H-matrix belonging to the mixed class. So, we conclude that
the combinedmatrix of a nonsingular H-matrix of the mixed
class is also an H-matrix.

2. Notations and Definitions

In this paper, we work with square matrices of size 𝑛 × 𝑛.
Matriceswe are considering are real or complex.Wewill point
out when we assume real matrices.

Let the set of indices 𝑁 = {1, 2, . . . , 𝑛}. Given a matrix
𝐴 = [𝑎

𝑖𝑗
] of order 𝑛, the symbol 𝐴(𝑖 | 𝑗) denotes the

principal submatrix of order 𝑛 − 1 that results after deleting
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row 𝑖 and column 𝑗 of 𝐴, whereas the symbol 𝐴
𝑖𝑗
denotes its

determinant, 𝐴
𝑖𝑗
= det𝐴(𝑖 | 𝑗).

In order to introduce the concept of combinedmatrix, we
recall that𝐴∘𝐵 represents theHadamard product or entrywise
product of the matrices 𝐴 and 𝐵:

(𝐴 ∘ 𝐵)𝑖𝑗 = 𝑎𝑖𝑗𝑏𝑖𝑗. (1)

Definition 1. The combined matrix of the matrix 𝐴 ∈ C𝑛×𝑛 is
defined as

𝐶 (𝐴) = 𝐴 ∘ (𝐴
−1
)
𝑇

. (2)

As a consequence, the (𝑖, 𝑗) entry of 𝐶(𝐴) is given by

𝑐
𝑖𝑗
=

𝑎
𝑖𝑗 (−1)

𝑖+𝑗 det𝐴 (𝑖 | 𝑗)
det𝐴

=

𝑎
𝑖𝑗 (−1)

𝑖+𝑗
𝐴
𝑖𝑗

det𝐴
(3)

according to the previous notation.
A class of matrices that allows us to obtain interesting

properties of their combined matrices is the class of irre-
ducible matrices. We recall that a matrix 𝐴 is reducible if
there exists a permutation matrix 𝑃 such that 𝑃𝐴𝑃𝑇 is block
triangular. That is,

𝑃𝐴𝑃
𝑇
= [

𝑄11 0
𝑄21 𝑄22

] , (4)

where the diagonal blocks 𝑄11 and 𝑄22 are square matrices.
A matrix is irreducible when it is not reducible.

Applying repeatedly the triangular decomposition to the
resulting diagonal blocks, provided they are reducible, we
obtain the Frobenius normal form of a reducible matrix [16].
In other words, we obtain the block triangular decomposi-
tion:

𝑃𝐴𝑃
𝑇
=

[
[
[
[
[
[

[

𝑅11 0 ⋅ ⋅ ⋅ 0
𝑅21 𝑅22 ⋅ ⋅ ⋅ 0
.
.
.
.
.
. d

.

.

.

𝑅
𝑛1 𝑅𝑛2 ⋅ ⋅ ⋅ 𝑅𝑛𝑛

]
]
]
]
]
]

]

, (5)

where each diagonal block 𝑅
𝑖𝑖
is either an irreducible square

block or a null block of size 1 × 1.
The properties that we use in the study of the combined

matrix of H-matrices are listed below (see [11]).

Theorem 2. Let 𝐴 be a nonsingular 𝑛 × 𝑛 matrix and let
𝐶(𝐴) = [𝑐

𝑖𝑗
] be its combined matrix. Then

(1) the sum by row and by column satisfies

∑

𝑗

𝑐
𝑖𝑗
= 1, ∀𝑖 ∈ 𝑁,

∑

𝑖

𝑐
𝑖𝑗
= 1, ∀𝑗 ∈ 𝑁;

(6)

(2) if𝐷 is a nonsingular diagonal matrix,

𝐶 (𝐷𝐴) = 𝐶 (𝐴𝐷) = 𝐶 (𝐴) ; (7)

(3) if 𝑃 and 𝑄 are permutation matrices,

𝐶 (𝑃𝐴𝑄) = 𝑃𝐶 (𝐴)𝑄; (8)

(4) if𝐴 is a reducible matrix, then𝐶(𝐴) is a block diagonal
matrix.More precisely, if𝑃𝐴𝑃𝑇 = [𝑅

𝑖𝑗
] is the Frobenius

normal form of 𝐴, then

𝐶 (𝐴) = 𝑃
𝑇

[
[
[
[
[
[

[

𝐶 (𝑅11) 0 ⋅ ⋅ ⋅ 0
0 𝐶 (𝑅22) ⋅ ⋅ ⋅ 0
.
.
.

