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We present an infinite family of hyperelliptic curves of genus two over a finite field of even characteristic which are suitable for the
vector decomposition problem.

1. Introduction

Intractable mathematical problems such as the integer fac-
torization problem, the discrete logarithm problem (DLP),
and the computational Diffie-Hellman problem (CDHP) are
being used to provide secure protocols for cryptosystems. A
new hard problem which is called the vector decomposition
problem (VDP) was proposed by Yoshida et al. [1]. The
VDP on a two-dimensional vector space can serve as the
underlying intractable problem for cryptographic protocols.
Galbraith and Verheul presented an application of trapdoor
VDP where a trapdoor is used to construct a public key
encryption scheme [2]. In 2009, Yoshida and Fujiwara intro-
duced a new watermarking scheme designed for crypto-
graphic data such as keys, ciphertexts, and signatures [3, 4].
The proposed scheme utilizes a two-dimensional vector space
where one of the one-dimensional subspaces is used as the
domain of cryptographic date and the other one-dimensional
subspace is used to embed a watermark. The security of
the scheme is based on the infeasibility of the VDP. In [5],
Yoshida stated the conditions that are required for the VDP
on a two-dimensional vector space to be at least as hard as
the CDHP on a one-dimensional subspace and suggested a
particular family of elliptic curves to be used for the VDP.
Duursma and Kiyavash [6] showed that the family of elliptic
curves chosen by Yoshida is not secure and moreover none
of the elliptic curves have the property that is needed for the
VDP to be a hard problem. In order to resolve this problem
Duursma andKiyavash introduced an infinite family of genus

two hyperelliptic curves suitable for the VDP. Galbraith
and Verheul analyzed the VDP and showed that the VDP
on a two-dimensional vector space is equivalent to CDHP
on a one-dimensional subspace for the Duursma-Kiyavash
curves [2]. The family of hyperelliptic curves proposed by
Duursma and Kiyavash are defined over a finite field of odd
characteristic. Curve operations are performed using arith-
metic operations in the underlying field. Hence the efficient
implementation of finite field arithmetic is an important
prerequisite in hyperelliptic curve systems. Smart showed
that the general multiplication algorithm on the Jacobian for
curves defined over odd characteristic fields ended up being
around twice as slow as that for even characteristic fields, of
an equivalent size, in genus two [7].Thus curves defined over
even characteristic fields have an advantage in computation
time over curves defined over odd characteristic fields. Hence
one would prefer curves defined over a finite field of even
characteristic for the VDP. In this paper, we present an
infinite family of hyperelliptic curves of genus two over a
finite field of even characteristic and show that it satisfies
all the conditions that are needed for the VDP to be a hard
problem. The paper is organized as follows: The definitions
of CDHP and VDP are given in Section 2. Also we state the
conditions for the VDP to be a hard problem and describe
the applications of the VDP given in [2–4]. In Section 3, we
propose a family of hyperelliptic curves over fields of even
characteristic such that the Jacobian of the curves is a product
of two elliptic curves. In Section 4, we prove that the two
elliptic curves found in Section 3 are 3-isogenous and we find
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the 3-isogeny. In Section 5, we give the setting of the VDP
on the hyperelliptic curves given in Section 3 and show that
the VDP defined on these curves can serve as an intractable
problem in cryptographic protocols.

2. Vector Decomposition Problem

We state the definition of VDP and the conditions for the
VDP on a two-dimensional vector space to be at least as
hard as the CDHP on a one-dimensional subspace given by
Yoshida [5].

Definition 1. TheVDP onV (a two-dimensional vector space
over F) is as follows: “given 𝑒

1
, 𝑒
2
, V ∈ V such that {𝑒

1
, 𝑒
2
} is

an F-basis for V, find the vector 𝑢 ∈ V such that 𝑢 ∈ ⟨𝑒
1
⟩

and V − 𝑢 ∈ ⟨𝑒
2
⟩.”

Definition 2. The CDHP on V󸀠 (a one-dimensional vector
space over F) is as follows: “given 𝑒 ∈V󸀠\{0} and 𝑎𝑒, 𝑏𝑒 ∈ ⟨𝑒⟩,
find 𝑎𝑏𝑒 ∈ ⟨𝑒⟩.”

Theorem 3 (Yoshida [5]). The vector decomposition problem
on V is at least as hard as the computational Diffe-Hellman
problem on V󸀠 ⊂ V if for any 𝑒 ∈ V󸀠 there are linear
isomorphisms 𝜙

𝑒
, 𝐹
𝑒
: V → V which satisfy the following

three conditions:

(1) For any V ∈ V, 𝜙
𝑒
(V) and 𝐹

𝑒
(V) are effectively defined

and can be computed in polynomial time.
(2) {𝑒, 𝜙

𝑒
(𝑒)} is an F-basis forV.

(3) There are 𝛼
1
, 𝛼
2
, 𝛼
3
∈ F with

𝐹
𝑒
(𝑒) = 𝛼

1
𝑒,

𝐹
𝑒
(𝜙
𝑒
(𝑒)) = 𝛼

2
𝑒 + 𝛼
3
𝜙
𝑒
(𝑒) ,

(1)

and 𝛼
1
, 𝛼
2
, 𝛼
3

̸= 0. The elements 𝛼
1
, 𝛼
2
, 𝛼
3
and their

inverses can be computed in polynomial time.

