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We study boundary value problems for 𝑞-difference equations and inclusionswith nonlocal and integral boundary conditionswhich
have different quantum numbers. Some new existence and uniqueness results are obtained by using fixed point theorems. Examples
are given to illustrate the results.

1. Introduction

In this paper we introduce a new class of boundary value
problems for 𝑞-difference equations with nonlocal boundary
conditions given by

𝐷
2

𝑞
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼

𝑇

𝑞
,

𝑥 (𝜉) = 𝑔 (𝑥) , 𝛼𝐷
𝑟
𝑥 (𝜂) + 𝛽∫

𝑇

𝜂

𝑥 (𝑠) 𝑑
𝑝
𝑠 = 0,

0 < 𝜉 < 𝜂 < 𝑇,

(1)

where𝑓 ∈ 𝐶(𝐼
𝑇

𝑞
×R,R) is such that𝑓(𝑡, 𝑥) is continuous at 𝑡 =

0, 𝑇, 𝐼𝑇
𝑞
= 𝐼
𝑞
∩[0, 𝑇], 𝐼

𝑞
= {𝑞
𝑛
: 𝑛 ∈ Z}∪{0}, 𝑞 ∈ (0, 1) is a fixed

constant, 𝜉, 𝜂 ∈ 𝐼𝑇
𝑞
\{0, 𝑇} := (0, 𝑇)

𝑞
, 0 < 𝑝, 𝑟 < 1, and 𝛼, 𝛽 are

given constants such that 𝜉𝛽(𝑇 − 𝜂) ̸= 𝛼 + 𝛽(𝑇
2
− 𝜂
2
)/(1 + 𝑝).

The study of 𝑞-difference equations, initiated by Jackson
[1, 2], Carmichael [3], Mason [4], and Adams [5] in the first
quarter of 20th century, has been developed over the years; for
instance, see [6–8]. In recent years, the topic has attracted the
attention of several researchers and a variety of new results
can be found in the papers [9–21].

Nonlocal conditions were initiated by Bitsadze [22]. As
remarked by Byszewski [23, 24], the nonlocal condition can
bemore useful than the standard initial condition to describe
some physical phenomena. For example, 𝑔(𝑥) may be given
by 𝑔(𝑥) = ∑

𝑝

𝑖=1
𝑐
𝑖
𝑥(𝑡
𝑖
) where 𝑐

𝑖
, 𝑖 = 1, . . . , 𝑝, are given

constants and 0 < 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑝
≤ 𝑇.

In Section 3 we give some sufficient conditions for the
existence and uniqueness of solutions and for the existence
of at least one solution of problem (1).The first result is based
on Banach’s contraction principle and the second on a fixed
point theorem due to O’Regan [25]. Concrete examples are
also provided to illustrate the possible applications of the
established analytical results.

In Section 4, we extend the results to cover the multival-
ued case, considering the following boundary value problem
for 𝑞-difference inclusions with nonlocal and integral bound-
ary conditions:

𝐷
2

𝑞
𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼

𝑇

𝑞
,

𝑥 (𝜉) = 𝑔 (𝑥) , 𝛼𝐷
𝑟
𝑥 (𝜂) + 𝛽∫

𝑇

𝜂

𝑥 (𝑠) 𝑑
𝑝
𝑠 = 0,

(2)

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2015, Article ID 203715, 12 pages
http://dx.doi.org/10.1155/2015/203715

http://dx.doi.org/10.1155/2015/203715


2 International Journal of Differential Equations

where 𝐹 : 𝐼𝑇
𝑞
× R → P(R) is a multivalued map andP(R)

is the family of all nonempty subsets of R.
We give an existence result for the problem (2) in the case

when the right hand side is convex valued by using the non-
linear alternative for contractive maps.

The paper is organized as follows: in Section 2 we recall
somepreliminary facts thatweneed in the sequel, in Section 3
we prove our main results for single-valued case, and in
Section 4 we prove our main results for multivalued case.

2. Preliminaries

Let us recall some basic concepts of 𝑞-calculus [7, 8, 26].
Let 0 < 𝑞 < 1 and 𝑓 a function defined on a 𝑞-geometric

set 𝐴; that is, 𝑞𝑡 ∈ 𝐴 for all 𝑡 ∈ 𝐴. The 𝑞-difference operator
is defined by

𝐷
𝑞
𝑓 (𝑡) =

{{{{{

{{{{{

{

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

(1 − 𝑞) 𝑡
, 𝑡 ∈ 𝐴 \ {0} ,

lim
𝑛→∞

𝑓 (𝑡𝑞
𝑛
) − 𝑓 (0)

𝑡𝑞𝑛
, 𝑡 = 0,

(3)

provided that the limit exists and does not depend on 𝑡. The
higher order 𝑞-derivatives are given by

𝐷
0

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , 𝐷

𝑛

𝑞
𝑓 (𝑡) = 𝐷

𝑞
𝐷
𝑛−1

𝑞
𝑓 (𝑡) , 𝑛 ∈ N. (4)

The Jackson 𝑞-integration [1] is

∫

𝑎

0

𝑓 (𝑡) 𝑑
𝑞
𝑡 = 𝑎 (1 − 𝑞)

∞

∑

𝑛=0

𝑞
𝑛
𝑓 (𝑎𝑞
𝑛
) ,

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑
𝑞
(𝑡) = ∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞
(𝑡) − ∫

𝑎

0

𝑓 (𝑡) 𝑑
𝑞
(𝑡) ,

(5)

where 𝑎, 𝑏 ∈ 𝐴, provided that the series converge. Here we
remark that the integral ∫𝑏

𝑎
𝑓(𝑡)𝑑
𝑞
(𝑡) is understood as a right

inverse of the 𝑞-derivative.
For 0 ∈ 𝐴,𝑓 is called 𝑞-regular at zero if lim

𝑛→∞
𝑓(𝑡𝑞
𝑛
) =

𝑓(0) for every 𝑡 ∈ 𝐴, 𝑡 ̸= 0. It is important to note that
continuity at zero implies 𝑞-regularity at zero but the converse
is not true (see an example on page 7 in [26]).