.

.

. d
.
.
.

0 0 ⋅ ⋅ ⋅ 𝐶 (𝑅
𝑘𝑘
)

]
]
]
]
]
]

]

𝑃. (9)

Regarding the combined matrix of a reducible matrix, it
is enough to study the combined matrix of each irreducible
diagonal block.

Next we are going to recall basic definitions related to H-
matrices.

Definition 3. The matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ C𝑛×𝑛 is said to be

diagonally dominant (DD) if

𝑎𝑖𝑖
 ≥ ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗


, 𝑖 = 1, 2, . . . , 𝑛, (10)

and 𝐴 is called strictly diagonal dominant (SDD) if inequali-
ties (10) are strict.

We are going to work with general H-matrices. Tradition-
ally, H-matrices were considered only in the case where their
comparison matrices are nonsingular M-matrices. Neverthe-
less, as we can see in [17], there are nonsingular H-matrices
with singular comparison matrix. For example,

𝐴 = [

1 −1
1 1

] (11)

is a nonsingular H-matrix, but its comparison matrix is a
singular M-matrix. For this reason, we have to consider
singular M-matrices in order to obtain all possible cases of
nonsingular H-matrices.

The comparison matrix of a matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ C𝑛×𝑛 is

defined as

M (𝐴) = [𝑚𝑖𝑗] = 2
diag (𝐴)

 − |𝐴| ; (12)

therefore,

𝑚
𝑖𝑗
=
{

{

{

−

𝑎
𝑖𝑗


, if 𝑖 ̸= 𝑗,


𝑎
𝑖𝑗


, if 𝑖 = 𝑗,

𝑖, 𝑗 = 1, 2, . . . , 𝑛. (13)

Definition 4. A real matrix 𝐴 is an M-matrix if 𝐴 = M(𝐴)
and

M (𝐴) = 𝑠𝐼 − 𝐵, with 𝐵 ≥ 0, 𝑠 ≥ 𝜌 (𝐵) , (14)

where 𝜌(𝐵) represents the spectral radius of 𝐵.
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Definition 5. A matrix 𝐴 ∈ C𝑛×𝑛 is called an H-matrix if it
satisfies condition (14); that is, its comparison matrix is an
M-matrix.

When the last inequality in (14) is strict, it follows
that M(𝐴) is a nonsingular M-matrix. Otherwise, M(𝐴) is
singular.

Analyzing the properties of nonsingular and singular H-
matrices, a partition of the set of H-matrices in three classes
is given in [17]:

(1) 𝐴 belongs to the invertible class H
𝐼
if and only if

M(𝐴) is a nonsingular M-matrix.
(2) 𝐴 belongs to themixed classH

𝑀
if and only ifM(𝐴)

is a singular M-matrix and its diagonal entries are not
null.

(3) 𝐴 belongs to the singular classH
𝑆
if and only ifM(𝐴)

is an M-matrix with at least one null diagonal entry.

The conclusions related to the singularity of each class
are the following: all H-matrices in H

𝐼
are nonsingular, in

H
𝑀

there are nonsingular and singular H-matrices, and all
H-matrices in H

𝑆
are singular and reducible. Moreover, if

𝐴 is irreducible, then all singular H-matrices in H
𝑀

are
diagonally equivalent to the singular matrixM(𝐴) [18].

We study the combined matrix of nonsingular H-
matrices. More precisely, we study the combined matrix of
nonsingular H-matrices of both the invertible and the mixed
classes.

We now recall the generalized diagonal dominance defi-
nitions.

Definition 6. A matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ C𝑛×𝑛 is said to

be generalized diagonally dominant (GDD) if there exists a
nonnegative diagonal andnonsingularmatrix𝐷 of size 𝑛 such
that 𝐴𝐷 is diagonally dominant; that is,

𝑎𝑖𝑖𝑑𝑖𝑖
 ≥ ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗
𝑑
𝑖𝑗


, 𝑖 = 1, 2, . . . , 𝑛, (15)

and𝐴 is called generalized strictly diagonal dominant (GSDD)
if the inequalities in (15) are strict.

