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The behaviour of solutions for certain third-order nonlinear differential equations withmultiple deviating arguments is considered.
By employing Lyapunov’s secondmethod, a complete Lyapunov functional is constructed and used to establish sufficient conditions
that guarantee existence of unique solutions that are periodic, uniformly asymptotically stable, and uniformly ultimately bounded.
Obtained results not only are new but also include many outstanding results in the literature. Finally, the correctness and
effectiveness of the results are justified with examples.

1. Introduction

Differential equations of second and third order with and
without delay are essential tools in scientific modeling of
problems frommany fields of sciences and technologies, such
as biology, chemistry, physics, mechanics, electronics, engi-
neering, economy, control theory, medicine, atomic energy,
and information theory. Many authors have proposed differ-
entmethods, in the literature, to discuss qualitative bahaviour
of solutions to nonlinear differential equations. Here, we will
single out two methods. In this direction, we can mention
Lyapunov’s second method which demands the construction
of a suitable positive definite function (or functional) whose
derivative is negative definite; that is, it involves finding
the system of closed surfaces that contained the origin and
are converging to it. The second method is the frequency
domain technique which involves the study of position of
the characteristics polynomial roots in the complex plane to
obtain certain matrix inequalities which must be positive.

The qualitative behaviors of solutions of differential equa-
tions of third order have been discussed extensively and are
still receiving attention of authors because of their practical
applications. In this regard, we can mention the works of
Burton [1, 2], Driver [3], Hale [4], and Yoshizawa [5, 6]

which contain general results on the subject matters and
expository papers of Abou-El-Ela et al. [7], Ademola et al.
[8–10], Adesina [11], Afuwape andOmeike [12], Chukwu [13],
Gui [14], Omeike [15, 16], Sadek [17], Tejumola andTchegnani
[18], Tunç et al. [19–28], Yao andWang [29], and Zhu [30] and
the references cited therein.

Recently, Tunç [27] employed Lyapunov’s secondmethod
to prove two results on stability and boundedness of nonau-
tonomous differential equations with constant delay

...
𝑥 + 𝑓 (𝑡, 𝑥, 𝑥 (𝑡 − 𝜏) , 𝑥̇, 𝑥̇ (𝑡 − 𝜏) , 𝑥̈, 𝑥̈ (𝑡 − 𝜏))

+ 𝑔 (𝑥̇ (𝑡 − 𝜏)) + ℎ (𝑥 (𝑡 − 𝜏))

= 𝑝 (𝑡, 𝑥, 𝑥 (𝑡 − 𝜏) , 𝑥̇, 𝑥̇ (𝑡 − 𝜏) , 𝑥̈, 𝑥̈ (𝑡 − 𝜏)) .

(1)

Furthermore, Ademola [9] discussed existence and unique-
ness of a periodic solution to the third-order differential
equation

...
𝑥 + 𝑓 (𝑡, 𝑥, 𝑥̇, 𝑥̈) 𝑥̈

+

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑡, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)))
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+

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑡, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)))

= 𝑝 (𝑡, 𝑥, 𝑥 (𝑡 − 𝜏
𝑖
(𝑡)) , 𝑥̇, 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥̈, 𝑥̈ (𝑡 − 𝜏

𝑖
)) .

(2)

Unfortunately, the problem of uniform asymptotic stability,
uniform ultimate boundedness, and existence and unique-
ness of periodic solutions of the third-order delay differential
equation (3), where all the nonlinear terms (specifically, the
forcing term 𝑝

𝑖
and the function𝑓

𝑖
) are sum of multiple devi-

ating arguments, is yet to be investigated. This is not uncon-
nected with the difficulties associated with the construction
of suitable complete Lyapunov functional. The aim of this
paper is to fill this gap. We will consider

...
𝑥 +

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥̇, 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥̈,

𝑥̈ (𝑡 − 𝜏
𝑖
(𝑡))) +

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)))

+

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡 − 𝜏

𝑖
(𝑡))) =

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑥̇,

𝑥̇ (𝑡 − 𝜏
𝑖
(𝑡)) , 𝑥̈, 𝑥̈ (𝑡 − 𝜏

𝑖
(𝑡))) ,

(3)

where 𝑓
𝑖
, 𝑔
𝑖
, ℎ
𝑖
, and 𝑝

𝑖
are continuous functions in their

respective arguments onR+ ×R3𝑛+3,R,R+, andR+ ×R3𝑛+3,
respectively, with R+ = [0,∞) and R = (−∞,∞). The dots
indicate differentiation with respect to the independent var-
iable 𝑡. Equation (3) is equivalent to the system of first-order
delay differential equation

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ =

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑦, 𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑧,

𝑧 (𝑡 − 𝜏
𝑖
(𝑡))) −

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑦,

𝑦 (𝑡 − 𝜏
𝑖
(𝑡)) , 𝑧, 𝑧 (𝑡 − 𝜏

𝑖
(𝑡))) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑦 (𝑡))

−

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡)) +

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑔
𝑖
(𝑦 (𝑠)) 𝑧 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠,

(4)

where 0 ≤ 𝜏
𝑖
(𝑡) ≤ 𝛾, 𝛾 > 0 is a constant to be determined

latter, and the derivatives 𝑔󸀠
𝑖
and ℎ󸀠

𝑖
for all 𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛)

exist and are continuous for all 𝑥 and 𝑦 with ℎ
𝑖
(0) = 0. This

work is motivated by the recent works in [9, 27]. Our results
are new; in fact according to our observation from relevant

literature, this is the first paper where both the functions 𝑓
𝑖

and the forcing term 𝑝
𝑖
contain sum of multiple deviating

arguments. For the next section, for easy references, we recall
the main mathematical tools that will be used in the sequel.
Our main results are stated and proved in Section 3 while in
the last section, examples are given.

2. Preliminary Results

Consider the following general nonlinear nonautonomous
delay differential equation

𝑋̇ =

𝑑𝑋

𝑑𝑡

= 𝐹 (𝑡, 𝑋
𝑡
) ,

𝑋
𝑡
= 𝑋 (𝑡 + 𝜃) , − 𝑟 ≤ 𝜃 < 0, 𝑡 ≥ 0,

(5)

where 𝐹 : R+×𝐶
𝐻
→ R𝑛 is a continuous mapping and 𝐹(𝑡+

𝜔, 𝜙) = 𝐹(𝑡, 𝜙) for all 𝜙 ∈ 𝐶 and for some positive constant 𝜔.
We assume that 𝐹 takes closed bounded sets into bounded
sets inR𝑛. (𝐶, ‖⋅‖) is the Banach space of continuous function
𝜑 : [−𝑟, 0] → R𝑛 with supremum norm, 𝑟 > 0; for 𝐻 > 0,
we define 𝐶

𝐻
⊂ 𝐶 by 𝐶

𝐻
= {𝜑 ∈ 𝐶 : ‖𝜑‖ < 𝐻}, and 𝐶

𝐻
is the

open𝐻-ball in 𝐶, 𝐶 = 𝐶([−𝑟, 0],R𝑛).

Definition 1 (see [2]). A continuous function𝑊: R+ → R+

with𝑊(0) = 0,𝑊(𝑠) > 0 if 𝑠 ̸= 0 and𝑊 strictly increasing is a
wedge. (We denote wedges by𝑊 or𝑊

𝑖
, where 𝑖 is an integer.)

Definition 2 (see [2]). The zero solution of (5) is asymptoti-
cally stable if it is stable and if for each 𝑡

0
≥ 0 there is 𝜂 > 0

such that ‖𝜙‖ ≤ 𝜂 implies that

𝑋(𝑡, 𝑡
0
, 𝜙) 󳨀→ 0 as 𝑡 󳨀→ ∞. (6)

Definition 3 (see [1]). An element 𝜓 ∈ 𝐶
𝐻
is in the 𝜔-limit

set of 𝜙, say Ω(𝜙), if𝑋(𝑡, 0, 𝜙) is defined on R+ and there is a
sequence {𝑡

𝑛
}, 𝑡
𝑛
→ ∞ as 𝑛 → +∞, with ‖𝑋

𝑡𝑛
(𝜙)−𝜓‖ → 0

as 𝑛 → ∞, where𝑋
𝑡𝑛
(𝜙) = 𝑋(𝑡

𝑛
+ 𝜃, 0, 𝜙) for −𝑟 ≤ 𝜃 < 0.