Definition 1. Let 𝑓 be a function defined on a 𝑞-geometric set
𝐴.Then𝑓 is 𝑞-integrable on𝐴 if and only if ∫𝑡

0
𝑓(𝜇)𝑑

𝑞
𝜇 exists

for all 𝑡 ∈ 𝐴.

The 𝑞-integration by parts rule is

∫

𝑏

𝑎

𝑢 (𝑞𝑡)𝐷
𝑞
V (𝑡) 𝑑

𝑞
𝑡

= 𝑢 (𝑏) V (𝑏) − 𝑢 (𝑎) V (𝑎) + ∫
𝑏

𝑎

𝐷
𝑞
𝑢 (𝑡) V (𝑡) 𝑑

𝑞
𝑡,

(6)

provided that 𝑢 and V are 𝑞-regular at zero functions.
Let 𝑓 be a 𝑞-regular at zero function defined on a 𝑞-

geometric set 𝐴 containing zero. Then

𝐹 (𝑧) = ∫

𝑧

𝑐

𝑓 (𝑠) 𝑑
𝑞
𝑠, 𝑧 ∈ 𝐴 (7)

is 𝑞-regular at zero, where 𝑐 is a fixed point in𝐴. Furthermore,
𝐷
𝑞
𝐹(𝑧) exists for every 𝑧 ∈ 𝐴 and

𝐷
𝑞
𝐹 (𝑧) = 𝑓 (𝑧) , 𝑧 ∈ 𝐴. (8)

Conversely, if 𝑎 and 𝑏 are two points in 𝐴, then

∫

𝑏

𝑎

𝐷
𝑞
𝑓 (𝑠) 𝑑

𝑞
𝑠 = 𝑓 (𝑏) − 𝑓 (𝑎) . (9)

We denote by C = 𝐶(𝐼
𝑇

𝑞
,R) the Banach space of all con-

tinuous functions from 𝐼
𝑇

𝑞
→ R which are 𝑞-regular at zero.

To define the solution for the problem (1), we find the
solution for its associated linear problem.

Lemma 2. Let 𝑦 ∈ 𝐶(𝐼
𝑇

𝑞
,R), be a continuous function such

that it is continuous at 0 and 𝑇. The solution of the 𝑞-difference
equation

𝐷
2

𝑞
𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ 𝐼

𝑇

𝑞
(10)

subject to the boundary conditions,

𝑥 (𝜉) = 𝑔 (𝑥) , 𝛼𝐷
𝑟
𝑥 (𝜂) + 𝛽∫

𝑇

𝜂

𝑥 (𝑠) 𝑑
𝑝
𝑠 = 0, (11)

is given by

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑦 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 +

𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠

−
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) ,

𝑡 ∈ 𝐼
𝑇

𝑞
,

(12)

where

𝐷 = 𝜉𝛽 (𝑇 − 𝜂) − 𝛼 −
𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
̸= 0. (13)

Proof. Integrating twice the given equation and changing the
order of integration, we get

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
𝑡 + 𝑐
2
, (14)
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for some constants 𝑐
1
, 𝑐
2
∈ R (for functions not necessarily

continuous at zero, the constants 𝑐
0
, 𝑐
1
are 𝑞-periodic func-

tions [26]).
In particular, for 𝑡 = 𝜉, we get

𝑥 (𝜉) = ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
𝜉 + 𝑐
2
. (15)

Taking 𝑟-derivative for (14), for 𝑡 ̸= 0, we obtain

𝐷
𝑟
𝑥 (𝑡) = 𝐷

𝑟
[∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝑐
1
𝑡 + 𝑐
2
]

=
1

(1 − 𝑟) 𝑡
[∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠

−∫

𝑟𝑡

0

(𝑟𝑡 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠] + 𝑐

1

= ∫

𝑟𝑡

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 + ∫

𝑡

𝑟𝑡

𝑡 − 𝑞𝑠

(1 − 𝑟) 𝑡
𝑦 (𝑠) 𝑑

𝑞
𝑠 + 𝑐
1
.

(16)

Therefore,

𝐷
𝑟
𝑥 (𝜂) = ∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 + ∫

𝜂

𝑟𝜂

𝜂 − 𝑞𝑠

(1 − 𝑟) 𝜂
𝑦 (𝑠) 𝑑

𝑞
𝑠 + 𝑐
1
. (17)

Taking the 𝑝-integral for (14) from 0 to 𝑡, we obtain

∫

𝑡

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 = ∫

𝑡

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V𝑑
𝑝
𝑠 +

𝑡
2

1 + 𝑝
𝑐
1
+ 𝑡𝑐
2
.

(18)

Then we have

∫

𝑇

𝜂

𝑥 (𝑠) 𝑑
𝑝
𝑠 = ∫

𝑇

0

𝑥 (𝑠) 𝑑
𝑝
𝑠 − ∫

𝜂

0

𝑥 (𝑠) 𝑑
𝑝
𝑠

= ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V𝑑
𝑝
𝑠 +

𝑇
2

1 + 𝑝
𝑐
1
+ 𝑇𝑐
2

− ∫

𝜂

0

∫

𝑠

0

(𝑠 − 𝑞V) 𝑦 (V) 𝑑
𝑞
V𝑑
𝑝
𝑠 −

𝜂
2

1 + 𝑝
𝑐
1
− 𝜂𝑐
2
.

(19)

By applying the boundary conditions we get to the system

(𝛼 +
𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
) 𝑐
1
+ 𝛽 (𝑇 − 𝜂) 𝑐

2

= −𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑦 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

− 𝛼∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 − 𝛼∫

𝜂

𝑟𝜂

𝜂 − 𝑞𝑠

(1 − 𝑟) 𝜂
𝑦 (𝑠) 𝑑

𝑞
𝑠

𝑐
1
𝜉 + 𝑐
2
= 𝑔 (𝑥) − ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠,

(20)

from which we have

𝑐
1
=
1

𝐷
{𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑦 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠 + 𝛼∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)

(1 − 𝑟) 𝜂
𝑦 (𝑠) 𝑑

𝑝
𝑠

+ 𝛽 (𝑇 − 𝜂)(𝑔 (𝑥) − ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠)} ,

𝑐
2
= −

1

𝐷
{𝜉 [𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑦 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑦 (𝑠) 𝑑
𝑞
𝑠

+ 𝛼∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)

(1 − 𝑟) 𝜂
𝑦 (𝑠) 𝑑

𝑞
𝑠]

+ (𝛼 +
𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
)

⋅ (𝑔 (𝑥) − ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠)} .

