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This work presents a filled function method based on the filter technique for global optimization. Filled function method is one of
the effectivemethods for nonlinear global optimization, since it can effectively find a better minimizer. Filter technique is applied to
local optimization methods for its excellent numerical results. In order to optimize the filled function method, the filter method is
employed for global optimizations in this method. A new filled function is proposed first, and then the algorithm and its properties
are proved. The numerical results are listed at the end.

1. Introduction

In this paper, we consider the following nonlinearly global
optimization:

min {𝑓 (𝑥) : 𝑥 ∈ 𝑅𝑛} , (1)

where 𝑓 : 𝑅𝑛 → 𝑅. Global optimization problem has
been developed rapidly in recent years. One of the different
significant characteristics of the global optimization from
local optimization is that it has more than one minimum
point. It obviously makes the problem difficult to resolve. In
the search of global optimization, we will face two difficulties:
the first is how to find a better minimizer from a known local
one; the second is how to judge whether the current local
minimizer is a global optimum or not. The filled function is
one of the valuable methods for the first difficulty. The filled
function was first proposed by Ge and Qin [1, 2]. A great deal
of efforts has been made by successive scholars and experts
[3–6], whichmakes filled function algorithm develop rapidly.
Thefilled functionmethodhas been applied inmanypractical
fields [7].

The filter method was firstly proposed by Fletcher and
Leyffer [8, 9] for solving nonlinearly local optimization.
Because of its excellent numerical results, many researchers
show their interest in it [10, 11]. In order to optimize the filled

function method, the filter method is employed for a global
optimization in this paper. So we will propose a filter-filled
function method for problem (1).

This paper is organized as follows. In Section 2, we first
give some assumptions and marks and then some definitions
of filled function and the filter method are introduced. In
Section 3, a new filled function is proposed. The algorithm
for problem (1) and its properties are discussed in Section 4.
In the last section, we will list the numerical tests.

2. Preliminaries

Our purpose is to find a global minimizer of problem (1). We
make the following assumptions for the objective function
𝑓(𝑥) throughout the paper.

(A1) 𝑓(𝑥) is continuously differentiable in 𝑅𝑛.
(A2) 𝑓(𝑥) → ∞, as ‖𝑥‖ → ∞; namely, 𝑓(𝑥) is a
coercive function.
(A3) 𝑓(𝑥) has only a finite number of minimal
function values.

According to (A2), we just need to consider the problem
min {𝑓 (𝑥) : 𝑥 ∈ 𝑋} , (2)

where 𝑋 ⊂ 𝑅𝑛 is a closed and bounded domain and contains
all of the local and global minimizers of the objective 𝑓(𝑥).
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For simplicity, we introduce some marks.
𝐿(𝑃) and 𝐺(𝑃), respectively, stand for the set of local and

global minimizers.
Let 𝑥∗ be a current local minimizer of 𝑓(𝑥). It can be

obtained by a classical algorithm, such as Newton’s method
or steepest descent method.

The radius of𝑋 is defined as
𝐷 = max
𝑥,𝑦∈𝑋

𝑥 − 𝑦 . (3)

Consider 𝑆
1
(𝑥∗) = {𝑥 | 𝑓(𝑥) ≥ 𝑓(𝑥∗), 𝑥 ∈ 𝑋 \ {𝑥∗}}; we

call 𝑆
1
(𝑥∗) the high level set at 𝑥∗.

Consider 𝑆
2
(𝑥∗) = {𝑥 | 𝑓(𝑥) < 𝑓(𝑥∗), 𝑥 ∈ 𝑋}; we call

𝑆
2
(𝑥∗) the low level set at 𝑥∗.
We let int𝑋 denote the interior set of𝑋 and let 𝜕𝑋 denote

the boundary set of𝑋.
For any 𝑥∗ ∈ int𝑋, its neighborhood is denoted by

𝑈(𝑥∗, 𝛿) = {𝑥 | ‖𝑥 − 𝑥∗‖ < 𝛿}, and its deleted neighborhood
by 𝑈0(𝑥∗, 𝛿) = {𝑥 | ‖𝑥 − 𝑥∗‖ < 𝛿, 𝑥 ̸= 𝑥∗}.

The following is the definition of the filled function for
solving problem (1).

Definition 1. Assume that 𝑥∗ is a local minimizer of the
original objective function 𝑓(𝑥); a function 𝑝(𝑥, 𝑥∗) is called
filled function of 𝑓(𝑥) at 𝑥∗, if

(i) 𝑥∗
1
is a strict local maximizer of 𝑝(𝑥, 𝑥∗),

(ii) 𝑝(𝑥, 𝑥∗) has no stationary point in the high lever set
𝑆
1
(𝑥∗),

(iii) 𝑓(𝑥∗) is not a global minimum, that is, 𝑥∗ ∉ 𝐺(𝑃),
then there exists a point 𝑥∗

0
∈ 𝑆
2
(𝑥∗), such that 𝑥∗

0
is

a minimizer of 𝑝(𝑥, 𝑥∗).