Definition 4 (see [30]). A set𝑄 ⊂ 𝐶
𝐻
is an invariant set if, for

any 𝜙 ∈ 𝑄, the solution 𝑋(𝑡, 0, 𝜙) of (5) is defined on R+ and
𝑋
𝑡
(𝜙) ∈ 𝑄 for 𝑡 ∈ R+.

Lemma5 (see [6]). Suppose that𝐹(𝑡, 𝜙) ∈ 𝐶
0
(𝜙) and𝐹(𝑡, 𝜙) is

periodic in 𝑡 of period𝜔,𝜔 ≥ 𝑟, and consequently for any 𝛼 > 0

there exists 𝐿(𝛼) > 0 such that 𝜙 ∈ 𝐶
𝛼
implies |𝐹(𝑡, 𝜙)| ≤ 𝐿(𝛼).

Suppose that a continuous Lyapunov functional 𝑉(𝑡, 𝜙) exists,
defined on 𝑡 ∈ R+, 𝜙 ∈ 𝑆

∗, 𝑆∗ is the set of 𝜙 ∈ 𝐶 such that
|𝜙(0)| ≥ 𝐻 (𝐻may be large), and𝑉(𝑡, 𝜙) satisfies the following
conditions:

(i) 𝑎(|𝜙(0)|) ≤ 𝑉(𝑡, 𝜙) ≤ 𝑏(‖𝜙‖), where 𝑎(𝑟) and 𝑏(𝑟)

are continuous, increasing, and positive for 𝑟 ≥ 𝐻 and
𝑎(𝑟) → ∞ as 𝑟 → ∞;

(ii) 𝑉̇
(5)
(𝑡, 𝜙) ≤ −𝑐(|𝜙(0)|), where 𝑐(𝑟) is continuous and

positive for 𝑟 ≥ 𝐻.

Suppose that there exists𝐻
1
> 0,𝐻

1
> 𝐻, such that

ℎ𝐿 (𝛾
∗

) < 𝐻
1
− 𝐻, (7)
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where 𝛾∗ > 0 is a constant which is determined in the following
way: By the condition on 𝑉(𝑡, 𝜙) there exist 𝛼 > 0, 𝛽 > 0,
and 𝛾 > 0 such that 𝑏(𝐻

1
) ≤ 𝑎(𝛼), 𝑏(𝛼) ≤ 𝑎(𝛽), and 𝑏(𝛽) ≤

𝑎(𝛾). 𝛾∗ is defined by 𝑏(𝛾) ≤ 𝑎(𝛾
∗

). Under the above conditions,
there exists a periodic solution of (5) of period 𝜔. In particular,
relation (7) can always be satisfied if ℎ is sufficiently small.

Lemma 6 (see [6]). Suppose that 𝐹(𝑡, 𝜙) is defined and
continuous on 0 ≤ 𝑡 ≤ 𝑐, 𝜙 ∈ 𝐶

𝐻
, and there exists a continuous

Lyapunov functional 𝑉(𝑡, 𝜙, 𝜑) defined on 0 ≤ 𝑡 ≤ 𝑐, 𝜙, and
𝜑 ∈ 𝐶

𝐻
which satisfy the following conditions:

(i) 𝑉(𝑡, 𝜙, 𝜑) = 0 if 𝜙 = 𝜑;

(ii) 𝑉(𝑡, 𝜙, 𝜑) > 0 if 𝜙 ̸= 𝜑;

(iii) for the associated system

𝑥̇ (𝑡) = 𝐹 (𝑡, 𝑥
𝑡
) ,

̇𝑦 (𝑡) = 𝐹 (𝑡, 𝑦
𝑡
) ,

(8)

we have 𝑉󸀠
(8)
(𝑡, 𝜙, 𝜑) ≤ 0, where, for ‖𝜙‖ = 𝐻 or ‖𝜑‖ =

𝐻, we understand that the condition𝑉󸀠
(8)
(𝑡, 𝜙, 𝜑) ≤ 0 is

satisfied in case 𝑉󸀠 can be defined.

Then, for given initial value 𝜙 ∈ 𝐶
𝐻1
, 𝐻
1
< 𝐻, there exists a

unique solution of (5).

Lemma 7 (see [6]). Suppose that a continuous Lyapunov
functional 𝑉(𝑡, 𝜙) exists, defined on 𝑡 ∈ R+, ‖𝜙‖ < 𝐻, and
0 < 𝐻

1
< 𝐻 which satisfies the following conditions:

(i) 𝑎(‖𝜙‖) ≤ 𝑉(𝑡, 𝜙) ≤ 𝑏(‖𝜙‖), where 𝑎(𝑟) and 𝑏(𝑟) are
continuous, increasing, and positive;

(ii) 𝑉̇
(5)
(𝑡, 𝜙) ≤ −𝑐(‖𝜙‖), where 𝑐(𝑟) is continuous and

positive for 𝑟 ≥ 0;

then the zero solution of (5) is uniformly asymptotically stable.

Lemma 8 (see [1]). Let 𝑉 : R+ × 𝐶 → R be continuous and
locally Lipschitz in 𝜙. If

(i) 𝑊
0
(|𝑋
𝑡
|) ≤ 𝑉(𝑡, 𝑋

𝑡
) ≤ 𝑊

1
(|𝑋
𝑡
|) +

𝑊
2
(∫

𝑡

𝑡−𝑟(𝑡)

𝑊
3
(𝑋
𝑡
(𝑠))𝑑𝑠);

(ii) 𝑉̇
(5)
(𝑡, 𝑋
𝑡
) ≤ −𝑊

4
(|𝑋
𝑡
|) + 𝑁, for some 𝑁 > 0, where

𝑊
𝑖
(𝑖 = 0, 1, 2, 3, 4) are wedges,

then 𝑋
𝑡
of (5) is uniformly bounded and uniformly ultimately

bounded for bound 𝐵.

3. Main Results

Wewill give the following notations before we state our main
results. Let
𝑛

∑

𝑖=1

𝑓
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑦, 𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑧, 𝑧 (𝑡 − 𝜏

𝑖
(𝑡)))

=

𝑛

∑

𝑖=1

𝑓
𝑖
(⋅) ,

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑡, 𝑥, 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑦, 𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) , 𝑧, 𝑧 (𝑡 − 𝜏

𝑖
(𝑡)))

=

𝑛

∑

𝑖=1

𝑝
𝑖
(⋅) .

(9)

For the first case of consideration set ∑𝑛
𝑖=1

𝑝
𝑖
(⋅) ≡ 0, system

(4) reduces to

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ = −

𝑛

∑

𝑖=1

𝑓
𝑖
(⋅) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑦 (𝑡)) −

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑥 (𝑡))

+

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑔
𝑖
(𝑦 (𝑠)) 𝑧 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠,

(10)

where 𝑓
𝑖
, 𝑔
𝑖
, ℎ
𝑖
, and 𝜏

𝑖
are functions defined in Section 1.

Let (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be any solution of (10); the continuously

differentiable functional employed in the proof of our results
is 𝑉 = 𝑉(𝑡, 𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) defined as

2𝑉 = 2

𝑛

∑

𝑖=1

(𝛼 + 𝑎
𝑖
) ∫

𝑥

0

ℎ
𝑖
(𝜉) 𝑑𝜉 + 4

𝑛

∑

𝑖=1

∫

𝑦

0

𝑔
𝑖
(𝜂) 𝑑𝜂

+ 4𝑦

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑥) + 2

𝑛

∑

𝑖=1

(𝛼 + 𝑎
𝑖
) 𝑦𝑧 + 2𝑧

2

+

𝑛

∑

𝑖=1

(𝛼
2

+ 𝛽

+ 𝑎
2

𝑖
) 𝑦
2

+

𝑛

∑

𝑖=1

𝛽𝑏
𝑖
𝑥
2

+ 2

𝑛

∑

𝑖=1

𝑎
𝑖
𝛽𝑥𝑦 + 2𝛽𝑥𝑧

+ ∫

0

−𝜏𝑖(𝑡)

∫

𝑡

𝑡+𝑠

[𝜆
1
𝑥
2

(𝜃) + 𝜆
2
𝑦
2

(𝜃) + 𝜆
3
𝑧
2

(𝜃)] 𝑑𝜃 𝑑𝑠,

(11)

where 𝛼 and 𝛽 are fixed positive constants satisfying

𝑏
−1

𝑖
𝑐
𝑖
< 𝛼 < 𝑎

𝑖
∀𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛) ;

0 < 𝛽

< min{𝑏
𝑖
,

𝑛

∑

𝑖=1

(𝛼𝑏
𝑖
− 𝑐
𝑖
) 𝐴
−1

1
,

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼)𝐴

−1

2
} ,

(12)
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with

𝐴
1
:= 2 [1 + 𝑎

𝑖
+ 𝛿
−1

𝑖
(𝑦
−1

𝑔
𝑖
(𝑦) − 𝑏

𝑖
)

2

] ,

𝐴
2
:= 4 [1 + 𝛿

−1

𝑖
(𝑧
−1

𝑓
𝑖
(⋅) − 𝑎

𝑖
)

2

] .