(21)

Substituting into (14) the values of 𝑐
1
and 𝑐
2
we obtain (12).

3. Existence Results: The Single-Valued Case

In view of Lemma 2, we define an operator Q : C → C by

Q𝑥 (𝑡) = ∫
𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝑡 − 𝜉

𝐷
(𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

−
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) ,

𝑡 ∈ 𝐼
𝑇

𝑞
.

(22)
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For convenience we set

Λ =
𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|

⋅ (

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)
+ |𝛼| 𝑟𝜂 +

|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
)

+ 𝑘
0

𝜉
2

1 + 𝑞
,

(23)

𝑘
0
=

1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂)) .

(24)

Theorem 3. Let 𝑓 : 𝐼𝑇
𝑞
× R → R and 𝑔 : 𝐶(𝐼𝑇

𝑞
,R) → R be

continuous functions. Assume that

(𝐴
1
) |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ 𝐿|𝑥 − 𝑦|, ∀𝑡 ∈ 𝐼𝑇

𝑞
, 𝐿 > 0, 𝑥, 𝑦 ∈ R;

(𝐴
2
) |𝑔(𝑢)−𝑔(V)| ≤ ℓ‖𝑢−V‖, ℓ < 𝑘−1

0
for all 𝑢, V ∈ 𝐶(𝐼𝑇

𝑞
,R);

(𝐴
3
) 𝛾 = 𝐿Λ + 𝑘

0
ℓ < 1.

Then the boundary value problem (1) has a unique solution.

Proof. For 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ 𝐼𝑇
𝑞
, from the definition

of Q and assumptions (𝐴
1
) and (𝐴

2
), we obtain

(Q𝑥) (𝑡) − (Q𝑦) (𝑡)


≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑞𝑠 +
𝜉 + 𝑇

|𝐷|

⋅ (
𝛽
 ∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏, 𝑥 (𝜏)) − 𝑓 (𝜏, 𝑦 (𝜏))

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑞𝑠)

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑞𝑠

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝑔 (𝑥) − 𝑔 (𝑦)



≤ 𝐿
𝑥 − 𝑦

{
𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|

⋅ (

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)
+ |𝛼| 𝑟𝜂

+
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
) +

1

|𝐷|

⋅ (|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝜉
2

1 + 𝑞
}

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂)) ℓ

𝑥 − 𝑦
 .

(25)

Hence
Q𝑥 − Q𝑦

 ≤ 𝛾
𝑥 − 𝑦

 . (26)

As 𝛾 < 1, by (𝐴
3
), 𝐹 is a contraction map from the Banach

space C into itself. Thus, the conclusion of the theorem
follows by the contraction mapping principle (Banach fixed
point theorem).

Example 4. Consider the following nonlocal boundary value
problem of nonlinear 𝑞-difference equation

𝐷
2

1/2
𝑥 (𝑡) =

𝑒
−2𝑡

2 (𝑡 + 5)
2
⋅

|𝑥|

1 + |𝑥|
+
1

2
, 𝑡 ∈ [0, 2]1/2 ,

𝑥 (
1

4
) =

1

30
𝑥 (

1

8
) +

1

3
,

2

3
𝐷
3/4
𝑥(

1

2
) −

1

3
∫

2

1/2

𝑥 (𝑠) 𝑑
1/4
𝑠 = 0.

(27)

Here, 𝑞 = 1/2, 𝑟 = 3/4, 𝑝 = 1/4, 𝑇 = 2, 𝜉 = 1/4, 𝜂 = 1/2,
𝛼 = 2/3, 𝛽 = −1/3, 𝑔(𝑥) = (1/30)𝑥 + (1/3), and 𝑓(𝑡, 𝑥) =
(𝑒
−2𝑡
|𝑥|)/(2(𝑡 + 5)

2
(1 + |𝑥|)) + (1/2). We find that 𝐷 = 5/24,

𝑘
0
= 192/15, and Λ = 981/45.
As |𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)| ≤ (1/50)|𝑥 − 𝑦| and |𝑔(𝑥) − 𝑔(𝑦)| ≤

(1/30)|𝑥 − 𝑦|, therefore, (𝐴
1
) and (𝐴

2
) are satisfied with 𝐿 =

1/50 and ℓ = 1/30 < 15/192 = 𝑘
−1

0
, respectively. Hence 𝛾 =

𝐿Λ + 𝑘
0
ℓ ≈ 0.86267 < 1. By the conclusion of Theorem 3,

the boundary value problem (27) has a unique solution on
[0, 2]
1/2

.

Next, we introduce the fixed point theorem which was
established by O’Regan in [25]. This theorem will be adopted
to prove the next main result.

Lemma 5. Let 𝑈 be an open set in a closed, convex set 𝐶 of
a Banach space 𝐸. Assume 0 ∈ 𝑈. Also assume that F(𝑈) is
bounded and that F : 𝑈 → 𝐶 is given byF = F

1
+F
2
, in
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which F
1
: 𝑈 → 𝐸 is continuous and completely continuous

and F
2
: 𝑈 → 𝐸 is a nonlinear contraction (i.e., there exists

a continuous nondecreasing function 𝜗 : [0,∞) → [0,∞)

satisfying 𝜗(𝑧) < 𝑧 for 𝑧 > 0, such that ‖F
2
(𝑥) − F

2
(𝑦)‖ ≤

𝜗(‖𝑥 − 𝑦‖) for all 𝑥, 𝑦 ∈ 𝑈). Then, either

(𝐶1) F has a fixed point 𝑢 ∈ 𝑈 or

(𝐶2) there exist a point 𝑢 ∈ 𝜕𝑈 and 𝜅 ∈ (0, 1) with
𝑢 = 𝜅F(𝑢), where 𝑈 and 𝜕𝑈, respectively, represent
the closure and boundary of 𝑈 on 𝐶.