Filter technique is usually applied to local optimization
methods. In order to optimize the filled function method,
we employ it for global optimization in this paper because
of its excellent numerical results. The filter mainly consists
of two competitive objective functions 𝜙(𝑥) and 𝜓(𝑥), which
are denoted by (𝜙(𝑥), 𝜓(𝑥)). Now we borrow the concept of
domination frommultiobjective optimization to give a list of
concept of filters.

Definition 2. A point 𝑥
𝑘
is said to dominate another point 𝑥

𝑙

if and only if both 𝜙(𝑥
𝑘
) ≤ 𝜙(𝑥

𝑙
) and 𝜓(𝑥

𝑘
) ≤ 𝜓(𝑥

𝑙
) hold.

Definition 3. A filter is a list of pairs (𝜙(𝑥
𝑘
), 𝜓(𝑥

𝑘
)) such

that no point dominates any other. Namely, for the two
inequalities 𝜙(𝑥

𝑘
) ≤ 𝜙(𝑥

𝑙
) and 𝜓(𝑥

𝑘
) ≤ 𝜓(𝑥

𝑙
), only one of

them is true.

We use 𝐹
𝑘
to denote the set of 𝑥

𝑙
(𝑙 ≤ 𝑘) such that

(𝜙(𝑥
𝑙
), 𝜓(𝑥

𝑙
)) is an entry in the current filter. A point 𝑥

𝑘+1
is

said to be “acceptable for the filter” if and only if

𝜙 (𝑥
𝑘+1

) ≤ (1 − 𝛾) 𝜙 (𝑥
𝑙
) or

𝜓 (𝑥
𝑘+1

) ≤ (1 − 𝜂) 𝜓 (𝑥
𝑙
) ,

∃𝑥
𝑙
∈ 𝐹
𝑘

(4)

holds, where 𝛾, 𝜂 ∈ (0, 1) and are closed to zero.

Wemay also “update the filter,” whichmeans that the pair
(𝜙(𝑥
𝑘+1

), 𝜓(𝑥
𝑘+1

)) is added to the list of pairs in the filter, and
at the same time any pair dominated by (𝜙(𝑥

𝑘+1
), 𝜓(𝑥

𝑘+1
)) in

the filter is removed. Namely, we have

𝐹
𝑘+1

= 𝐹
𝑘
∪ {𝑥
𝑘+1

} \ {𝑥
𝑙
∈ 𝐹
𝑘
| 𝜙 (𝑥
𝑘+1

) ≤ 𝜙 (𝑥
𝑙
) ,

𝜓 (𝑥
𝑘+1

) ≤ 𝜓 (𝑥
𝑙
)} .

(5)

By the concepts above, we can define a filter as a criterion
for accepting or rejecting a trial step. In this paper, the
original objective function 𝑓(𝑥) will replace 𝜙(𝑥), and the
filled function 𝑝(𝑥, 𝑥∗) will replace 𝜓(𝑥). Additionally, |𝐹|
stands for the number of elements in the set 𝐹.

3. A New Filled Function

In this paper, we construct a new filled function with one
parameter for problem (1).We suppose that a local minimizer
𝑥∗ of problem (1) has been obtained; 𝜌 > 0 is a parameter.The
filled function is defined as

𝑝 (𝑥, 𝑥∗, 𝜌) = − 𝑥 − 𝑥∗
2

+
𝜌

1 +min2 {0, 𝑓 (𝑥) − 𝑓 (𝑥∗)}
.

(6)

According to assumption (A1), it can be easily proved that
the following conclusion is true.

Theorem 4. The filled function 𝑝(𝑥, 𝑥∗, 𝜌) is continuously
differentiable in 𝑅𝑛.

Now we investigate the filled properties of the function
𝑝(𝑥, 𝑥∗, 𝜌).

Theorem 5. If 𝑥∗ is a local minimum of problem (1), then 𝑥∗

is a strict maximizer of 𝑝(𝑥, 𝑥∗, 𝜌) for any 𝜌 > 0.

Proof. Consider ∀𝑥 ∈ 𝑋 and 𝑥 ̸= 𝑥∗,

𝑝 (𝑥, 𝑥∗, 𝜌) = − 𝑥 − 𝑥∗
2

+
𝜌

1 +min2 {0, 𝑓 (𝑥) − 𝑓 (𝑥∗)}

<
𝜌

1 +min2 {0, 𝑓 (𝑥) − 𝑓 (𝑥∗)}

≤ 𝜌 = 𝑝 (𝑥∗, 𝑥∗, 𝜌) .
(7)

Theorem 6. The function 𝑝(𝑥, 𝑥∗, 𝜌) has no stationary point
in the region 𝑆

1
(𝑥∗).

Proof. Let 𝑥 ∈ 𝑆
1
(𝑥∗); that is, 𝑓(𝑥) ≥ 𝑓(𝑥∗) and 𝑥 ̸= 𝑥∗; then

𝑝 (𝑥, 𝑥∗, 𝜌) = − 𝑥 − 𝑥∗
2

+ 𝜌. (8)

Obviously, it has no stationary point except 𝑥∗.