We have the following well known results (see [17, 19]).

Theorem 7. Let 𝐴 ∈ C𝑛×𝑛. Then,

(1) 𝐴 ∈H
𝐼
if and only if it is GSDD;

(2) if 𝐴 is GDD, then it is an H-matrix;
(3) if 𝐴 ∈H

𝑀
and is irreducible, then it is GDD.

3. Combined Matrices of H-Matrices

In this section, we are going to extend to nonsingular and
real H-matrices the following theorem that we have already
commented on in the previous section (see [1]). All matrices
considered in this section are real.

Theorem 8. The combined matrix of a nonsingular M-matrix
is also a nonsingular M-matrix.

In fact, we are going to prove the diagonal dominance of
the combined matrix of a nonsingular H-matrix.

3.1. Combined Matrices of H-Matrices of the Invertible Class.
Let us start with H-matrices of the invertible class.

Theorem 9. Let 𝐴 ∈ H
𝐼
. Then its combined matrix is strictly

diagonal dominant.

Proof. Since 𝐶(𝐴𝐷) = 𝐶(𝐴), without loss of generality, we
can suppose that 𝐴 is SDD; therefore,

𝑎𝑖𝑖
 > ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗


, ∀𝑖 ∈ 𝑁. (16)

In addition, according toTheorem 2.5.12 in [11], we know
that 𝐴−1 = [𝛼

𝑖𝑗
] satisfies the strict inequalities

𝛼𝑖𝑖
 >

𝛼
𝑗𝑖


, ∀𝑖, 𝑗 ∈ 𝑁, 𝑗 ̸= 𝑖. (17)

We should notice that, with this samenotation, the entries
of the inverse matrix are equal to

𝛼
𝑖𝑗
=

(−1)𝑖+𝑗 𝐴𝑗𝑖
det𝐴

(18)

and inequality (17) can be expressed in the form

𝐴 𝑖𝑖
 >

𝐴
𝑖𝑗


, ∀𝑖, 𝑗 ∈ 𝑁, 𝑗 ̸= 𝑖. (19)

Then, taking into account inequalities (16) and (19), it results
that

𝑎𝑖𝑖

𝐴 𝑖𝑖
 > ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗



𝐴 𝑖𝑖
 > ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗




𝐴
𝑖𝑗

 (20)

and consequently

𝑐𝑖𝑖
 > ∑

𝑗 ̸=𝑖


𝑐
𝑖𝑗


, (21)

where 𝑐
𝑖𝑗
are the entries of 𝐶(𝐴) (3). This implies that the

combined matrix 𝐶(𝐴) is SDD.

Corollary 10. If 𝐴 ∈H
𝐼
, then 𝐶(𝐴) ∈H

𝐼
.

Proof. It is straightforward.

It is well known that theH
𝐼
class has different subclasses:

𝛼1- and 𝛼2-matrices, S-SDD, and so forth (see [20, 21]).
Since all strictly diagonally dominantmatrices belong to these
subclasses, we can establish the following general corollary.

Corollary 11. Let S be a subclass of H-matrices of the
invertible class that contains all SDD matrices; that is,

{𝐴 ∈C
𝑛×𝑛
: 𝐴 is SDD} ⊂ S ⊂H

𝐼
. (22)

If 𝐴 ∈ S, then 𝐶(𝐴) belongs to the same subclass S.

Proof. It is obvious.
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It is worth noticing that this result can be obtained
combining Theorems 3.1 and 3.5 of [12], where the authors
work with the W-class of matrices satisfying condition (17).

Note that we can prove Theorem 8 as a consequence of
Theorem 9.

Corollary 12. If 𝐴 is a nonsingular M-matrix, then 𝐶(𝐴) is a
nonsingular M-matrix.

Proof. Let us recall first that𝐴 ∈H
𝐼
; then𝐶(𝐴) is SDD. Since

𝐴
−1
≥ 0, 𝐶(𝐴) has the signs pattern of 𝐴; consequently 𝐶(𝐴)

is a nonsingular M-matrix.

3.2. Combined Matrices of Nonsingular H-Matrices of the
Mixed Class. We extend the previous results to nonsingular
H-matrices of the mixed class. For this purpose, we need to
extend two results of [11] on SDDmatrices to nonsingularDD
matrices.