In the sequel, we will use Lemma 5 by taking 𝐶 to be 𝐸.
Formore details of suchfixedpoint theorems,we refer a paper
[27] by Petryshyn.

Let

Ω
𝑟
= {𝑥 ∈ 𝐶 (𝐼

𝑇

𝑞
,R) : ‖𝑥‖ < 𝑟} . (28)

Theorem 6. Let 𝑓 : 𝐼
𝑇

𝑞
× R → R be a continuous function.

Suppose that (𝐴
2
) holds. In addition we assume that

(𝐴
4
) 𝑔(0) = 0;

(𝐴
5
) there exists a nonnegative function 𝑝 ∈ 𝐶(𝐼

𝑇

𝑞
,R) and

a nondecreasing function 𝜓 : [0,∞) → (0,∞) such
that

𝑓 (𝑡, 𝑢)
 ≤ 𝑝 (𝑡) 𝜓 (|𝑢|) 𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑡, 𝑢) ∈ 𝐼

𝑇

𝑞
×R; (29)

(𝐴
6
) sup
𝑟∈(0,∞)

(𝑟/Λ ‖ 𝑝 ‖ 𝜓(𝑟)) > 1/(1−𝑘
0
ℓ), whereΛ and

𝑘
0
are defined in (23) and (24), respectively.

Then the boundary value problem (1) has at least one solution
on 𝐼𝑇
𝑞
.

Proof. Consider the operator Q : C → C as that defined in
(30). We decompose Q into a sum of two operators

(Q𝑥) (𝑡) = (Q
1
𝑥) (𝑡) + (Q

2
𝑥) (𝑡) , 𝑡 ∈ 𝐼

𝑇

𝑞
, (30)

where

(Q
1
𝑥) (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝑡 − 𝜉

𝐷
(𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠, 𝑡 ∈ 𝐼

𝑇

𝑞
,

(Q
2
𝑥) (𝑡) = −

1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) ,

𝑡 ∈ 𝐼
𝑇

𝑞
.

(31)

From (𝐴
6
) there exists a number 𝑟

0
> 0 such that

𝑟
0

Λ
𝑝
 𝜓 (𝑟0)

>
1

1 − 𝑘
0
ℓ
. (32)

We will prove that the operators Q
1
and Q

2
satisfy all the

conditions in Lemma 5.

Step 1. The operator Q
1
is continuous and completely contin-

uous. We first show thatQ
1
(Ω
𝑟0
) is bounded. For any 𝑥 ∈ Ω

𝑟0

we have
Q1𝑥



≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

+

𝑡 − 𝜉


|𝐷|
(
𝛽
 ∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏, 𝑥 (𝜏))

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠)

+
1

𝐷
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

≤
𝑝
 𝜓 (𝑟0) {

𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|

⋅ (

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)
+ |𝛼| 𝑟𝜂

+
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
) +

1

|𝐷|

⋅ (|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝜉
2

1 + 𝑞
} .

(33)

This proves that Q
1
(Ω
𝑟0
) is uniformly bounded.
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In addition for any 𝑡
1
, 𝑡
2
∈ 𝐼
𝑇

𝑞
, 𝑡
1
< 𝑡
2
, we have

(Q1𝑥) (𝑡2) − (Q1𝑥) (𝑡1)


≤


∫

𝑡2

0

(𝑡
2
− 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠 − ∫

𝑡1

0

(𝑡
1
− 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠



+

𝑡2 − 𝑡1


|𝐷|
(
𝛽
 ∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏, 𝑥 (𝜏))

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠)

+

𝛽
 (𝑇 − 𝜂)

𝑡2 − 𝑡1


|𝐷|
∫

𝜉

0

(𝜉 − 𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

≤
𝑝
 𝜓 (𝑟0) {


∫

𝑡1

0

(𝑡
2
− 𝑡
1
) 𝑑
𝑞
𝑠


+



∫

𝑡2

𝑡1

(𝑡
2
− 𝑞𝑠) 𝑑

𝑞
𝑠



+

𝑡2 − 𝑡1


|𝐷|
[

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)

+ |𝛼| 𝑟𝜂 +
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
]

+

𝛽
 (𝑇 − 𝜂)

𝑡2 − 𝑡1


|𝐷|

𝜉
2

1 + 𝑞
} ,

(34)

which is independent of 𝑥 and tends to zero as 𝑡
2
− 𝑡
1
→

0. Thus, Q
1
is equicontinuous. Hence, by the Arzelá-Ascoli

Theorem, Q
1
(Ω
𝑟0
) is a relatively compact set. Now, let 𝑥

𝑛
⊂

Ω
𝑟0
with ‖𝑥

𝑛
− 𝑥‖ → 0. Then the limit ‖𝑥

𝑛
(𝑡) − 𝑥(𝑡)‖ → 0

uniformly valid on 𝐼𝑇
𝑞
. From the uniform continuity of𝑓(𝑡, 𝑥)

on the compact set 𝐼𝑇
𝑞
× [−𝑟
0
, 𝑟
0
] it follows that ‖𝑓(𝑡, 𝑥

𝑛
(𝑡)) −

𝑓(𝑡, 𝑥(𝑡))‖ → 0 is uniformly valid on 𝐼
𝑇

𝑞
. Hence ‖Q

1
𝑥
𝑛
−

Q
1
𝑥‖ → 0 as 𝑛 → ∞ which proves the continuity of Q

1
.

Hence Step 1 is completely proved.

Step 2.The operatorQ
2
: Ω
𝑟0
→ 𝐶(𝐼

𝑇

𝑞
,R) is contractive.This

is a consequence of (𝐴
2
). Indeed, we have

(Q2𝑥) (𝑡) − (Q2𝑦) (𝑡)


=



1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)



𝑔 (𝑥) − 𝑔 (𝑦)


≤ 𝑘
0
ℓ
𝑥 − 𝑦

 ,

(35)

or

Q2𝑥 − Q
2
𝑦
 ≤ 𝐿0

𝑥 − 𝑦
 , 𝐿

0
= 𝑘
0
ℓ < 1. (36)

Step 3. The set 𝐹(Ω
𝑟0
) is bounded. By (𝐴

2
) and (𝐴

4
)we imply

that

Q2 (𝑥)
 ≤ 𝑘0ℓ𝑟0, (37)

for any 𝑥 ∈ Ω
𝑟0
. This, with the boundedness of the set

Q
1
(Ω
𝑟0
), implies that the set Q(Ω

𝑟0
) is bounded.