Theorem 7. Suppose 𝑥∗ ∈ 𝐿(𝑃), but 𝑥∗ ∉ 𝐺(𝑃); then for large
enough 𝜌 > 0, 𝑝(𝑥, 𝑥∗, 𝜌) has a local minimizer in the region
𝑆
2
(𝑥∗).
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Proof. Consider∀𝑥 ∈ 𝑆
2
(𝑥∗),𝑝(𝑥, 𝑥∗, 𝜌) = −‖𝑥−𝑥∗‖2+𝜌/(1+

[𝑓(𝑥) − 𝑓(𝑥∗)]2).
Since 𝑥∗ ∉ 𝐺(𝑃), there must exist an 𝑥𝐺 ∈ 𝐺(𝑃) such that

𝑓(𝑥𝐺) < 𝑓(𝑥∗). According to assumption (A3), there is an
𝜖 > 0 which makes 𝑓(𝑥𝐺) + 𝜖 < 𝑓(𝑥∗).

Let 𝐿
𝜖
= {𝑥 | 𝑓(𝑥) = 𝑓(𝑥𝐺) + 𝜖}. It is easy to see

𝑓 (𝑥𝐺) − 𝑓 (𝑥∗) < 𝑓 (𝑥) − 𝑓 (𝑥∗) < 0, ∀𝑥 ∈ 𝐿
𝜖
. (9)

In the following, wewill show that,∀𝑥 ∈𝐿
𝜖
,𝑝(𝑥𝐺, 𝑥∗, 𝜌) <

𝑝(𝑥, 𝑥∗, 𝜌), while 𝜌 is large enough.
Consider two cases for 𝑥 ∈ 𝐿

𝜖
: (i) ‖𝑥𝐺 − 𝑥∗‖ ≥ ‖𝑥 − 𝑥∗‖;

(ii) ‖𝑥𝐺 − 𝑥∗‖ < ‖𝑥 − 𝑥∗‖.
(i)Wehave−‖𝑥𝐺−𝑥∗‖ ≤ −‖𝑥−𝑥∗‖ and [𝑓(𝑥𝐺)−𝑓(𝑥∗)]2 >

[𝑓(𝑥) − 𝑓(𝑥∗)]2 by expression (9). Therefore,

−
𝑥
𝐺 − 𝑥∗


2

+
𝜌

1 + [𝑓 (𝑥𝐺) − 𝑓 (𝑥∗)]
2

< − 𝑥 − 𝑥∗
2

+
𝜌

1 + [𝑓 (𝑥) − 𝑓 (𝑥∗)]
2
.

(10)

That is, 𝑝(𝑥𝐺, 𝑥∗, 𝜌) < 𝑝(𝑥, 𝑥∗, 𝜌), 𝑥 ∈ 𝐿
𝜖
.

(ii) Since

𝑥
𝐺 − 𝑥∗

 −
𝑥 − 𝑥∗ < 0,

1

1 + [𝑓 (𝑥𝐺) − 𝑓 (𝑥∗)]
2
−

1

1 + [𝑓 (𝑥) − 𝑓 (𝑥∗)]
2
< 0,

(11)

the expression

𝜌[
1

1 + [𝑓 (𝑥𝐺) − 𝑓 (𝑥∗)]
2
−

1

1 + [𝑓 (𝑥) − 𝑓 (𝑥∗)]
2
]

<
𝑥
𝐺 − 𝑥∗

 −
𝑥 − 𝑥∗

(12)

surely holds for 𝜌 > 0 larger enough.
The inequality (12) is equivalent to (10). So 𝑝(𝑥𝐺, 𝑥∗, 𝜌) <

𝑝(𝑥, 𝑥∗, 𝜌)(𝑥 ∈ 𝐿
𝜖
) holds.

Now we set L
𝜖
= {𝑥 | 𝑓(𝑥) ≤ 𝑓(𝑥𝐺) + 𝜖} and it is a

compact set for 𝑓(𝑥) is continuous. The function 𝑝(𝑥, 𝑥∗, 𝜌)
is continuous on L

𝜖
; thus it has a minimizer 𝑥∗

0
∈ L
𝜖
. That

means

min
𝑥∈L
𝜖

𝑝 (𝑥, 𝑥∗, 𝜌) = 𝑝 (𝑥∗
0
, 𝑥∗, 𝜌) . (13)

Because 𝑥𝐺 ∈ L
𝜖
, 𝐿
𝜖
⊆ L
𝜖
, and

𝑝 (𝑥∗
0
, 𝑥∗, 𝜌) ≤ 𝑝 (𝑥𝐺, 𝑥∗, 𝜌) < 𝑝 (𝑥, 𝑥∗, 𝜌) , ∀𝑥 ∈ 𝐿

𝜖
,

(14)

we can learn 𝑥∗
0
∈ L
𝜖
\ 𝐿
𝜖
. But the set L

𝜖
\ 𝐿
𝜖
⊆ 𝑆
2
(𝑥∗) on

the basis of 𝑓(𝑥𝐺) + 𝜖 < 𝑓(𝑥∗); we have got 𝑥∗
0
∈ 𝑆
2
(𝑥∗).

4. Filter-Filled Function Algorithm
and Its Properties

In this section the search directions and their properties will
be discussed first. Then the algorithm will be presented.