We will denote by sgn(𝑥) the sign of the real number 𝑥.

Lemma 13. If𝐴 is diagonally dominant and nonsingular, then

sgn (det𝐴) = sgn(∏
𝑖

𝑎
𝑖𝑖
) . (23)

Proof. Since 𝐴 is DD and nonsingular, then 𝑎
𝑖𝑖
̸= 0 for all

𝑖 ∈ 𝑁.
Let us suppose first that 𝑎

𝑖𝑖
> 0 for all 𝑖. Given 𝜖 ∈ [0, 1[

we build the matrix

𝐴
𝜖
= 𝐷+ 𝜖 (𝐴−𝐷) , (24)

where𝐷 = diag(𝐴).
Since 𝐴

𝜖
= 𝜖𝐴 + 𝐷(1 − 𝜖) is SDD because it is the sum of

a DDmatrix and a SDDmatrix and diag(𝐴
𝜖
) = diag(𝐴) = 𝐷,

then (see [11, page 125]) sgn(det𝐴
𝜖
) = sgn(𝑎11𝑎22 ⋅ ⋅ ⋅ 𝑎𝑛𝑛) and,

therefore, det𝐴
𝜖
> 0. Since the determinant is a multilinear

function, it is continuous, and since lim
𝜖→ 1−𝐴𝜖 = 𝐴, then

det𝐴 ≥ 0. Therefore,

sgn (det𝐴) = sgn (𝑎11𝑎22 ⋅ ⋅ ⋅ 𝑎𝑛𝑛) > 0 (25)

since 𝐴 is nonsingular.
Now let us suppose that there are some negative diagonal

entries. We build the diagonal matrix

𝐷 = sgn (diag (𝐷)) = diag (sgn (𝑎𝑖𝑖)) . (26)

Then,matrix𝐵 = 𝐴𝐷 has its diagonal entries positive and
is DD. Therefore, applying the first part of this proof to 𝐵 we
have det𝐵 > 0.

Since det𝐵 = det𝐴 det𝐷 = det𝐴∏
𝑖
sgn(𝑎
𝑖𝑖
), we

conclude that

sgn (det𝐴) = sgn(∏
𝑖

sgn 𝑎
𝑖𝑖
) = sgn(∏

𝑖

𝑎
𝑖𝑖
) . (27)

We should notice that if 𝐴 is singular and DD, then the
sign of its determinant may not match with the sign of the
diagonal entries product. This means that it can occur that
det𝐴 = 0, but∏

𝑖
𝑎
𝑖𝑖
̸= 0. Besides, if∏

𝑖
𝑎
𝑖𝑖
= 0, then 𝐴 would

have at least one null row.
Lemma 13 can be extended to GDDmatrices.

Lemma 14. If matrix 𝐴 is generalized diagonally dominant
and nonsingular, then

sgn (det𝐴) = sgn(∏
𝑖

𝑎
𝑖𝑖
) . (28)

Proof. It is enough to observe that if 𝐷 = diag(𝑑
𝑖
) is a diago-

nal, nonsingular, and nonnegativematrix that transforms𝐴𝐷
in a diagonally dominant matrix, then det(𝐴𝐷) = det𝐴∏

𝑖
𝑑
𝑖

and the diagonal entries of 𝐴𝐷 are equal to 𝑎
𝑖𝑖
𝑑
𝑖
.

The following result is essential for achieving our goals.

Theorem 15. Suppose that 𝐴 is diagonally dominant with
nonzero diagonal entries. Then,

𝐴 𝑖𝑖
 ≥

𝐴
𝑖𝑗


, ∀𝑖, 𝑗 ∈ 𝑁. (29)

Proof. Let us start supposing that 𝑎
𝑖𝑖
> 0 for all 𝑖 ∈ 𝑁. In

order to prove inequalities (29), let us consider, without loss
of generality, that 𝑖 = 1 and 𝑗 = 2. We are going to prove that
𝐴11 ± 𝐴12 ≥ 0. Then

𝐴11 ±𝐴12 = det
[
[
[
[
[
[

[

𝑎22 𝑎23 ⋅ ⋅ ⋅ 𝑎2𝑛

𝑎32 𝑎33 ⋅ ⋅ ⋅ 𝑎3𝑛

.

.

.
.
.
. d

.

.

.