Step 4. Finally, it is to show that the case (𝐶2) in Lemma 5
does not occur. To this end, we suppose that (𝐶2) holds.Then,
we have that there exist 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω

𝑟0
such that

𝑥 = 𝜆Q𝑥. So, we have ‖𝑥‖ = 𝑟
0
and

𝑥 (𝑡)

= 𝜆{∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏, 𝑥 (𝜏)) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠

−
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥)} ,

𝑡 ∈ 𝐼
𝑇

𝑞
.

(38)

With hypotheses (𝐴
4
)–(𝐴
6
), and follows the computations of

Step 1, we have

|𝑥 (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

+

𝑡 − 𝜉


|𝐷|
(
𝛽
 ∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏, 𝑥 (𝜏))

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠)
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+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

𝑔 (𝑥)


≤
𝑝
 𝜓 (𝑟0) {

𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|
(

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)

+ |𝛼| 𝑟𝜂 +
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
)

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝜉
2

1 + 𝑞
}

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

𝑔 (𝑥)
 ,

(39)

which implies

𝑟
0
≤ Λ

𝑝
 𝜓 (𝑟0) + 𝑘0ℓ𝑟0. (40)

Thus,

𝑟
0

Λ
𝑝
 𝜓 (𝑟0)

≤
1

1 − 𝑘
0
ℓ
, (41)

which contradicts to (32). Consequently, we have proved that
the operatorsQ

1
andQ

2
satisfy all the conditions in Lemma 5.

Hence, the operator Q has at least one fixed point 𝑥 ∈ Ω
𝑟0
,

which is the solution of the boundary value problem (1). The
proof is completed.

Example 7. Consider the following nonlocal boundary value
problem of nonlinear 𝑞-difference equation

𝐷
2

1/2
𝑥 (𝑡) =

𝑡

25
(|𝑥| +

|𝑥| + 1

|𝑥| + 2
) , 𝑡 ∈ [0, 1]1/2 ,

𝑥 (
1

8
) =

1

33
sin(𝑥(1

4
)) ,

−
3

4
𝐷
2/3
𝑥(

1

2
) +

4

5
∫

1

1/2

𝑥 (𝑠) 𝑑
1/5
𝑠 = 0.

(42)

Here, 𝑞 = 1/2, 𝑟 = 2/3, 𝑝 = 1/5, 𝑇 = 1, 𝜉 = 1/8, 𝜂 = 1/2, 𝛼 =
−3/4, 𝛽 = 4/5, 𝑔(𝑥) = (1/33) sin𝑥, and 𝑓(𝑡, 𝑥) = (𝑡/25)(|𝑥| +
((|𝑥| + 1)/(|𝑥| + 2))). We find that 𝐷 = 3/10, 𝑘

0
= 11/2, and

Λ = 22009/5952.
As |𝑔(𝑥) − 𝑔(𝑦)| ≤ (1/33)|𝑥 − 𝑦| with ℓ = (1/33) <

(2/11) = 𝑘
−1

0
and 𝑔(0) = 0; therefore, (𝐴

2
) and (𝐴

4
) are

satisfied, respectively. Since |𝑓(𝑡, 𝑥)| = |(𝑡/25)(|𝑥| + ((|𝑥| +

1)/(|𝑥| + 2)))| ≤ (𝑡/25)(𝑥
2
+ 3|𝑥| + 1), we choose 𝑝(𝑡) = 𝑡/25

and 𝜓(|𝑥|) = 𝑥2 + 3|𝑥| + 1. We can show that

sup
𝑟∈(0,∞)

𝑟

Λ
𝑝
 𝜓 (𝑟)

≈ 1.35240 >
6

5
=

1

1 − 𝑘
0
ℓ
. (43)

Therefore, by Theorem 6, the boundary value problem (42)
has at least one solution on [0, 1]

1/2
.

4. Existence Results: The Multivalued Case

Let us recall some basic definitions on multivalued maps [28,
29].

For a normed space (𝑋, ‖ ⋅ ‖), let Pcl(𝑋) = {𝑌 ∈

P(𝑋) : 𝑌 is closed}, P
𝑏
(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌 is bounded},

𝑃cp(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌 is compact}, and Pcp,𝑐(𝑋) =

{𝑌 ∈ P(𝑋) : 𝑌 is compact and convex}. A multivalued
map 𝐺 : 𝑋 → P(𝑋) is convex (closed) valued if 𝐺(𝑥)
is convex (closed) for all 𝑥 ∈ 𝑋. The map 𝐺 is bounded
on bounded sets if 𝐺(B) = ∪

𝑥∈B𝐺(𝑥) is bounded in 𝑋 for
all B ∈ P

𝑏
(𝑋) (i.e., sup

𝑥∈B{sup{|𝑦| : 𝑦 ∈ 𝐺(𝑥)}} < ∞).
𝐺 is called upper semicontinuous (u.s.c.) on 𝑋 if for each
𝑥
0
∈ 𝑋, the set 𝐺(𝑥

0
) is a nonempty closed subset of 𝑋, and

if, for each open set 𝑁 of 𝑋 containing 𝐺(𝑥
0
), there exists

an open neighborhood N
0
of 𝑥
0
such that 𝐺(N

0
) ⊆ 𝑁.