With the definition of 𝑝(𝑥, 𝑥∗, 𝜌), ∇𝑝(𝑥, 𝑥∗, 𝜌) = −2(𝑥 −
𝑥∗) at 𝑥 ∈ 𝑆

1
(𝑥∗), so the following theorem holds.

When∇𝑓(𝑥) ̸= 0 or∇𝑝(𝑥, 𝑥∗, 𝜌) ̸= 0, we define the search
direction at 𝑥 ∈ 𝑅𝑛:

𝑑
𝑡
= − (1 − 𝑡) ∇𝑓 (𝑥) − 𝑡∇𝑝 (𝑥, 𝑥∗, 𝜌) , (15)

where 0 ≤ 𝑡 ≤ 1.

Theorem 8. Suppose 𝑑
𝑡

̸= 0, 𝑥 ∈ 𝑅𝑛.

(1) If ‖∇𝑓(𝑥)‖ > ‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖ and∇𝑓(𝑥)𝑇∇𝑝(𝑥, 𝑥∗, 𝜌) ≥
(𝑡/(𝑡−1))‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖2, then 𝑑

𝑡
is a descent direction

of both 𝑓(𝑥) and 𝑝(𝑥, 𝑥∗, 𝜌) while 0 < 𝑡 < 1/2;
(2) if ‖∇𝑓(𝑥)‖ < ‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖ and ∇𝑓(𝑥)𝑇∇𝑝(𝑥, 𝑥∗, 𝜌) ≥

((𝑡−1)/𝑡)‖∇𝑓(𝑥)‖2, then𝑑
𝑡
is a descent direction of both

𝑓(𝑥) and 𝑝(𝑥, 𝑥∗, 𝜌) while 1/2 < 𝑡 < 1;
(3) if ‖∇𝑓(𝑥)‖ = ‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖, then 𝑑

𝑡
is a descent

direction of both 𝑓(𝑥) and 𝑝(𝑥, 𝑥∗, 𝜌) while 𝑡 = 1/2.

Proof. Let 𝜃 denote the angle between∇𝑓(𝑥) and∇𝑝(𝑥, 𝑥∗, 𝜌).
(1) Notice that ‖∇𝑓(𝑥)‖ > ‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖ and 0 < 𝑡 < 1/2.

We have got

∇𝑓 (𝑥)𝑇 𝑑
𝑡
= − (1 − 𝑡) ∇𝑓 (𝑥)

2

− 𝑡∇𝑓 (𝑥)𝑇 ∇𝑝 (𝑥, 𝑥∗, 𝜌)

= − (1 − 𝑡) ∇𝑓 (𝑥)
2

− 𝑡 cos 𝜃 ∇𝑓 (𝑥)
∇𝑝 (𝑥, 𝑥∗, 𝜌)

≤ ∇𝑓 (𝑥)

⋅ [− (1 − 𝑡) ∇𝑓 (𝑥) + 𝑡 ∇𝑝 (𝑥, 𝑥∗, 𝜌)]

≤ − (1 − 𝑡) ∇𝑓 (𝑥) < 0.
(16)

According to∇𝑓(𝑥)𝑇∇𝑝(𝑥, 𝑥∗, 𝜌) ≥ (𝑡/(𝑡−1))‖∇𝑝(𝑥, 𝑥∗, 𝜌)‖2,
it is obvious that

∇𝑝 (𝑥, 𝑥∗, 𝜌)
𝑇

𝑑
𝑡
= − (1 − 𝑡) ∇𝑓 (𝑥)𝑇 ∇𝑝 (𝑥, 𝑥∗, 𝜌)

− 𝑡 ∇𝑝(𝑥, 𝑥
∗, 𝜌)
2

≤ 0
(17)

holds.
(2) The proof is similar to case (1).
(3) If 𝑡 = 1/2, the condition 𝑑

𝑡
̸= 0 is equivalent to cos 𝜃 ̸=

−1. Consider
2∇𝑓 (𝑥)𝑇 𝑑

𝑡
= − ∇𝑓 (𝑥)

2

− ∇𝑓 (𝑥)𝑇 ∇𝑝 (𝑥, 𝑥∗, 𝜌)

= − ∇𝑓 (𝑥)
2

− cos 𝜃 ∇𝑓 (𝑥)
∇𝑝 (𝑥, 𝑥∗, 𝜌)

= − ∇𝑓 (𝑥)
2

(1 + cos 𝜃) < 0.
(18)

In the same way, we can learn ∇𝑝(𝑥, 𝑥∗, 𝜌)𝑇𝑑
𝑡
< 0.

According to the above theorem, we have the following.
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Corollary 9. Let 𝑑 = −∇𝑓(𝑥)/‖∇𝑓(𝑥)‖−∇𝑝(𝑥, 𝑥∗, 𝜌)/‖∇𝑝(𝑥,
𝑥∗, 𝜌)‖; then 𝑑 is a descent direction of both 𝑓(𝑥) and
𝑝(𝑥, 𝑥∗, 𝜌) if and only if 𝑑 ̸= 0.

In the following, we discuss the relationship between the
filter 𝐹

𝑘
and the low level set 𝑆

2
(𝑥∗).