𝑎
𝑛2 𝑎𝑛3 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]
]
]
]
]
]

]

+ det
[
[
[
[
[
[

[

±𝑎21 𝑎23 ⋅ ⋅ ⋅ 𝑎2𝑛

±𝑎31 𝑎33 ⋅ ⋅ ⋅ 𝑎3𝑛

.

.

.
.
.
. d

.

.

.

±𝑎
𝑛1 𝑎𝑛3 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]
]
]
]
]
]

]

= det
[
[
[
[
[
[

[

±𝑎21 + 𝑎22 𝑎23 ⋅ ⋅ ⋅ 𝑎2𝑛

±𝑎31 + 𝑎32 𝑎33 ⋅ ⋅ ⋅ 𝑎3𝑛

.

.

.
.
.
. d

.

.

.

±𝑎
𝑛2 + 𝑎𝑛2 𝑎𝑛3 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]
]
]
]
]
]

]

= det𝐵.

(30)

Let us prove that this auxiliary matrix 𝐵 is DD. In its first row,
since 𝐴 is DD, we know that

𝑎22 =
𝑎22
 ≥ ∑

𝑘 ̸=2

𝑎2𝑘
 ; (31)

in particular, 𝑎22 ≥ |𝑎21|; therefore,

𝑎22 ± 𝑎21 =
𝑎22 ± 𝑎21

 ≥ 𝑎22 −
𝑎21
 ≥ ∑

𝑘 ̸=1,2

𝑎2𝑘
 . (32)
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For the remaining rows, 𝑗 ̸= 1, it is true that

𝑎
𝑗2 ± 𝑎𝑗1


+ ∑

𝑘 ̸=1,2,𝑗


𝑎
𝑗𝑘



≤

𝑎
𝑗2

+

𝑎
𝑗1

+ ∑

𝑘 ̸=1,2,𝑗


𝑎
𝑗𝑘


≤ 𝑎
𝑗𝑗
.

(33)

Since 𝐵 is DD and, besides, all its diagonal entries are
nonnegative, we can apply Lemma 13 and conclude that
det𝐵 ≥ 0. Consequently 𝐴11 ± 𝐴12 ≥ 0; then 𝐴11 = |𝐴11| ≥
|𝐴12|.

Finally, in the general case, when there are different
signs in the diagonal entries, we build the sign matrix 𝐷 =
sgn(diag(𝐷)) such that the matrix 𝐹 = 𝐴𝐷 is DD and its
diagonal entries are all positive. Applying the result of the first
part of the proof to the matrix 𝐹 we conclude that |𝐹

𝑖𝑖
| ≥ |𝐹
𝑖𝑗
|

for all 𝑗 ̸= 𝑖. Finally, since

𝐹
𝑖𝑗
= 𝐴
𝑖𝑗
∏

𝑗 ̸=𝑖

sgn (𝑎
𝑗𝑗
) , (34)

we conclude that |𝐴
𝑖𝑖
| = |𝐹

𝑖𝑖
| ≥ |𝐹

𝑖𝑗
| = |𝐴

𝑖𝑗
|, ∀𝑖, 𝑗 ∈ 𝑁, 𝑗 ̸=

𝑖.

An immediate consequence of this result is the extension
of Theorem 2.5.12 of [11] to DD matrices.

Theorem 16. Let𝐴 be a nonsingular and diagonally dominant
matrix. Then 𝐴−1 = [𝛼

𝑖𝑗
] is diagonally dominant of its column

entries. That is,
𝛼𝑖𝑖
 ≥

𝛼
𝑗𝑖


, ∀𝑖, 𝑗 ∈ 𝑁. (35)

Proof. We know that a nonsingular and DD matrix does not
have null diagonal entries (see [17]). Then, we can apply
Theorem 15 to matrix 𝐴 and then inequalities (29) become
inequalities (35).

Theorem 15 cannot be extended to GDD and to GSDD
matrices because (𝐴𝐷)

𝑖𝑖
= 𝐴
𝑖𝑖
𝐷
𝑖𝑖
but (𝐴𝐷)

𝑖𝑗
= 𝐴
𝑖𝑗
𝐷
𝑗𝑗
. The

following example illustrates this fact.