𝐺 is said to be completely continuous if 𝐺(B) is relatively
compact for every B ∈ P

𝑏
(𝑋). If the multivalued map 𝐺 is

completely continuous with nonempty compact values, then
𝐺 is u.s.c. if and only if 𝐺 has a closed graph; that is, 𝑥

𝑛
→

𝑥
∗
, 𝑦
𝑛

→ 𝑦
∗
, 𝑦
𝑛
∈ 𝐺(𝑥

𝑛
) imply 𝑦

∗
∈ 𝐺(𝑥

∗
). 𝐺 has a

fixed point if there is 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥). The fixed
point set of the multivalued operator 𝐺 will be denoted by
𝐹𝑖𝑥𝐺. A multivalued map 𝐺 : [0; 1] → Pcl(R) is said to be
measurable if, for every 𝑦 ∈ R, the function,

𝑡 → 𝑑 (𝑦, 𝐺 (𝑡)) = inf {𝑦 − 𝑧
 : 𝑧 ∈ 𝐺 (𝑡)} , (44)

is measurable.
Let 𝐿1(𝐼𝑇

𝑞
,R) denote the space of all functions 𝑓 defined

on 𝐼𝑇
𝑞
such that ‖𝑥‖

𝐿
1 = ∫
𝑇

0
|𝑥(𝑡)|𝑑𝑡 < ∞.

Definition 8. A function 𝑥 ∈ C is a solution of the problem
(2) if 𝑥(𝜉) = 𝑔(𝑥), 𝛼𝐷

𝑟
𝑥(𝜂) + 𝛽 ∫

𝑇

𝜂
𝑥(𝑠)𝑑
𝑞
𝑠 = 0, and there

exists a function 𝑓 ∈ 𝐿
1
(𝐼
𝑇

𝑞
,R) such that it is continuous at

𝑡 = 0, 𝑇 and 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)) on 𝐼𝑇
𝑞
and

𝑥 (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝑡 − 𝜉

𝐷
(𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)
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+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠

−
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) , 𝑡 ∈ 𝐼

𝑇

𝑞
.

(45)

Definition 9. A multivalued map 𝐹 : 𝐼
𝑇

𝑞
× R → P(R)

is said to be Carathéodory (in the sense of 𝑞-calculus) if
𝑥 → 𝐹(𝑡, 𝑥) is upper semicontinuous on 𝐼

𝑇

𝑞
. Further a

Carathéodory function 𝐹 is called 𝐿1—Carathéodory if there
exists 𝜑

𝛼
∈ 𝐿
1
(𝐼
𝑇

𝑞
,R+) such that ‖𝐹(𝑡, 𝑥)‖ = sup{|V| : V ∈

𝐹(𝑡, 𝑥)} ≤ 𝜑
𝛼
(𝑡) for all ‖𝑥‖ ≤ 𝛼 on 𝐼𝑇

𝑞
for each 𝛼 > 0.

For each 𝑦 ∈ C, define the set of selections of 𝐹 by

𝑆
𝐹,𝑦

:= {V ∈ C : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) on 𝐼
𝑇

𝑞
} . (46)

The following lemma will be used in the sequel.

Lemma 10 (see [30]). Let 𝑋 be a Banach space. Let 𝐹 : 𝐽 ×

R → Pcp,𝑐(𝑋) be an 𝐿
1—Carathéodory multivalued map

and let Θ be a linear continuous mapping from 𝐿
1
(𝐽, 𝑋) to

𝐶(𝐽,𝑋). Then the operator

Θ ∘ 𝑆
𝐹
: 𝐶 (𝐽, 𝑋) → Pcp,𝑐 (𝐶 (𝐽, 𝑋)) ,

𝑥 → (Θ ∘ 𝑆
𝐹
) (𝑥) = Θ (𝑆

𝐹,𝑥
) ,

(47)

is a closed graph operator in 𝐶(𝐽,𝑋) × 𝐶(𝐽, 𝑋).

To prove our main result in this section we will use the
following form of the nonlinear alternative for contractive
maps [31, Corollary 3.8].

Theorem 11. Let𝑋 be a Banach space and𝐷 a bounded neigh-
borhood of 0 ∈ 𝑋. Let 𝑍

1
: 𝑋 → Pcp,𝑐(𝑋) and 𝑍2 : 𝐷 →

Pcp,𝑐(𝑋) two multivalued operators satisfying the following:

(a) 𝑍
1
is contraction,

(b) 𝑍
2
is u.s.c and compact.

Then, if 𝐺 = 𝑍
1
+ 𝑍
2
, either

(i) 𝐺 has a fixed point in𝐷 or

(ii) there is a point 𝑢 ∈ 𝜕𝐷 and 𝜆 ∈ (0, 1) with 𝑢 ∈ 𝜆𝐺(𝑢).

Theorem 12. Assume that (𝐴
2
) holds. In addition we suppose

that

(𝐻
1
) 𝐹 : 𝐼

𝑇

𝑞
× R → Pcp,c(R) is such that 𝑥 → 𝐹(𝑡, 𝑥) is

u.s.c. on 𝐼𝑇
𝑞
;

(𝐻
2
) there exists a continuous nondecreasing function 𝜓 :

[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐿1(𝐼𝑇
𝑞
,R+) such

that

‖𝐹 (𝑡, 𝑥)‖P := sup {𝑦
 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ 𝐼
𝑇

𝑞
×R;

(48)

(𝐻
3
) there exists a number𝑀 > 0 such that

(1 − 𝑘
0
ℓ)𝑀

Λ
𝑝
 𝜓 (𝑀)

> 1, (49)

where Λ and 𝑘
0
are defined in (23) and (24), respectively.

Then the boundary value problem (2) has at least one
solution on 𝐼

𝑞
.

Proof. Transform the problem (2) into a fixed point problem.
Consider the operatorN : 𝐶(𝐼

𝑇

𝑞
,R) → P(𝐶(𝐼

𝑇

𝑞
,R)) defined

by

N (𝑥)

= {ℎ ∈ 𝐶 (𝐼
𝑇

𝑞
,R) :

ℎ (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠

−
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥)} ,

(50)

for 𝑓 ∈ 𝑆
𝐹,𝑥

.
Now, we define two operators as follows.A : 𝐶(𝐼

𝑇

𝑞
,R) →

𝐶(𝐼
𝑇

𝑞
,R) by

A𝑥 (𝑡) = −
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) , (51)
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and the multivalued operatorB : 𝐶(𝐼
𝑇

𝑞
,R) → P(𝐶(𝐼

𝑇

𝑞
,R))

by

B (𝑥)

= {ℎ ∈ 𝐶 (𝐼
𝑇

𝑞
,R) :

ℎ (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠} .

(52)

ThenN = A+B. We will show that the operatorsA and
B satisfy all the conditions of Theorem 11 on 𝐼𝑇

𝑞
. For better

readability, we break the proof into a sequence of steps and
claims.

Step 1. We show that A is a contraction on 𝐶(𝐼
𝑇

𝑞
,R). The

proof is similar to the one for the operator Q
2
in Step 2 of

Theorem 6.

Step 2. We will show that the operator B is compact and
convex valued and it is completely continuous. This will be
given in several claims.

Claim I. B maps bounded sets into bounded sets in 𝐶(𝐼𝑇
𝑞
,R).

To see this, let 𝐵
𝑟
= {𝑥 ∈ 𝐶(𝐼

𝑇

𝑞
,R) : ‖𝑥‖ ≤ 𝑟} be a bounded

set in 𝐶(𝐼𝑇
𝑞
,R). Then, for each ℎ ∈ B(𝑥), 𝑥 ∈ 𝐵

𝜌
, there exists

𝑓 ∈ 𝑆
𝐹,𝑥

such that

ℎ (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠.

(53)

Then for 𝑡 ∈ 𝐼𝑇
𝑞
we have

|ℎ (𝑡)|

≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑞𝑠

+

𝑡 − 𝜉


|𝐷|
(
𝛽
 ∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏)

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠)
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠)

 𝑑𝑞𝑠)

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠)
𝑓 (𝑠)

 𝑑𝑞𝑠

≤
𝑝
 𝜓 (‖𝑥‖)

⋅ {
𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|
(

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)
+ |𝛼| 𝑟𝜂

+
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
) +

1

|𝐷|

⋅ (|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

𝜉
2

1 + 𝑞
} .

(54)

Thus,

‖ℎ‖ ≤ 𝜓 (𝜌)
𝑝
 {

𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|

⋅ (

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)
+ |𝛼| 𝑟𝜂

+
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
) +

1

|𝐷|

⋅ (|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝜉
2

1 + 𝑞
} .

(55)

Claim II. Next we show that B maps bounded sets into
equicontinuous sets. Let 𝑡

1
, 𝑡
2
∈ 𝐼
𝑞
with 𝑡

1
< 𝑡
2
and 𝑥 ∈ 𝐵

𝜌
.

For each ℎ ∈ B(𝑥), we obtain

ℎ (𝑡2) − ℎ (𝑡1)


≤


∫

𝑡2

0

(𝑡
2
− 𝑞𝑠) 𝑓 (𝑠) 𝑑

𝑞
𝑠 − ∫

𝑡1

0

(𝑡
1
− 𝑞𝑠)

𝑓 (𝑠)
 𝑑𝑞𝑠
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+

𝑡2 − 𝑡1


|𝐷|
(
𝛽
 ∫

𝑇

0

∫

𝑠

0

(𝑠 − 𝑞𝜏)
𝑓 (𝜏)

 𝑑𝑞𝜏𝑑𝑝𝑠

+ |𝛼| ∫

𝑟𝜂

0

𝑓 (𝑠)
 𝑑𝑞𝑠

+
|𝛼|

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠)
𝑓 (𝑠)

 𝑑𝑞𝑠)

+

𝛽
 (𝑇 − 𝜂)

𝑡2 − 𝑡1


|𝐷|
∫

𝜉

0

(𝜉 − 𝑠)
𝑓 (𝑠)

 𝑑𝑞𝑠

≤
𝑝
 𝜓 (𝜌){


∫

𝑡1

0

(𝑡
2
− 𝑡
1
) 𝑑
𝑞
𝑠


+



∫

𝑡2

𝑡1

(𝑡
2
− 𝑞𝑠) 𝑑

𝑞
𝑠



+

𝑡2 − 𝑡1


|𝐷|
[

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)

+ |𝛼| 𝑟𝜂 +
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
]

+

𝛽
 (𝑇 − 𝜂)

𝑡2 − 𝑡1


|𝐷|

𝜉
2

1 + 𝑞
} .

(56)
Obviously the right hand side of the above inequality

tends to zero independently of 𝑥 ∈ 𝐵
𝜌
as 𝑡
2
− 𝑡
1
→ 0.

As B satisfies the above three assumptions; therefore, it
follows by the Ascoli-Arzelá theorem that B : 𝐶(𝐼

𝑇

𝑞
,R) →

P(𝐶(𝐼
𝑇

𝑞
,R)) is completely continuous.

Claim III. Next we prove thatB has a closed graph. Let 𝑥
𝑛
→

𝑥
∗
, ℎ
𝑛
∈ B(𝑥

𝑛
), and ℎ

𝑛
→ ℎ
∗
. Then we need to show that

ℎ
∗
∈ B(𝑥

∗
). Associated with ℎ

𝑛
∈ B(𝑥

𝑛
), there exists 𝑓

𝑛
∈

𝑆
𝐹,𝑥𝑛

such that, for each 𝑡 ∈ 𝐼𝑇
𝑞
,

ℎ
𝑛
(𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠

+
𝑡 − 𝜉

𝐷
(𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓
𝑛
(𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠.

(57)
Thus it suffices to show that there exists 𝑓

∗
∈ 𝑆
𝐹,𝑥∗

such
that for each 𝑡 ∈ 𝐼𝑇

𝑞
,

ℎ
∗
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓
∗
(𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠.

(58)

Let us consider the linear operator Θ : 𝐿
1
(𝐼
𝑇

𝑞
,R) →

𝐶(𝐼
𝑇

𝑞
,R) given by

𝑓 → Θ(𝑓) (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠.

(59)

Observe that

ℎ𝑛 (𝑡) − ℎ∗ (𝑡)


= ∫

𝑡

0

(𝑡 − 𝑞𝑠) (𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠

+
𝑡 − 𝜉

𝐷
(𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) (𝑓
𝑛
(𝜏) − 𝑓

∗
(𝜏)) 𝑑

𝑞
𝜏𝑑
𝑝
𝑠

+ 𝛼∫

𝑟𝜂

0

(𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠 +

𝛼

(1 − 𝑟) 𝜂

⋅ ∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) (𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) (𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠.