Theorem10. Suppose the filter set𝐹
𝑘
= {𝑥
𝑙
| 1 ≤ 𝑙 ≤ 𝑘}. If𝑥

𝑘+1

can be accepted by the filter 𝐹
𝑘
and dominates all of 𝑥

𝑙
(∀𝑥
𝑙
∈

𝐹
𝑘
), then 𝑥

𝑘+1
∈ 𝑆
2
(𝑥∗).

Proof. If there is an 𝑥
𝑙
∈ 𝐹
𝑘
⋂𝑆
2
(𝑥∗), the conclusion is true

since 𝑥
𝑘+1

dominates 𝑥
𝑙
. Otherwise, the point 𝑥∗ is certainly

in 𝐹
𝑘
, but 𝑥

𝑘+1
dominates 𝑥∗. According to Definition 2 and

inequation (4), 𝑓(𝑥
𝑘+1

) < 𝑓(𝑥∗), that means 𝑥
𝑘+1

∈ 𝑆
2
(𝑥∗).

As above, we denote a global minimizer by 𝑥𝐺.

Theorem 11. Suppose that the current filter is 𝐹
𝑘
= {𝑥
𝑙
| 1 ≤

𝑙 ≤ 𝑘}, 𝑆
2
(𝑥∗) ̸= 0. There must exist a point 𝑥

𝑁
∈ 𝑆
2
(𝑥∗) such

that 𝑥
𝑁
dominates all of 𝑥

𝑙
(∀𝑥
𝑙
∈ 𝐹
𝑘
\ 𝐺(𝑃)) if 𝜌 > 0 large

enough.

Proof. Two cases will be considered.
(i) 𝐹
𝑘
⋂𝑆
2
(𝑥∗) = 0, that is, 𝐹

𝑘
⊆ 𝑆
1
(𝑥∗)⋃{𝑥∗}. Then,

∀𝑥
𝑁

∈ 𝑆
2
(𝑥∗), there is 𝑓(𝑥

𝑁
) < 𝑓(𝑥

𝑙
), ∀𝑥
𝑙
∈ 𝐹
𝑘
. Next we

show

𝑝 (𝑥
𝑁
, 𝑥∗, 𝜌) < 𝑝 (𝑥

𝑙
, 𝑥∗, 𝜌) , ∀𝑥

𝑙
∈ 𝐹
𝑘
. (19)

Inequality (19) is precisely equivalent to

− 𝑥𝑁 − 𝑥∗
2

+
𝜌

1 + (𝑓 (𝑥
𝑁
) − 𝑓 (𝑥∗))

2
< − 𝑥𝑙 − 𝑥∗

2

+ 𝜌.

(20)

If we set

𝜌 > (𝐷2 − 𝑥𝑁 − 𝑥∗)
1 + (𝑓 (𝑥

𝑁
) − 𝑓 (𝑥∗))

2

(𝑓 (𝑥
𝑁
) − 𝑓 (𝑥∗))

2
, (21)

where𝐷 is defined in expression (3), there surely will be

𝜌 > (𝑥𝑙 − 𝑥∗
2

− 𝑥𝑁 − 𝑥∗)
1 + (𝑓 (𝑥

𝑁
) − 𝑓 (𝑥∗))

2

(𝑓 (𝑥
𝑁
) − 𝑓 (𝑥∗))

2
(22)

since ‖𝑥
𝑙
− 𝑥∗‖ ≤ 𝐷. We can learn that inequality (22) is

exactly equivalent to inequality (20) by simple derivation,
which means inequality (19) holds.

(ii) 𝐹
𝑘
⋂𝑆
2
(𝑥∗) ̸= 0. We only need to consider those

points in the set 𝐹
𝑘
⋂𝑆
2
(𝑥∗), since the situation of the point

in the set 𝐹
𝑘
⋂𝑆
1
(𝑥∗) is similar to case (i).

(a) If there is an 𝑥𝐺 ∈ 𝐹
𝑘
, we will show that 𝑥𝐺 dominates

all of 𝑥
𝑙
(∀𝑥
𝑙
∈ (𝐹
𝑘
\ 𝐺(𝑃))⋂ 𝑆

2
(𝑥∗)).

Obviously, 𝑓(𝑥𝐺) < 𝑓(𝑥
𝑙
), ∀𝑥
𝑙
∈ 𝐹
𝑘
\ 𝐺(𝑃).

Because |𝐹
𝑘
| is finite, there exists𝑥

𝑙
∈ 𝐹
𝑘
⋂𝑆
2
(𝑥∗) tomake

𝑓(𝑥
𝑙
) = min

𝑥
𝑙
∈𝐹
𝑘

𝑓(𝑥
𝑙
). And, according to continuity of 𝑓(𝑥),

there must be 𝜀 > 0 to make inequality

𝑓 (𝑥𝐺) − 𝑓 (𝑥∗) < 𝑓 (𝑥𝐺) + 𝜀 − 𝑓 (𝑥∗)

< 𝑓 (𝑥
𝑙
) − 𝑓 (𝑥∗) ≤ 𝑓 (𝑥

𝑙
) − 𝑓 (𝑥∗)