(13)

𝜆
1
, 𝜆
2
, and 𝜆

3
are nonnegative constants which will be deter-

mined later.

Remark 9. The Lyapunov functional defined in (11) is an
improvement on the one used in [9].

At last, we now state our main results and give their
proofs.

Theorem 10. Further to the assumptions on the functions 𝑓
𝑖
,

𝑔
𝑖
, ℎ
𝑖
, and 𝜏

𝑖
, suppose that, for all 𝑖 (𝑖 = 1, 2, 3, . . . , 𝑛), 𝑎

𝑖
, 𝛿
𝑖
, 𝑐
𝑖
,

𝐵
𝑖
, 𝜌 and 𝛾 are positive constants and for all 𝑡 ≥ 0:

(i) 𝑓
𝑖
(⋅)/𝑧 ≥ 𝑎

𝑖
for all 𝑧 ̸= 0;

(ii) 𝑏
𝑖
≤ 𝑔
𝑖
(𝑦)/𝑦 ≤ 𝐵

𝑖
for all 𝑦 ̸= 0;

(iii) ℎ
𝑖
(0) = 0, ℎ

𝑖
(𝑥)/𝑥 ≥ 𝛿

𝑖
for all 𝑥 ̸= 0;

(iv) ℎ󸀠
𝑖
(𝑥) ≤ 𝑐

𝑖
for all 𝑥 and 𝑎

𝑖
𝑏
𝑖
− 𝑐
𝑖
> 0;

(v) 𝜏
𝑖
(𝑡) ≤ 𝛾, 𝜏󸀠

𝑖
(𝑡) ≤ 𝜌, 𝜌 ∈ (0, 1); and if

𝛾 < min{
𝑛

∑

𝑖=1

𝛿
𝑖
(𝐵
𝑖
+ 𝑐
𝑖
)
−1

,

𝑛

∑

𝑖=1

(𝑎
𝑖
𝑏
𝑖
− 𝑐
𝑖
) 𝐴
−1

3
,

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼)𝐴

−1

4
} ,

(14)

where
𝐴
3
:= (𝐵
𝑖
+ 𝑐
𝑖
) (𝛼 + 𝑎

𝑖
)

+ 𝑐
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2) ,

𝐴
4
:= 22 (𝐵

𝑖
+ 𝑐
𝑖
) + 𝐵
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2) .

(15)

then the trivial solution of (10) is uniformly asymptotically
stable.

Remark 11. (i) If 𝑖 = 1, 𝑓
1
(⋅) = 𝜑(𝑥̇), 𝑔

1
(𝑥̇(𝑡−𝜏

1
(𝑡))) = 𝑔(𝑥̇(𝑡−

𝜏(𝑡))), and ℎ
1
(𝑥(𝑡−𝜏

1
(𝑡))) = ℎ(𝑥(𝑡−𝜏(𝑡))), (10) reduces to the

system considered in [29] and some of our hypotheses agree
with the hypotheses obtained therein.

(ii) When 𝑖 = 1, the functions 𝑓
1
(⋅) = 𝑔(𝑥, 𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 −

𝜏
1
(𝑡))) = 𝑓(𝑥(𝑡−𝜏), 𝑥̇(𝑡−𝜏)), and ℎ

1
(𝑥(𝑡−𝜏

1
(𝑡))) = ℎ(𝑥(𝑡−𝜏))

the above result includes that discussed in [24].
(iii) Whenever 𝑖 = 1, 𝑓

1
(⋅) = ℎ(𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) =

𝑔(𝑥̇(𝑡 − 𝜏(𝑡))), and ℎ
1
(𝑥(𝑡 − 𝜏

1
(𝑡))) = ℎ(𝑥(𝑡 − 𝜏(𝑡))), (10) spe-

cializes to that studied in [12]. Thus, the result of Theorem 10
coincides with results in [12] if 𝑖 = 1.

(iv) When ∑
𝑛

𝑖=1
𝑓
𝑖
(⋅) = 𝑎𝑥̈, ∑𝑛

𝑖=1
𝑔
𝑖
(𝑥̇(𝑡 − 𝜏

𝑖
(𝑡))) = 𝑏𝑥̇,

∑
𝑛

𝑖=1
ℎ
𝑖
(𝑥(𝑡 − 𝜏

𝑖
(𝑡))) = 𝑐𝑥, and ∑𝑛

𝑖=1
𝑝
𝑖
(⋅) = 0, (3) reduces to

linear constant coefficients differential equations and condi-
tions (i) to (v) of Theorem 10 specialize to the corresponding
Routh-Hurwitz criteria 𝑎 > 0, 𝑎𝑏 > 𝑐, and 𝑐 > 0.

(v) When 𝑖 = 1, 𝑓
1
(⋅) = 𝑎

1
𝑥̈, 𝑔
1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) = 𝑓

2
(𝑥̇(𝑡 −

𝜏
1
(𝑡))), and ℎ

𝑖
(𝑥(𝑡 − 𝜏

1
(𝑡))) = 𝑎

3
𝑥(𝑡), (10) specializes to that

discussed in [28]. Theorem 10 coincides with the stability
result in [28].

(vi) When ∑𝑛
𝑖=1

𝑓
𝑖
(⋅) = 𝑓(𝑥̈), ∑𝑛

𝑖=1
𝑔
𝑖
(𝑥̇(𝑡 − 𝜏

𝑖
(𝑡))) = 𝑔(𝑥̇),

∑
𝑛

𝑖=1
ℎ
𝑖
(𝑥(𝑡−𝜏

𝑖
(𝑡))) = ℎ(𝑥), and∑𝑛

𝑖=1
𝑝
𝑖
(⋅) = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥̈), then

(3) reduces to the ordinary differential equation studied in
[31].

(vii) If 𝑖 = 1 and 𝜏
𝑖
(𝑡) = 𝜏 then (3) coincides with (2) dis-

cussed in [27]; hence our hypotheses coincide with that of
Tunç in [27].

(viii) Whenever 𝑖 = 1, 𝑓
1
(⋅) = 𝑓(𝑥, 𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) =

𝑔(𝑥(𝑡−𝜏(𝑡)), 𝑥̇(𝑡−𝜏(𝑡))), and ℎ
1
(𝑥(𝑡−𝜏

1
(𝑡))) = ℎ(𝑥(𝑡−𝜏(𝑡))),

(10) is a particular case of that studied in [7]. Our hypotheses
coincide with that in [7] except for sup{ℎ󸀠(𝑥)} = 𝑐 > 0 which
is replaced by a more general condition.

(ix) Finally, the functions𝑓
𝑖
(⋅) and 𝑝

𝑖
(⋅) used in this paper

extend the works in [7–10, 12, 24, 27–29, 31].

In what follows, wewill state and prove a result that would
be useful in the proof of Theorem 10 and subsequent ones.