(60)
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Thus, it follows by Lemma 10 thatΘ ∘ 𝑆
𝐹
is a closed graph

operator. Further, we have ℎ
𝑛
(𝑡) ∈ Θ(𝑆

𝐹,𝑥𝑛
). Since 𝑥

𝑛
→ 𝑥
∗
,

therefore, we have

ℎ
∗
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠 +

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠)

+
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓
∗
(𝑠) 𝑑
𝑞
𝑠,

(61)

for some 𝑓
∗
∈ 𝑆
𝐹,𝑥∗

. Hence B has a closed graph (and,
therefore, has closed values). As a resultB is compact valued.

Therefore, the operators A and B satisfy all the condi-
tions of Theorem 11 and hence an application of it yields that
either condition (i) or condition (ii) holds. We show that the
conclusion (ii) is not possible. If 𝑥 ∈ 𝜆A(𝑥) + 𝜆B(𝑥) for
𝜆 ∈ (0, 1), then there exists 𝑓 ∈ 𝑆

𝐹,𝑥
such that

𝑥 (𝑡) = 𝜆∫

𝑡

0

(𝑡 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠 + 𝜆

𝑡 − 𝜉

𝐷

⋅ (𝛽∫

𝑇

𝜂

∫

𝑠

0

(𝑠 − 𝑞𝜏) 𝑓 (𝜏) 𝑑
𝑞
𝜏𝑑
𝑝
𝑠 + 𝛼∫

𝑟𝜂

0

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝛼

(1 − 𝑟) 𝜂
∫

𝜂

𝑟𝜂

(𝜂 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠)

+ 𝜆
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)

⋅ ∫

𝜉

0

(𝜉 − 𝑞𝑠) 𝑓 (𝑠) 𝑑
𝑞
𝑠

− 𝜆
1

𝐷
(𝛼 +

𝛽 (𝑇
2
− 𝜂
2
)

1 + 𝑝
− 𝛽 (𝑇 − 𝜂) 𝑡)𝑔 (𝑥) ,

𝑡 ∈ 𝐼
𝑇

𝑞
.

(62)

Consequently, we have

‖𝑥‖ ≤ 𝜓 (‖𝑥‖)
𝑝


⋅ {
𝑇
2

1 + 𝑞
+
𝜉 + 𝑇

|𝐷|
(

𝛽
 (𝑇
3
− 𝜂
3
)

(1 + 𝑞) (1 + 𝑝 + 𝑝2)

+ |𝛼| 𝑟𝜂 +
|𝛼| 𝜂 (1 − 𝑞𝑟)

(1 + 𝑞)
)

+
1

|𝐷|
(|𝛼| +

𝛽
 (𝑇
2
− 𝜂
2
)

1 + 𝑝
+
𝛽
 𝑇 (𝑇 − 𝜂))

⋅
𝜉
2

1 + 𝑞
} + 𝑘

0
ℓ ‖𝑥‖

(63)

or

‖𝑥‖ ≤ Λ
𝑝
 𝜓 (‖𝑥‖) + 𝑘0ℓ ‖𝑥‖ . (64)

If condition (ii) of Theorem 11 holds, then there exists 𝜆 ∈

(0, 1) and 𝑥 ∈ 𝜕𝐵
𝑀
with 𝑥 = 𝜆N(𝑥). Then, 𝑥 is a solution of

(30) with ‖𝑥‖ = 𝑀. Now, the previous inequality implies

(1 − 𝑘
0
ℓ)𝑀

Λ
𝑝
 𝜓 (𝑀)

≤ 1, (65)

which contradicts to (49). Hence,N has a fixed point in 𝐼𝑇
𝑞
by

Theorem 11, and consequently the boundary value problem
(2) has a solution. This completes the proof.

Example 13. Consider the following nonlocal boundary value
problem of nonlinear 𝑞-difference inclusion

𝐷
2

1/2
𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥) , 𝑡 ∈ [0,

1

2
]
1/2

,

𝑥 (
1

8
) =

|𝑥 (1/16)|

4 (1 + |𝑥 (1/16)|)
,

1

2
𝐷
1/3
𝑥(

1

4
) +

3

5
∫

1/2

1/4

𝑥 (𝑠) 𝑑
1/4
𝑠 = 0,

(66)

where 𝐹 : [0, 1/2] × R → P(R) is a multivalued map given
by

𝑥 → 𝐹 (𝑡, 𝑥) = [
𝑡 |𝑥| (1 + cos2𝑥)

1 + |𝑥|
,
(𝑡 + 1) (|𝑥| + 1) 𝑒

−𝑥
2

1 + sin2𝑥
] .

(67)

Here, 𝑞 = 1/2, 𝑟 = 1/3, 𝑝 = 1/4, 𝑇 = 1/2, 𝜉 = 1/8, 𝜂 = 1/4,
𝛼 = 1/2, 𝛽 = 3/5, and 𝑔(𝑥) = (1/4)(|𝑥|/(1 + |𝑥|)). We find
that𝐷 = −457/800, 𝑘

0
= 532/457, and Λ = 11083/32904.

As |𝑔(𝑥)−𝑔(𝑦)| ≤ (1/4)|𝑥−𝑦|, therefore, (𝐴
2
) is satisfied

with ℓ = (1/4) < (457/532) = 𝑘−1
0
. For 𝑓 ∈ 𝐹, we have

𝑓
 ≤ max(

𝑡 |𝑥| (1 + cos2𝑥)
1 + |𝑥|

,
(𝑡 + 1) (|𝑥| + 1) 𝑒

−𝑥
2

1 + sin2𝑥
)

≤ (𝑡 + 1) (|𝑥| + 1) , 𝑥 ∈ R.

(68)

Thus
‖𝐹 (𝑡, 𝑥)‖P := sup {𝑦

 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖) ,

𝑥 ∈ R,
(69)

with 𝑝(𝑡) = 𝑡 + 1 and 𝜓(‖𝑥‖) = ‖𝑥‖ + 1. From the given data,
it is found that 𝑀 > 2.47997. Clearly, all the conditions of
Theorem 12 are satisfied. Hence, the nonlocal boundary value
problem (66) has at least one solution on [0, 1/2]

1/2
.
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