< 0, ∀𝑥
𝑙
∈ 𝐹
𝑘
\ 𝐺 (𝑃)

(23)

hold.
Now, ∀𝑥

𝑙
∈ (𝐹
𝑘
\ 𝐺(𝑃))⋂ 𝑆

2
(𝑥∗), from inequality (23) we

have

𝑝 (𝑥𝐺, 𝑥∗, 𝜌) − 𝑝 (𝑥
𝑙
, 𝑥∗, 𝜌)

= −
𝑥
𝐺 − 𝑥∗


2

+ 𝑥𝑙 − 𝑥∗
2

+
𝜌

1 + (𝑓 (𝑥𝐺) − 𝑓 (𝑥∗))
2
−

𝜌

1 + (𝑓 (𝑥
𝑙
) − 𝑓 (𝑥∗))

2

< (𝐷2 −
𝑥
𝐺 − 𝑥∗


2

) +
𝜌

1 + (𝑓 (𝑥𝐺) − 𝑓 (𝑥∗))
2

−
𝜌

1 + (𝑓 (𝑥𝐺) + 𝜀 − 𝑓 (𝑥∗))
2
.

(24)

Thus, provided

𝜌 ≥ (𝐷2 −
𝑥
𝐺 − 𝑥∗


2

)

⋅
[1 + (𝑓 (𝑥𝐺) −𝑓 (𝑥∗))

2

][1 + (𝑓 (𝑥𝐺)+ 𝜀 − 𝑓 (𝑥∗))
2

]

(𝑓 (𝑥𝐺) − 𝑓 (𝑥∗))
2

− (𝑓 (𝑥𝐺) + 𝜀 − 𝑓 (𝑥∗))
2

,

(25)

holds, the inequality 𝑝(𝑥𝐺, 𝑥∗, 𝜌) < 𝑝(𝑥
𝑙
, 𝑥∗, 𝜌) (∀𝑥

𝑙
∈ (𝐹
𝑘
\

𝐺(𝑃))⋂ 𝑆
2
(𝑥∗)) can be founded. So we have got that 𝑥𝐺

dominates all of 𝑥
𝑙
(∀𝑥
𝑙
∈ (𝐹
𝑘
\ 𝐺(𝑃))⋂ 𝑆

2
(𝑥∗)) if 𝑥𝐺 ∈ 𝐹

𝑘
.

(b) 𝑥𝐺 ∉ 𝐹
𝑘
. Let 𝐿

𝜖
= {𝑥
𝑁

| 𝑓(𝑥
𝑁
) = 𝑓(𝑥𝐺) + 𝜀}.

Obviously, 𝑓(𝑥
𝑁
) < 𝑓(𝑥

𝑙
) ≤ 𝑓(𝑥

𝑙
) (∀𝑥
𝑙
∈ 𝐹
𝑘
⋂𝑆
2
(𝑥∗) based

on inequality (23). Similar to the proof of (a), we can get
𝑝(𝑥
𝑁
, 𝑥∗, 𝜌) < 𝑝(𝑥

𝑙
, 𝑥∗, 𝜌) if

𝜌 ≥ (𝐷2 − 𝑥𝑁 − 𝑥∗
2

)

⋅
[1 + (𝑓 (𝑥

𝑁
) − 𝑓 (𝑥∗))

2

] [1 + (𝑓 (𝑥
𝑙
) − 𝑓 (𝑥∗))

2

]

(𝑓 (𝑥
𝑁
) − 𝑓 (𝑥∗))

2

− (𝑓 (𝑥
𝑙
) − 𝑓 (𝑥∗))

2
.

(26)

Now the filled function algorithm based on the filter
technique for global optimization is listed.

Algorithm 12. Consider the following.

Step 1. Initialization: given a tolerance 𝜖 > 0, set the parameter
𝛿 > 0, 𝑚 > 𝑛; choose an upper bound of 𝜌, 𝜌 = 106; the scale
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Table 1: Problem 1.

𝑘 𝑥0
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
) 𝐹1

𝑘

1 (−2, 1) (−1.6071, 0.5686) 2.1043 (−1.6071, −0.2314)
2 (−1.6071, −0.2314) (−1.7036, −0.7961) −0.98945182155 (−0.1569, −0.5296)
3 (−0.1569, −0.5296) (−0.0898, −0.7127) −1.0316 (0.0435, 0.7204)

Table 2: Problem 2 for 𝑛 = 5.

𝑘 𝑥0
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
) 𝐹1

𝑘

1 (8, 8, 8, 8, 8) (1.9899, 1.9897, 1.9897, 1.9897, 1.9898) 3.1096 (1.0795, 1.9777, 1.9896, 1.9896, 1.9898)
2 (1.0795, 1.9777, 1.9896, 1.9896, 1.9898) (1.0000, 1.0000, 1.0000, 1.0000, 1.0000) 0 (1.0000, 1.0000, 1.0000, 1.0000, 1.0000)

factor 𝛼 = 10; select an initial point 𝑥0 ∈ 𝑋. Obtain a local
minimize 𝑥∗ of 𝑓(𝑥) from 𝑥0 by any classical method. Let the
initial filter set 𝐹

1
= {𝑥∗, 𝑥∞}, where ‖𝑥∞‖ is large enough.