Lemma 12. Under the hypotheses of Theorem 10 there exist
positive constants𝐷

0
= 𝐷
0
(𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝛿
𝑖
, 𝛼, 𝛽),𝐷

1
= 𝐷
1
(𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
,

𝐵
𝑖
, 𝛼, 𝛽), and𝐷

2
= 𝐷
2
(𝜆
1
, 𝜆
2
, 𝜆
3
) such that for all (𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) ∈

R3

𝐷
0
(𝑥
2

(𝑡) + 𝑦
2

(𝑡) + 𝑧
2

(𝑡)) ≤ 𝑉 (𝑡, 𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)

≤ 𝐷
1
(𝑥
2

(𝑡) + 𝑦
2

(𝑡) + 𝑧
2

(𝑡))

+ 𝐷
2
∫

0

−𝜏𝑖(𝑡)

∫

𝑡

𝑡+𝑠

(𝑥
2

(𝜃) + 𝑦
2

(𝜃) + 𝑧
2

(𝜃)) 𝑑𝜃 𝑑𝑠.

(16)

Furthermore, there exists a constant𝐷
3
= 𝐷
3
(𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝐵
𝑖
, 𝛿
𝑖
, 𝛼,

𝛽, 𝛾, 𝜌, 𝜆
1
, 𝜆
2
, 𝜆
3
) > 0 such that

𝑉̇
(10)

=

𝑑

𝑑𝑡

𝑉 (𝑡, 𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(10)

≤ −𝐷
3
(𝑥
2

(𝑡) + 𝑦
2

(𝑡) + 𝑧
2

(𝑡)) .

(17)

Proof. Let (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be any solution of (10); since ℎ

𝑖
(0) = 0,

(11) can be recast in the form

𝑉 =

𝑛

∑

𝑖=1

𝑏
−1

𝑖
∫

𝑥

0

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2ℎ
󸀠

𝑖
(𝜉)] ℎ
𝑖
(𝜉) 𝑑𝜉

+ 2

𝑛

∑

𝑖=1

∫

𝑦

0

(𝜂
−1

𝑔
𝑖
(𝜂) − 𝑏

𝑖
) 𝜂 𝑑𝜂 +

𝑛

∑

𝑖=1

𝑏
−1

𝑖
(ℎ
𝑖
(𝑥)

+ 𝑏
𝑖
𝑦)
2

+

1

2

𝛽𝑦
2

+

1

2

𝑛

∑

𝑖=1

(𝛽𝑥 + 𝑎
𝑖
𝑦 + 𝑧)

2

+

1

2

(𝛼𝑦

+ 𝑧)
2

+

1

2

𝑛

∑

𝑖=1

𝛽 (𝑏
𝑖
− 𝛽) 𝑥

2

+

1

2

∫

0

−𝜏𝑖(𝑡)

∫

𝑡

𝑡+𝑠

(𝜆
1
𝑥
2

(𝜃)

+ 𝜆
2
𝑦
2

(𝜃) + 𝜆
3
𝑧
2

(𝜃)) 𝑑𝜃 𝑑𝑠.

(18)
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From hypotheses (ii), (iii), and (iv) and the fact that the
double integrals appearing in inequality (18) are nonnegative,
it follows that there exists a constant𝐾

0
> 0 such that

𝑉 ≥ 𝐾
0
(𝑥
2

+ 𝑦
2

+ 𝑧
2

) (19)

for all 𝑥, 𝑦, and 𝑧, where

𝐾
0
= min{

𝑛

∑

𝑖=1

𝑏
−1

𝑖
[(𝛼 + 𝑎

𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
] 𝛿
𝑖

+

𝑛

∑

𝑖=1

𝑏
−1

𝑖
min{

𝑛

∑

𝑖=1

𝛿
𝑖
,

𝑛

∑

𝑖=1

𝑏
𝑖
} +

1

2

min{𝛽,
𝑛

∑

𝑖=1

𝑎
𝑖
, 1}

+

1

2

𝑛

∑

𝑖=1

𝛽 (𝑏
𝑖
− 𝛽) ,

𝑛

∑

𝑖=1

𝑏
−1

𝑖
min{

𝑛

∑

𝑖=1

𝛿
𝑖
,

𝑛

∑

𝑖=1

𝑏
𝑖
}

+

1

2

min{𝛽,
𝑛

∑

𝑖=1

𝑎
𝑖
, 1} +

1

2

min {𝛼, 1}

+

1

2

𝛽,

1

2

min{𝛽,
𝑛

∑

𝑖=1

𝑎
𝑖
, 1} +

1

2

min {𝛼, 1}} .

(20)

Estimate (19) establishes the lower inequality in (16) with
𝐾
0
= 𝐷
0
, respectively. Moreover, from inequality (19) we find

that 𝑉(𝑡, 𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) = 0 if and only if (𝑥2 + 𝑦

2

+ 𝑧
2

) = 0 and
𝑉(𝑡, 𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) > 0 if and only if (𝑥2 + 𝑦

2

+ 𝑧
2

) ̸= 0, and it
follows that for all 𝑥, 𝑦, 𝑧

𝑉 (𝑡, 𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) 󳨀→ +∞ as 𝑥2 + 𝑦2 + 𝑧2 󳨀→ ∞. (21)

Furthermore, since ℎ
𝑖
(0) = 0, ℎ

𝑖
(𝑥) ≤ 𝑐

𝑖
𝑥 for all 𝑥 ̸= 0,𝑔

𝑖
(𝑦) ≤

𝐵
𝑖
𝑦 for all 𝑦 ̸= 0, and inequality 2𝑥

1
𝑥
2
≤ 𝑥
2

1
+ 𝑥
2

2
, there exists

positive constants𝐾
1
, 𝐾
2
such that

𝑉 ≤ 𝐾
1
(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

+ 𝐾
2
∫

0

−𝜏𝑖(𝑡)

∫

𝑡

𝑡+𝑠

[𝑥
2

(𝜃) + 𝑦
2

(𝜃) + 𝑧
2

(𝜃)] 𝑑𝜃 𝑑𝑠,

(22)

where

𝐾
1
=

1

2

max{
𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
+ 2) 𝑐
𝑖
+ 𝛽 (𝑎

𝑖
+ 𝑏
𝑖
+ 1)] ,

𝑛

∑

𝑖=1

[2 (𝐵
𝑖
+ 𝑐
𝑖
) + 𝑎
𝑖
(𝛼 + 𝛽 + 𝑎

𝑖
) + 𝛼
2

+ 𝛽] ,

𝑛

∑

𝑖=1

[𝛼 + 𝛽 + 𝑎
𝑖
+ 2]} ,

𝐾
2
= max {𝜆

1
, 𝜆
2
, 𝜆
3
} .

(23)

Estimate (22) establishes the upper inequality in (16) with
𝐾
1
= 𝐷
1
and 𝐾

2
= 𝐷
2
, respectively. Hence, from inequalities

(19) and (22) estimate (16) of Lemma 12 is established.

Next, the time derivative of the functional defined in
inequality (11) with respect to the independent variable 𝑡,
along a solution of system (10), is simplified to give

𝑉̇
(10)

= 𝑈
1
− 𝑈
2
− 𝛽

𝑛

∑

𝑖=1

(

𝑔
𝑖
(𝑦)

𝑦

− 𝑏
𝑖
)𝑥𝑦

− 𝛽

𝑛

∑

𝑖=1

(

𝑓
𝑖
(⋅)

𝑧

− 𝑎
𝑖
)𝑥𝑧 + 2𝛽𝑦𝑧

−

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
)

𝑓
𝑖
(⋅)

𝑧

− (𝛼
2

+ 𝑎
2

𝑖
)] 𝑦𝑧

+

𝑛

∑

𝑖=1

𝑎
𝑖
𝛽𝑦
2

+

1

2

(𝜆
1
𝑥
2

+ 𝜆
2
𝑦
2

+ 𝜆
3
𝑧
2

) 𝜏
𝑖
(𝑡)

−

1

2

(1 − 𝜏
󸀠

𝑖
(𝑡))

⋅ ∫

𝑡

𝑡+𝑠

(𝜆
1
𝑥
2

(𝑠) + 𝜆
2
𝑦
2

(𝑠) + 𝜆
3
𝑧
2

(𝑠)) 𝑑𝑠,

(24)

where

𝑈
1
:= (𝛽𝑥 +

𝑛

∑

𝑖=1

(𝛼 + 𝑎
𝑖
) 𝑦 + 2𝑧)

⋅

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

(𝑔
󸀠

𝑖
(𝑦 (𝑠)) 𝑧 (𝑠) + ℎ

󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠)) 𝑑𝑠,

𝑈
2
:=

𝑛

∑

𝑖=1

(𝛽

ℎ
𝑖
(𝑥)

𝑥

) 𝑥
2

+

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
)

𝑔
𝑖
(𝑦)

𝑦

− 2ℎ
󸀠

𝑖
(𝑥)] 𝑦

2

+

𝑛

∑

𝑖=1

[2

𝑓
𝑖
(⋅)

𝑧

− (𝛼 + 𝑎
𝑖
)] 𝑧
2

.