Example 17. Thematrix

𝐴 =
[
[

[

3 4 −3
4 10 −3
1 4 −24

]
]

]

(36)

is GSDD, because when it ismultiplied by the diagonalmatrix
𝐷 = diag(1, 1/2, 1/4) we have the following SDD matrix:

𝐴𝐷 =

[
[
[
[

[

3 2 −3
4

4 5 −3
4

1 2 −6

]
]
]
]

]

⋅ (37)

Though the inverse matrix of𝐴𝐷 satisfies inequality (35), the
matrix 𝐴−1 does not satisfy it since 𝛼12 = −84/ det𝐴 and
𝛼22 = −69/ det𝐴; 𝛼13 = 18/ det𝐴 and 𝛼33 = 14/ det𝐴. That
is, |𝛼22| < |𝛼12| and |𝛼33| < |𝛼13|.

We are almost in position to extend the result on the
combined matrix to nonsingular H-matrices of the mixed
class.

Theorem 18. Let 𝐴 ∈ H
𝑀

be a nonsingular and irreducible
matrix. Then 𝐶(𝐴) is diagonally dominant.

Proof. Since det𝐴 ̸= 0, we have to prove
𝑎𝑖𝑖𝐴 𝑖𝑖

 ≥ ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗




𝐴
𝑖𝑗


, ∀𝑖 ∈ 𝑁. (38)

Since 𝐴 is an irreducible H-matrix of the mixed class, we
know that 𝐴 is GDD by Theorem 7. As 𝐶(𝐴𝐷) = 𝐶(𝐴), we
can suppose that 𝐴 is DD; that is,

𝑎𝑖𝑖
 ≥ ∑

𝑗 ̸=𝑖


𝑎
𝑖𝑗


, ∀𝑖 ∈ 𝑁. (39)

According toTheorem 15,
𝐴 𝑖𝑖
 ≥

𝐴
𝑖𝑗


, ∀𝑖, 𝑗 ∈ 𝑁. (40)

Taking into account this last inequality in (39) we obtain (38)
and consequently the combined matrix is DD.

Corollary 19. If 𝐴 is a nonsingular H-matrix, then its com-
bined matrix 𝐶(𝐴) is an H-matrix.

Proof. Suppose that 𝐴 is written in Frobenius normal form
as it is shown in (5). Let us work with its diagonal blocks. If a
diagonal block of 𝐴 belongs to H

𝐼
, then its corresponding

block in 𝐶(𝐴) (see expression (9)) is SDD by Theorem 9
and belongs toH

𝐼
by Corollary 10. Further, if an irreducible

diagonal block of𝐴 is inH
𝑀
, then its corresponding block in

𝐶(𝐴) is DD byTheorem 18. Then 𝐶(𝐴) is an H-matrix.

Example 20. Let us consider the reducible and nonsingular
H-matrix 𝐴 of the mixed class

𝐴 =

[
[
[
[
[
[
[
[

[

2 1 0 0 0
−1 1 0 0 0
7 3 3 1 2
0 2 1 5 4
6 0 1 1 −2

]
]
]
]
]
]
]
]

]

(41)

written in normal form, where the first 2 × 2 diagonal block
belongs toH

𝐼
and the second 3×3 diagonal block belongs to

H
𝑀
.
The combined matrix is

𝐶 (𝐴) =
1
132

[
[
[
[
[
[
[
[

[

88 44 0 0 0
44 88 0 0 0
0 0 126 −18 24
0 0 −12 120 24
0 0 18 30 84

]
]
]
]
]
]
]
]

]

. (42)

Notice that 𝐶(𝐴) is block diagonal. Each diagonal block
is the combined matrix of the corresponding diagonal block
of 𝐴. Specifically, both blocks are SDD and then 𝐶(𝐴) ∈H

𝐼
.
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In conclusion, in this work, we have proved that the
combinedmatrix of a nonsingularH-matrix of the class either
H
𝐼
orH
𝑀
is an H-matrix. Actually, this is an extension of a

well known result for nonsingular M-matrices.
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[18] R. Bru, C. Corral, I. Giménez, and J. Mas, “Schur complement
of general H-matrices,” Numerical Linear Algebra with Applica-
tions, vol. 16, no. 11-12, pp. 935–947, 2009.

[19] R. S. Varga, “On recurring theorems on diagonal dominance,”
Linear Algebra and Its Applications, vol. 13, no. 1-2, pp. 1–9, 1976.
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