Set 𝑘 = 1, 𝜌 = 10.

Step 2. 𝑖 = 1, for 𝑖 = 1, 2, . . . , 𝑚, do next.

Step 3. Choose a point 𝑥
𝑘
∈ 𝑈0(𝑥∗, 𝛿).

Step 4. If |𝐹
𝑘
| > 1, go to next step. Otherwise, go to Step 8.

Step 5. If ‖∇𝑓(𝑥
𝑘
)‖ > ‖∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌)‖, go to Step 5.1.

Otherwise go to Step 6.

Step 5.1. If ∇𝑓(𝑥
𝑘
)𝑇∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌) ≥ −(1/2)‖∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌)‖2,

let 𝑡 = 1/3, 𝑑𝑘 = −(2/3)∇𝑓(𝑥
𝑘
) − (1/3)∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌); go to

Step 9. Otherwise, go to Step 7.

Step 6. If ‖∇𝑓(𝑥
𝑘
)‖ < ‖∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌)‖, go to Step 6.1.

Otherwise go to Step 7.

Step 6.1. If ∇𝑓(𝑥
𝑘
)𝑇∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌) ≥ −(1/2)‖∇𝑓(𝑥

𝑘
)‖2, 𝑡 = 2/3,

𝑑𝑘 = −(1/3)∇𝑓(𝑥
𝑘
) − (2/3)∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌); otherwise, 𝑡 = 1,

𝑑
𝑘
= −∇𝑝(𝑥

𝑘
, 𝑥∗, 𝜌); go to Step 9.

Step 7. Consider 𝑑𝑘 = −∇𝑓(𝑥)/‖∇𝑓(𝑥)‖−∇𝑝(𝑥, 𝑥∗, 𝜌)/‖∇𝑝(𝑥,
𝑥∗, 𝜌)‖; go to Step 9.

Step 8. Obtain a local minimize 𝑥∗ of 𝑓(𝑥) by taking 𝑥
𝑘
as the

initial point with any classical algorithm. Go to Step 2.

Step 9. Let 𝜆 = 1.

Step 9.1. If 𝑥
𝑘
+𝜆𝑑𝑘 can be accepted by 𝐹

𝑘
, let 𝑥
𝑘+1

= 𝑥
𝑘
+𝜆𝑑𝑘;

go to Step 10. Otherwise, go to next step.

Step 9.2. Let 𝑎 = 0.5, 𝜆 = 𝑎𝜆. If 𝜆 > 10−6, go to Step 9.1;
otherwise, go to Step 11.

Step 10. If 𝑥
𝑘+1

∈ 𝑋, update 𝐹
𝑘
to 𝐹
𝑘+1

, 𝑘 = 𝑘+ 1; go to Step 4.
Otherwise, go to next step.

Step 11. 𝑖 = 𝑖 + 1. If 𝑖 ≤ 𝑚; go to Step 3. Otherwise go to next
step.

Step 12. If 𝜌 > 𝜌, the algorithm stops and𝑓(𝑥∗) can be treated
as the optimal value. Otherwise, 𝜌 = 𝛼𝜌; go to Step 2.

5. Numerical Results

The aim of this section is to apply filter-filled function
algorithm to some classical and well known minimization
problems. Based on the proposed algorithm, we use matlab
2012b working on the windows 7 system with Inter3 2328M
CPU and 2G RAM.The numerical examples investigated are
the following ones.

Problem 1 (6-hump camel back function [4]). Consider

𝑓 (𝑥) = 4𝑥2
1
− 2.1𝑥4

1
+
1

3
𝑥6
1
− 𝑥
1
𝑥
2
− 4𝑥2
2
+ 4𝑥4
2
,

−3 ≤ 𝑥
1
, 𝑥
2
≤ 3.

(27)

The global minimum solutions are 𝑥∗
𝐺
= (0.0898, 0.7127)

or (−0.0898, −0.7127) and 𝑓∗
𝐺
= −1.0316.

Problem 2 (𝑛-dimensional Sine-square function 𝐼 [2]). Con-
sider

𝑓 (𝑥) =
𝜋

𝑛
{10 sin2 (𝜋𝑥

1
)

+
𝑛−1

∑
𝑖=1

[(𝑥
𝑖
− 1)
2

(1 + 10sin2 (𝜋𝑥
𝑖+1

))]

+ (𝑥
𝑛
− 1)
2

}

−10 ≤ 𝑥
𝑖
≤ 10, 𝑖 = 1, 2, . . . , 𝑛.

(28)

The function is tested for 𝑛 = 5, 10. The global minimum
solution is uniformly expressed as 𝑥∗

𝐺
= (1.0000, 1.0000, . . . ,

1.0000) and 𝑓∗
𝐺
= 0.0000.

The algorithm presented can also be used to solve the
nonlinear system of equations

𝐹 (𝑥) = 0, 𝑥 ∈ 𝑅𝑛, (29)

where 𝐹 : 𝑅𝑛 → 𝑅𝑚 is a vector function. Let 𝑓(𝑥) = ‖𝐹(𝑥)‖2
2

in the process of calculation.
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Table 4: Problem 3.