(25)

Now from the assumptions of Theorem 10 we find that

𝑈
1
≤

1

2

𝑛

∑

𝑖=1

(𝛽𝑥
2

+ (𝛼 + 𝑎
𝑖
) 𝑦
2

+ 2𝑧
2

) (𝐵
𝑖
+ 𝑐
𝑖
) 𝜏
𝑖
(𝑡)

+

1

2

𝑛

∑

𝑖=1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2)

⋅ ∫

𝑡

𝑡−𝜏𝑖(𝑡)

(𝑐
𝑖
𝑦
2

(𝑠) + 𝐵
𝑖
𝑧
2

(𝑠)) 𝑑𝑠

(26)

for all 𝑥, 𝑦, 𝑧 and 𝑡 ≥ 0 and

𝑈
2
≥

𝑛

∑

𝑖=1

𝛽𝛿
𝑖
𝑥
2

+

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
] 𝑦
2

−

1

2

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼) 𝑧

2

(27)
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for all 𝑥, 𝑦, 𝑧. Using estimates 𝑈
1
and 𝑈

2
in (24), we find that

𝑉̇
(10)

≤ −

1

2

𝑛

∑

𝑖=1

𝛽𝛿
𝑖
𝑥
2

−

1

2

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
] 𝑦
2

−

1

2

⋅

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼) 𝑧

2

−

4

∑

𝑗=3

𝑈
𝑗
−

1

2

(1 − 𝜏
󸀠

𝑖
(𝑡))

⋅ 𝜆
1
∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑥
2

(𝑠) 𝑑𝑠 +

1

2

[

𝑛

∑

𝑖=1

𝛽 (𝐵
𝑖
+ 𝑐
𝑖
) + 𝜆
1
] 𝜏
𝑖
(𝑡)

⋅ 𝑥
2

−

1

2

[(1 − 𝜏
󸀠

𝑖
(𝑡)) 𝜆

2
−

𝑛

∑

𝑖=1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2) 𝑐
𝑖
]

⋅ ∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑦
2

(𝑠) 𝑑𝑠 + 𝛽𝑧
2

−

1

2

[(1 − 𝜏
󸀠

𝑖
(𝑡)) 𝜆

3
−

𝑛

∑

𝑖=1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2) 𝐵

𝑖
]

⋅ ∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑧
2

(𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

𝛽 (𝑎
𝑖
+ 1) 𝑦

2

+

1

2

[

𝑛

∑

𝑖=1

(𝐵
𝑖
+ 𝑐
𝑖
) (𝛼 + 𝑎

𝑖
) + 𝜆
2
] 𝜏
𝑖
(𝑡) 𝑦
2

+

1

2

[2

𝑛

∑

𝑖=1

(𝐵
𝑖
+ 𝑐
𝑖
) + 𝜆
3
] 𝜏
𝑖
(𝑡) 𝑧
2

(28)

for all 𝑥, 𝑦, 𝑧, where

𝑈
3
:=

1

4

𝑛

∑

𝑖=1

𝛽𝛿
𝑖
𝑥
2

+ 𝛽

𝑛

∑

𝑖=1

(𝑦
−1

𝑔
𝑖
(𝑦) − 𝑏

𝑖
) 𝑥𝑦 +

1

4

⋅

𝑛

∑

𝑖=1

𝛽𝛿
𝑖
𝑥
2

+ 𝛽

𝑛

∑

𝑖=1

(𝑧
−1

𝑓
𝑖
(⋅) − 𝑎

𝑖
) 𝑥𝑧,

𝑈
4
:=

1

2

[

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
] 𝑦
2

+ 2

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑧
−1

𝑓
𝑖
(⋅) − (𝛼

2

+ 𝑎
2

𝑖
)] 𝑦𝑧

+

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼) 𝑧

2

] .

(29)

Since 𝛽 > 0, 𝛿
𝑖
> 0, and
𝑛

∑

𝑖=1

[𝑥 + 2𝛿
−1

𝑖
(𝑦
−1

𝑔
𝑖
(𝑦) − 𝑏

𝑖
) 𝑦]

2

≥ 0,

𝑛

∑

𝑖=1

[𝑥 + 2𝛿
−1

𝑖
(𝑧
−1

𝑓
𝑖
(⋅) − 𝑎

𝑖
) 𝑧]

2

≥ 0

(30)

for all 𝑥, 𝑦, 𝑧, we find

𝑈
3
≥ −𝛽

𝑛

∑

𝑖=1

𝛿
−1

𝑖
(𝑦
−1

𝑔
𝑖
(𝑦) − 𝑏

𝑖
)

2

𝑦
2

− 𝛽

𝑛

∑

𝑖=1

𝛿
−1

𝑖
(𝑧
−1

𝑓
𝑖
(⋅) − 𝑎

𝑖
)

2

𝑧
2

(31)

for all 𝑦 and 𝑧. Moreover, using the estimate
𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑧
−1

𝑓
𝑖
(⋅) − (𝛼

2

+ 𝑎
2

𝑖
)]

2

<

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
] (𝑎
𝑖
− 𝛼)

(32)

in 𝑈
4
we obtain

𝑈
4
≥

1

2

[

[

√

𝑛

∑

𝑖=1

[(𝛼 + 𝑎
𝑖
) 𝑏
𝑖
− 2𝑐
𝑖
]
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

− √

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼) |𝑧|

]

]

2

≥ 0

(33)

for all 𝑦 and 𝑧. Inserting estimates 𝑈
3
and 𝑈

4
in inequality

(28)with hypothesis (V) ofTheorem 10, choosing𝜆
1
= 0,𝜆

2
=

∑
𝑛

𝑖=1
(1−𝜌)

−1

(𝛼+𝛽+𝑎
𝑖
+2)𝑐
𝑖
> 0, and 𝜆

3
= ∑
𝑛

𝑖=1
(1−𝜌)

−1

(𝛼+

𝛽 + 𝑎
𝑖
+ 2)𝐵
𝑖
> 0, we have

𝑉̇
(10)

≤ −

1

2

𝑛

∑

𝑖=1

[𝑎
𝑖
𝑏
𝑖
− 𝑐
𝑖
− [(𝐵
𝑖
+ 𝑐
𝑖
) (𝛼 + 𝑎

𝑖
)

+ 𝑐
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2)] 𝛾] 𝑦

2

−

1

4

𝑛

∑

𝑖=1

[(𝑎
𝑖

− 𝛼) − 2 [2 (𝐵
𝑖
+ 𝑐
𝑖
)

+ 𝐵
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2)] 𝛾] 𝑧

2

− {

1

2

𝑛

∑

𝑖=1

(𝛼𝑏
𝑖

− 𝑐
𝑖
) − 𝛽

𝑛

∑

𝑖=1

[1 + 𝑎
𝑖
+ 𝛿
−1

𝑖
(𝑦
−1

𝑔
𝑖
(𝑦) − 𝑏

𝑖
)

2

]}𝑦
2

− {

1

4

𝑛

∑

𝑖=1

(𝑎
𝑖
− 𝛼) − 𝛽

𝑛

∑

𝑖=1

[1

+ 𝛿
−1

𝑖
(𝑧
−1

𝑓
𝑖
(⋅) − 𝑎

𝑖
)

2

]} 𝑧
2

−

1

2

𝑛

∑

𝑖=1

𝛽 [𝛿
𝑖
− (𝐵
𝑖
+ 𝑐
𝑖
)

⋅ 𝛾] 𝑥
2

(34)

for all 𝑥, 𝑦, 𝑧.
Now in view of the inequalities in (12) there exists a pos-

itive constant 𝐾
3
such that

𝑉̇
(10)

≤ −𝐾
3
(𝑥
2

+ 𝑦
2

+ 𝑧
2

) ∀ (𝑥, 𝑦, 𝑧) ∈ R
3

, (35)

where

𝐾
3
= min{1

2

𝑛

∑

𝑖=1

𝛽 [𝛿
𝑖
− (𝐵
𝑖
+ 𝑐
𝑖
) 𝛾] ,

1

2

𝑛

∑

𝑖=1

[𝑎
𝑖
𝑏
𝑖
− 𝑐
𝑖

− [(𝐵
𝑖
+ 𝑐
𝑖
) (𝛼 + 𝑎

𝑖
) + 𝑐
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2)]

⋅ 𝛾] ,

1

4

𝑛

∑

𝑖=1

[(𝑎
𝑖
− 𝛼)

− 2 [2 (𝐵
𝑖
+ 𝑐
𝑖
) + 𝐵
𝑖
(1 − 𝜌)

−1

(𝛼 + 𝛽 + 𝑎
𝑖
+ 2)] 𝛾]} .