𝑘 𝑥0
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
) 𝐹

𝑘
(𝑥∗
𝑘
)

1 (

(

1.0000

3.0000

4.0000

3.0000

1.0000

)

)

(

(

0.0174

5.7093

0.1582

0.8555

0.0365

)

)

1.197𝑒 − 004 (

(

0.0072

−0.0053

0.0040

0.0039

−0.0029

)

)

2 (

(

0.0173

5.7094

0.1583

0.8554

0.0365

)

)

(

(

0.0056

18.9850

0.0877

0.8593

0.0369

)

)

5.1942𝑒 − 006 (

(

0.0012

−0.0022

7.5084𝑒 − 4

0.0013

−3.2927𝑒 − 4

)

)

3 (

(

0.0055

18.98501

0.0876

0.8593

0.0369

)

)

(

(

0.0034

31.3287

0.0683

0.8595

0.0370

)

)

3.2195𝑒 − 012 (

(

−0.0011

−0.0022

−7.1489𝑒 − 4

−0.0016

−0.0010

)

)

Table 5: Problem 4.

𝑘 𝑥0
𝑘

𝑥∗
𝑘

𝑓(𝑥∗
𝑘
) 𝐹

𝑘
(𝑥∗
𝑘
)

1 (

(

0.0000

0.0000

0.0000

0.0000

0.0000

)

)

(

(

0.6956

0.9341

0.9186

0.9481

1.6414

)

)

0.0485 (

(

−0.1666

0.0719

0.0564

0.0859

−0.0711

)

)

2 (

(

0.6955

0.9341

0.9186

0.9481

1.6414

)

)

(

(

0.9164

0.9164

0.9164

0.9164

1.4183

)

)

2.4518𝑒 − 010 (

(

1𝑒 − 4

1𝑒 − 4

0

0

3.1401𝑒 − 5

)

)

Problem 3 (see [12–14]). Consider

𝑥
1
𝑥
2
+ 𝑥
1
− 3𝑥
5
= 0,

2𝑥
1
𝑥
2
+ 𝑥
1
+ 3𝑅
10
𝑥2
2
+ 𝑥
2
𝑥2
3
+ 𝑅
7
𝑥
2
𝑥
3

+ 𝑅
9
𝑥
2
𝑥 − 4 + 𝑅

8
𝑥
2
− 𝑅𝑥
5
= 0,

2𝑥
2
𝑥2
3
+ 𝑅
7
𝑥
2
𝑥
3
+ 2𝑅
5
𝑥2
3
+ 𝑅
6
𝑥
3
− 8𝑥
5
= 0,

𝑅
9
𝑥
2
𝑥
4
+ 2𝑥2
4
− 4𝑅𝑥

5
= 0,

𝑥
1
𝑥
2
+ 𝑥
1
+ 𝑅
10
𝑥2
2
+ 𝑥
2
𝑥2
3
+ 𝑅
7
𝑥
2
𝑥
3
+ 𝑅
9
𝑥
2
𝑥
4

+ 𝑅
8
𝑥
2
+ 𝑅
5
𝑥2
3
+ 𝑅
6
𝑥
3
+ 𝑥2
4
− 1 = 0,

0.0001 ≤ 𝑥
𝑖
≤ 100, 𝑖 = 1, 2, 3, 4, 5,

(30)

where

𝑅 = 10, 𝑅
5
= 0.193, 𝑅

6
= 4.10622 × 10−4,

𝑅
7
= 5.45177 × 10−4, 𝑅

8
= 4.4975 × 10−7,

𝑅
9
= 3.40735 × 10−5, 𝑅

10
= 9.615 × 10−7.

(31)

The known solution of this problem in [14] is

(0.003431, 31.325636, 0.068352, 0.859530, 0.036963)𝑇 .
(32)

Problem 4 (see [12–14]). Consider

2𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 2𝑥
2
+ 𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 𝑥
2
+ 2𝑥
3
+ 𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
+ 𝑥
2
+ 𝑥
3
+ 2𝑥
4
+ 𝑥
5
− 6 = 0,

𝑥
1
𝑥
2
𝑥
3
𝑥
4
𝑥
5
− 1 = 0,

−2 ≤ 𝑥
𝑖
≤ 2, 𝑖 = 1, 2, 3, 4, 5.

(33)

The known solution of this problem in [14] is

(1, 1, 1, 1, 1)𝑇 , (0.916, 0.916, 0.916, 0.916, 1.418)𝑇 .
(34)
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Now we list the computational results. The main iterative
results are summarized in Tables 1, 2, 3, 4, and 5 for each
function. The symbols used are shown as follows:

𝑥0
𝑘
: the 𝑘th initial point;

𝑘: the iteration number in finding the 𝑘th local
minimizer;
𝑥∗
𝑘
: the 𝑘th local minimizer;

𝑓(𝑥∗
𝑘
): the function value of the 𝑘th local minimizer;

𝐹1
𝑘
: the only entry which dominates the others in the

𝑘th basin;
𝐹
𝑘
(𝑥∗
𝑘
): the vector function values at 𝑥∗

𝑘
in test

Problems 3 and 4.
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