(36)
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Inequality (35) establishes (17) with 𝐾
3
= 𝐷
3
, respectively.

This completes the proof of Lemma 12.

Proof of Theorem 10. Let (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be any solution of system

(10), in view of the inequalities in (19), (22), and (35); all the
assumptions of Lemma 7 hold. Thus by Lemma 7 the trivial
solution of system (10) or (3) for𝑝

𝑖
(⋅) = 0 is uniformly asymp-

totically stable. This completes the proof of Theorem 10.

Next, we will consider the case of 𝑝
𝑖
(⋅) ̸= 0, and we have

the following result.

Theorem 13. If hypotheses (i)–(v) and the inequality in (14) of
Theorem 10 hold and

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(⋅)
󵄨
󵄨
󵄨
󵄨
≤ 𝜙
𝑖
(𝑡) + 𝜑

𝑖
(𝑡) (|𝑥| +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|) , (37)

for all 𝑖 (𝑖 = 1, 2, . . . , 𝑛), (𝑥, 𝑦, 𝑧) ∈ R3, and 𝑡 ≥ 0, where 𝜙
𝑖
(𝑡)

and 𝜑
𝑖
(𝑡) are continuous functions satisfying

𝜙
𝑖
(𝑡) ≤ 𝑑

𝑖
, 0 < 𝑑

𝑖
< ∞ (38)

and there exists an 𝜖
𝑖
> 0 such that

0 ≤ 𝜑
𝑖
(𝑡) ≤ 𝜖

𝑖
, (39)

then

(i) the solutions of system (4) are uniformly bounded and
uniformly ultimately bounded;

(ii) equation (4) has a unique periodic solution of period𝜔.

Remark 14. (i) Whenever 𝑖 = 1, 𝑓
1
(⋅) = 𝑓(𝑥, 𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 −

𝜏
1
(𝑡))) = 𝑔(𝑥(𝑡 − 𝜏(𝑡)), 𝑥̇(𝑡 − 𝜏(𝑡))), ℎ

1
(𝑥(𝑡 − 𝜏

1
(𝑡))) = ℎ(𝑥(𝑡 −

𝜏(𝑡))), and 𝑝
1
(⋅) = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥̈, 𝑥(𝑡 − 𝜏(𝑡)), 𝑥̇(𝑡 − 𝜏(𝑡))), system

(4) is a particular case of that studied in [7]. Our hypotheses
coincide with that in [7] except for sup{ℎ󸀠(𝑥)} = 𝑐 > 0 which
is replaced by a more general condition in ours.

(ii) If 𝑖 = 1, 𝑓
1
(⋅) = 𝜑(𝑥, 𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) = 𝑔(𝑥̇(𝑡−

𝜏(𝑡))), ℎ
1
(𝑥(𝑡 − 𝜏

1
(𝑡))) = 𝑓(𝑥(𝑡 − 𝜏(𝑡))), and 𝑝

1
(⋅) = 𝑝(𝑡, 𝑥,

𝑥̇, 𝑥̈), system (4) reduces to that considered in [16].
(iii) When 𝑖 = 1, the functions 𝑓

1
(⋅) = 𝑔(𝑥, 𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 −

𝜏
1
(𝑡))) = 𝑓(𝑥(𝑡−𝜏), 𝑥̇(𝑡−𝜏)), ℎ

1
(𝑥(𝑡−𝜏

1
(𝑡))) = ℎ(𝑥(𝑡−𝜏)), and

𝑝
1
(⋅) = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥(𝑡−𝜏), 𝑥̇(𝑡−𝜏), 𝑥̈), the above result includes

that discussed in [24].
(iv) Whenever 𝑖 = 1, 𝑓

1
(⋅) = ℎ(𝑥̇)𝑥̈, 𝑔

1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) =

𝑔(𝑥̇(𝑡−𝜏(𝑡))), ℎ
1
(𝑥(𝑡−𝜏

1
(𝑡))) = ℎ(𝑥(𝑡−𝜏(𝑡))), and𝑝

1
(⋅) = 𝑝(𝑡,

𝑥, 𝑥̇, 𝑥(𝑡−𝜏), 𝑥̇(𝑡−𝜏), 𝑥̈), (4) specializes to that studied in [12].
(v) When 𝑖 = 1, 𝑓

1
(⋅) = 𝑎

1
𝑥̈, 𝑔
1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) = 𝑓

2
(𝑥̇(𝑡 −

𝜏
1
(𝑡))), ℎ

𝑖
(𝑥(𝑡 − 𝜏

1
(𝑡))) = 𝑎

3
𝑥(𝑡), 𝑝

1
(⋅) = 𝑝(𝑡, 𝑥, 𝑥̇, 𝑥(𝑡 − 𝜏

1
(𝑡)),

𝑥̇(𝑡 − 𝜏
1
(𝑡)), 𝑥̈), and 𝜑

𝑖
(𝑡) = 0, system (4) reduces to that con-

sidered in [28]. Theorem 13 coincides with the boundedness
result in [28].

(vi) If 𝑖 = 1, and 𝜑
𝑖
(𝑡) ≡ 0 in inequality (37), our result

specializes to that studied in [9, 27].
(vii) Whenever 𝑖 = 1, in inequality (37) the result in

Theorem 13 reduces to that discussed in [8].
Hence, Theorem 13 includes and improves the results in

[7–9, 12, 16, 24, 27, 28].

Proof of Theorem 13. (i) Let (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be any solution of

system (4); the time derivative of the functional 𝑉 ≡ 𝑉(𝑡, 𝑥
𝑡
,

𝑦
𝑡
, 𝑧
𝑡
) defined in system (11) along a solution of system (4) is

𝑉̇
(4)

= 𝑉̇
(10)

+

𝑛

∑

𝑖=1

[𝛽𝑥 + (𝛼 + 𝑎
𝑖
) 𝑦 + 2𝑧] 𝑝

𝑖
(⋅) . (40)

Using inequality (35), the above relation becomes

𝑉̇
(4)

≤ −𝐾
3
(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

+ 𝐾
4
(|𝑥| +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|)

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(⋅)
󵄨
󵄨
󵄨
󵄨
,

(41)

where𝐾
4
= max{𝛽, ∑𝑛

𝑖=1
(𝛼+𝑎

𝑖
), 2}. Applying inequality (37),

we find that

𝑉̇
(4)

≤ −𝐾
3
(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

+ 𝐾
4
(|𝑥| +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|)

𝑛

∑

𝑖=1

𝜙
𝑖
(𝑡)

+ 𝐾
4
(|𝑥| +

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|)
2

𝑛

∑

𝑖=1

𝜑
𝑖
(𝑡) .

(42)

From estimates (38) and (39) and on choosing 𝐾
3

>

𝐾
4
∑
𝑛

𝑖=1
(𝑑
𝑖
+𝜖
𝑖
), there exist constants𝐾

5
> 0 and𝐾

6
> 0 such

that

𝑉̇
(4)

≤ −𝐾
5
(𝑥
2

+ 𝑦
2

+ 𝑧
2

) + 𝐾
6
, ∀ (𝑥, 𝑦, 𝑧) ∈ R

3

, (43)

where𝐾
5
:= 𝐾
3
− 𝐾
4
∑
𝑛

𝑖=1
(𝑑
𝑖
+ 𝜖
𝑖
) and𝐾

6
:= 3𝐾

4
∑
𝑛

𝑖=1
𝑑
𝑖
.

The inequalities in (19), (22), and (43) establish the
hypotheses of Lemma 8. Hence by Lemma 8, the solution
(𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) of system (4) is uniformly bounded and uniformly

ultimately bounded.
(ii) From estimate (42), using the inequalities in (38) and

(39), we have

𝑉̇
(4)

≤ −(𝐾
3
− 3𝐾
4

𝑛

∑

𝑖=1

𝜖
𝑖
)(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

+ 3
1/2

𝐾
4

𝑛

∑

𝑖=1

𝑑
𝑖
(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

1/2

.

(44)

Choosing 𝜖
𝑖
(𝑖 = 1, 2, . . . , 𝑛) sufficiently small such that𝐾

7
:=

𝐾
3
− 3𝐾
4
∑
𝑛

𝑖=1
𝜖
𝑖
> 0 and𝐾

8
:= 3
1/2

𝐾
4
∑
𝑛

𝑖=1
𝑑
𝑖
we have

𝑉̇
(4)

≤ −𝐾
9
(𝑥
2

+ 𝑦
2

+ 𝑧
2

) ∀ (𝑥, 𝑦, 𝑧) ∈ R
3

, (45)
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provided that (𝑥2 + 𝑦2 + 𝑧2)1/2 ≥ 𝐾
10
:= 2𝐾

8
𝐾
−1

7
> 0 where

𝐾
9
:= (1/2)𝐾

7
> 0. In view of (19), (21), (22), and (45) all

assumptions of Lemmas 5 and 6 are met. Hence by Lemmas
5 and 6, system (4) has a unique periodic solution of period
𝜔. This completes the proof of Theorem 13.

Next, if𝑝
𝑖
(⋅) in system (4) is replaced by𝑝

𝑖
(𝑡) ̸= 0, we have

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ =

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑡) −

𝑛

∑

𝑖=1

𝑓
𝑖
(⋅) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑦) −

𝑛

∑

𝑖=1

ℎ
𝑖
(𝑥)

+

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

𝑔
󸀠

𝑖
(𝑦 (𝑠)) 𝑧 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

ℎ
󸀠

𝑖
(𝑥 (𝑠)) 𝑦 (𝑠) 𝑑𝑠,

(46)

where𝑓
𝑖
, 𝑔
𝑖
, and ℎ

𝑖
are the functions defined in Section 1, and

𝑝
𝑖
: R+ → R, we have the following result.

Theorem 15. If hypotheses (i)–(v) and estimate (14) of
Theorem 10 hold, and

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠 ≤ 𝑞

𝑖
, 0 ≤ 𝑞

𝑖
< ∞, (𝑖 = 1, 2, . . . , 𝑛) , (47)

then for any given finite constants 𝑥
0
, 𝑦
0
, 𝑧
0
there exists a con-

stant 𝐷
4
= 𝐷
4
(𝑥
0
, 𝑦
0
, 𝑧
0
, 𝛼, 𝛽, 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝛿
𝑖
) such that any solu-

tion (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) of system (46) determined by 𝑥

0
= 𝑥
0
, 𝑦
0
= 𝑦
0
,

𝑧
0
= 𝑧
0
, for 𝑡 = 0, satisfies

󵄨
󵄨
󵄨
󵄨
𝑥
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐷
4
,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐷
4
,

󵄨
󵄨
󵄨
󵄨
𝑧
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐷
4

(48)

for all 𝑡 > 0.

Remark 16. if 𝑖 = 1, 𝑓
1
(⋅) = 𝑓

1
(𝑡, 𝑥)𝑥̈, 𝑔

1
(𝑥̇(𝑡 − 𝜏

1
(𝑡))) = 𝑓

2
(𝑡,

𝑥)𝑥̇+𝑔
0
(𝑡, 𝑥),ℎ

𝑖
(𝑥(𝑡−𝜏

1
(𝑡))) = 𝑔

𝑖
(𝑥(𝑡−𝜏(𝑡))), and𝑝

1
(⋅) = 𝑝(𝑡),

(46) reduces to that considered in [19]. Our results are quite
different from this because of the non-Liapunov approach
used in [19].

Proof of Theorem 15. Let (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) be any solution of system

(46). In view of the hypotheses (i)–(v) and estimate (14),
inequality (19) holds. The derivative of the functional 𝑉

defined in system (11) with respect to the independent vari-
able 𝑡 along a solution of system (46) is

𝑉̇
(48)

= 𝑉̇
(10)

+

𝑛

∑

𝑖=1

[𝛽𝑥 + (𝛼 + 𝑎
𝑖
) 𝑦 + 2𝑧] 𝑝

𝑖
(𝑡) . (49)

By inequality (35), 𝑉̇
(10)

≤ 0 for all (𝑥, 𝑦, 𝑧) ∈ R3, and from
the fact that |𝑥

1
| ≤ 1 + 𝑥

2

1
, it follows that

𝑉̇
(48)

≤ 3𝐾
4

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
+ 𝐾
4
(𝑥
2

+ 𝑦
2

+ 𝑧
2

)

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
, (50)

for all 𝑥, 𝑦, 𝑧 and 𝑡 ≥ 0. Also from inequality (19), the above
inequality becomes

𝑉̇
(48)

− 𝐾
−1

0
𝐾
4
𝑉

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
≤ 3𝐾
4

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
. (51)

Solving this first-order differential inequality by multiplying
each side by

exp[−𝐾−1
0
𝐾
4

𝑛

∑

𝑖=1

∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
𝑑𝑠] , (52)

integrating from 0 to 𝑡, and employing inequality (47), we find
that

𝑉 = 𝑉 (𝑡, 𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) ≤ [𝑉 (0) + 1] 𝑒

𝐾
−1

0
𝐾4 ∑
𝑛

𝑖=1
𝑞𝑖
− 1, (53)

where 𝑉(0) = 𝑉(0, 𝑥
0
, 𝑦
0
, 𝑧
0
).

Engaging inequality (19), we have

󵄨
󵄨
󵄨
󵄨
𝑥
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐾
11
,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐾
11
,

󵄨
󵄨
󵄨
󵄨
𝑧
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐾
11

(54)

for all 𝑡 > 0, where

𝐾
11
:= {[[𝑉 (0) + 1] 𝑒

𝐾
−1

0
𝐾4 ∑
𝑛

𝑖=1
𝑞𝑖
− 1]𝐾

−1

0
}

1/2

. (55)

Equating𝐾
11
= 𝐷
4
, the inequalities in (48) are satisfied. This

completes the proof of Theorem 15.

4. Examples

Example 1. Consider the homogeneous third-order scalar
delay differential equation

...
𝑥 +

𝑛

∑

𝑖=1

[3𝑥̈ +

𝑥̈

5 + sin 𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)) 𝑥̈ (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

]

+

𝑛

∑

𝑖=1

[3𝑥̇ (𝑡 − 𝜏
𝑖
(𝑡)) +

𝑥̇ (𝑡 − 𝜏
𝑖
(𝑡))

4 + sin 2𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

] +

𝑛

∑

𝑖=1

[3𝑥 (𝑡 − 𝜏
𝑖
(𝑡)) +

𝑥 (𝑡 − 𝜏
𝑖
(𝑡))

3 + sin 2𝑡
] = 0.

(56)
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Reducing (56) to system of first-order delay differential
equations by setting 𝑥̇ = 𝑦 and 𝑥̈ = 𝑧 we obtain

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ =

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

[3 +

4 + sin 𝜇 + |𝑥|
[4 + sin 𝜇 + |𝑥| + 󵄨󵄨󵄨

󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
]
2
]𝑑𝜇 +

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

[3 +

1

[3 + sin 2𝜇]2
]𝑑𝜇 − [3𝑥 +

𝑥

3 + sin 2𝑡
]

− [3𝑦 +

𝑦

4 + sin 𝑡 + |𝑥| + 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

] −

𝑛

∑

𝑖=1

[3𝑧 +

𝑧

5 + sin 𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑧 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

] .

(57)

Comparing system (10) with system (57), we have the follow-
ing relations:

(1) The function ∑
𝑛

𝑖=1
𝑓
𝑖
(⋅) = 3𝑧 + 𝑧/(5 + sin 𝑡 + |𝑥(𝑡 −

𝜏
𝑖
(𝑡))𝑦(𝑡 − 𝜏

𝑖
(𝑡))| + |𝑦(𝑡 − 𝜏

𝑖
(𝑡))𝑧(𝑡 − 𝜏

𝑖
(𝑡))|). It is clear

from the above equation that

0 < 3 =

𝑛

∑

𝑖=1

𝑎
𝑖
≤

𝑛

∑

𝑖=1

𝑓
𝑖
(⋅)

𝑧

, 𝑧 ̸= 0. (58)

(2) The function∑𝑛
𝑖=1

𝑔
𝑖
(𝑦) = 3𝑦+𝑦/(4+ sin 𝑡+ |𝑥|+ |𝑦|).

It is not difficult to show that

3 =

𝑛

∑

𝑖=1

𝑏
𝑖
≤

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑦)

𝑦

≤

𝑛

∑

𝑖=1

𝐵
𝑖
= 4, 𝑦 ̸= 0. (59)

(3) The function ∑
𝑛

𝑖=1
ℎ
𝑖
(𝑥) = 3𝑥 + 𝑥/(3 + sin 2𝑡), from

where we obtain the following estimates:

(a) 3 = ∑
𝑛

𝑖=1
𝛿
𝑖
≤ ∑
𝑛

𝑖=1
ℎ
𝑖
(𝑥)/𝑥, 𝑥 ̸= 0;

(b) ∑𝑛
𝑖=1

ℎ
󸀠

𝑖
(𝑥) ≤ ∑

𝑛

𝑖=1
𝑐
𝑖
, ∑𝑛
𝑖=1
(𝑎
𝑖
𝑏
𝑖
− 𝑐
𝑖
) = 5 > 0.

(4) The calculation of the following constants also fol-
lows:

(a) 4/3 < 𝛼 < 3; we choose 𝛼 = 2;
(b) 0 < 𝛽 < min{4, 1/4, 1/4} = 1/4 or 0 < 𝛽 < 1/4,

and we choose 𝛽 = 1/8;
(c) 0 < 𝜌 < 1, and we choose 𝜌 = 1/2;
(d) 𝛾 < min{3/8, 1/21, 1/146} = 1/146.

All the assumptions of Theorem 10 are satisfied. Hence
by Theorem 10 trivial solution of system (57) is uniformly
asymptotically stable.

Example 2. Consider the nonhomogeneous third-order delay
differential equation:

...
𝑥 +

𝑛

∑

𝑖=1

[3𝑥̈ +

𝑥̈

5 + sin 𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡)) 𝑥̈ (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

]

+

𝑛

∑

𝑖=1

[3𝑥̇ (𝑡 − 𝜏
𝑖
(𝑡)) +

𝑥̇ (𝑡 − 𝜏
𝑖
(𝑡))

4 + sin 2𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑥̇ (𝑡 − 𝜏

𝑖
(t))󵄨󵄨󵄨

󵄨

]

+

𝑛

∑

𝑖=1

[3𝑥 (𝑡 − 𝜏
𝑖
(𝑡)) +

𝑥 (𝑡 − 𝜏
𝑖
(𝑡))

3 + sin 2𝑡
] =

𝑛

∑

𝑖=1

[

1 + cos 2𝑡 + 𝑀 (𝑡)𝑁
𝑖
(∗)

(1 + sin 2𝑡 + cos 2𝑡 + cos 2𝑡 sin 2𝑡)𝑁
𝑖
(∗)

] ,

(60)

where

𝑀(𝑡) := 2 + 2 sin 2𝑡 + cos 2𝑡 + cos 2𝑡 sin 2𝑡,

𝑁
𝑖
(∗) := 1 + 𝑥 + 𝑥̇ + 𝑥̈ + 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝑥̇ (𝑡 − 𝜏

𝑖
(𝑡))

+ 𝑥̈ (𝑡 − 𝜏
𝑖
(𝑡)) .

(61)

As usual, system (60) is equivalent to
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t

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

𝜙(t) = 1 +
1

1 + |cos 2t|

𝜙(t)

Figure 1: Periodic function 𝜙(𝑡) = 𝜙
𝑖
(𝑡).

𝑥̇ = 𝑦,

̇𝑦 = 𝑧,

𝑧̇ =

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

[3 +

4 + sin 𝜇 + |𝑥|
[4 + sin 𝜇 + |𝑥| + 󵄨󵄨󵄨

󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
]
2
]𝑑𝜇 +

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜏𝑖(𝑡)

[3 +

1

[3 + sin 2𝜇]2
]𝑑𝜇 − [3𝑥 +

𝑥

3 + sin 2𝑡
]

− [3𝑦 +

𝑦

4 + sin 𝑡 + |𝑥| + 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

] −

𝑛

∑

𝑖=1

[3𝑧 +

𝑧

5 + sin 𝑡 + 󵄨󵄨󵄨
󵄨
𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) 𝑧 (𝑡 − 𝜏

𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

]

+

𝑛

∑

𝑖=1

[

1 + cos 2𝑡 +𝑀 (𝑡) 𝑄
𝑖
(∗)

(1 + sin 2𝑡 + cos 2𝑡 + cos 2𝑡 sin 2𝑡) 𝑄
𝑖
(∗)

] ,

(62)

where

𝑄
𝑖
(∗) := 1 + 𝑥 + 𝑦 + 𝑧 + 𝑥 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝑦 (𝑡 − 𝜏

𝑖
(𝑡))

+ 𝑧 (𝑡 − 𝜏
𝑖
(𝑡)) .

(63)

Comparing systems (4) and (62) we observe that the function

𝑛

∑

𝑖=1

𝑝
𝑖
(⋅)

=

𝑛

∑

𝑖=1

[

1 + cos 2𝑡 +𝑀 (𝑡)𝑄
𝑖
(∗)

(1 + sin 2𝑡 + cos 2𝑡 + cos 2𝑡 sin 2𝑡) 𝑄
𝑖
(∗)

] .

(64)

Substituting appropriately for 𝑄
𝑖
(∗) and 𝑀(𝑡), the above

equation can be recast in the form

𝑛

∑

𝑖=1

𝑝
𝑖
(⋅) =

𝑛

∑

𝑖=1

[1 +

1

1 + cos 2𝑡
+

1

(1 + sin 2𝑡) (1 + 𝑥 + 𝑦 + 𝑧 + 𝑥 (𝑡 − 𝜏
𝑖
(𝑡)) + 𝑦 (𝑡 − 𝜏

𝑖
(𝑡)) + 𝑧 (𝑡 − 𝜏

𝑖
(𝑡)))

] (65)

or

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑝
𝑖
(⋅)
󵄨
󵄨
󵄨
󵄨
≤

𝑛

∑

𝑖=1

[1 +

1

1 + |cos 2𝑡|

+

1

(1 + |sin 2𝑡|) (1 + |𝑥| + 󵄨󵄨󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑧|)

] .

(66)

From inequalities (37) and (66) we obtain the following peri-
odic functions (see Figures 1 and 2):

𝑛

∑

𝑖=1

𝜙
𝑖
(𝑡) = 1 +

1

1 + |cos 2𝑡|
,

𝑛

∑

𝑖=1

𝜑
𝑖
(𝑡) =

1

1 + |sin 2𝑡|
.

(67)
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t

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
𝜑i(t) =

1

1 + |sin 2t|
𝜑i(t)

Figure 2: Periodic function 𝜑(𝑡) = 𝜑
𝑖
(𝑡).

It is not difficult to show that

0 ≤

𝑛

∑

𝑖=1

𝜙
𝑖
(𝑡) ≤

n
∑

𝑖=1

𝑑
𝑖
= 2,

0 ≤

𝑛

∑

𝑖=1

𝜑
𝑖
(𝑡) ≤

𝑛

∑

𝑖=1

𝜖
𝑖
= 1.

(68)

The estimates in (68) and that of Example 1 satisfy the hypo-
theses of Theorem 13. Hence byTheorem 13,

(i) solutions of system (62) are uniformly bounded and
uniformly ultimately bounded;

(ii) system (62) has a unique periodic solution of period
𝜔 = 𝜋/2.
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