Proof. The proof is in [5] and is also included in [6].

The VDP is hard in general but for certain bases the VDP
can be solved in polynomial time even if it satisfies Yoshida’s
conditions [2, 8]. In fact, the bases chosen by Duursma and
Kiyavash are easy instances of the VDP.The fact that there are
easy instances of VDPdoes not affect theVDP conjecture that
the VDP should be hard for randomly chosen basis. In [8],
Kwon and Lee provided criteria for choosing a basis such that
theVDP can serve as an intractable problem in cryptographic
protocols. In [2], Galbraith andVerheul showed that if {𝑒

1
, 𝑒
2
}

is distortion eigenvector base forV then the VDP on a two-
dimensional vector V is equivalent to the CDHP on one-
dimensional vector space ⟨𝑒

1
⟩.

We give the definition of eigenvector base and distortion
eigenvector base.

Definition 4. LetV be a group of exponent𝑚 and order𝑚2.
Let 𝐹 : V → V be a group isomorphism computable
in polynomial time. A pair of elements 𝑒

1
, 𝑒
2
∈ V is an

eigenvector base with respect to 𝐹 if V = ⟨𝑒
1
, 𝑒
2
⟩; that is,

each element V ∈ V can be uniquely written as a linear
combination in 𝑒

1
and 𝑒
2
and if𝐹(𝑒

1
) = 𝛼
1
𝑒
1
and𝐹(𝑒

2
) = 𝛼
2
𝑒
2

for some distinct, nonzero 𝛼
1
, 𝛼
2
∈ Z/𝑚Z.

Definition 5. An eigenvector base {𝑒
1
, 𝑒
2
} is said to be a dis-

tortion eigenvector base if there are group homomorphisms
𝜙
1
: ⟨𝑒
1
⟩ → ⟨𝑒

1
⟩ and 𝜙

2
: ⟨𝑒
2
⟩ → ⟨𝑒

1
⟩ computable in

polynomial time and if an integer 𝑑 ̸≡ 0 (mod𝑚) is given
such that 𝜙

2
(𝜙
1
(𝑒
1
)) = 𝑑𝑒

1
.

Remark 6. The VDP with respect to an eigenvector base is
solvable in polynomial time.

Two applications of the VDP are watermarking scheme
designed for cryptographic date given in [3, 4] and public key
encryption scheme given in [2]. In the watermarking scheme
a cryptographic date which can be considered as a “vector”
is watermarked by adding a linearly independent random
vector. Embedding and removing a watermark correspond to
adding a one-dimensional vector and decomposing a two-
dimensional vector, respectively. Due to the infeasibility of
the VDP, removing the watermark is hard unless one has
some trapdoor information. The core idea of the public key
encryption scheme given in [2] is that for certain bases the
VDP is easy but for general bases the VDP is hard. LetV be a
two-dimensional vector space isomorphic toZ/𝑚Z×Z/𝑚Z
with a distortion eigenvector base {𝑒

1
, 𝑒
2
}. If 𝑢
1
= 𝛼
11
𝑒
1
+𝛼
12
𝑒
2

and 𝑢
2
= 𝛼
21
𝑒
1
+ 𝛼
22
𝑒
2
, where 𝛼

11
, 𝛼
12
, 𝛼
21
, 𝛼
22
∈ Z/𝑚Z

and 𝛼
11
𝛼
22
− 𝛼
12
𝛼
21

̸≡ 0 (mod𝑚), then for any V ∈ V,
if one knows the 𝛼

11
, 𝛼
12
, 𝛼
21
, 𝛼
22

then one can solve the
VDP of V to the base {𝑢

1
, 𝑢
2
}. Using 𝛼

11
, 𝛼
12
, 𝛼
21
, 𝛼
22

as a
trapdoor we obtain a trapdoor VDP scheme. An application
of the trapdoorVDP is the public key encryption schemewith
public key (𝑒

1
, V = 𝛼

1
𝑒
1
+ 𝛼
2
𝑒
2
) and private key (𝛼

1
, 𝛼
2
). A

message𝑚 ∈ ⟨𝑒
1
⟩ is encrypted as 𝑐 = 𝑚 + 𝛽V for a random 𝛽

with 1 ≤ 𝛽 < 𝑚.

3. Hyperelliptic Curves over Fields of
Even Characteristic

By Theorem 3, the VDP is hard if the CDHP on a one-
dimensional subspace is hard. Yoshida suggested to use the
full group of 𝑚-torsion points on the elliptic curve 𝐸 : 𝑦2 =
𝑥
3
+ 1 over F

𝑝
as the two-dimensional vector space V =

𝐸[𝑚] and the subgroup of F
𝑝
-rational𝑚-torsion points as the

one-dimensional subspace V󸀠 = 𝐸(F
𝑝
) ∩ 𝐸[𝑚]. The elliptic

curve 𝐸 : 𝑦
2
= 𝑥
3
+ 1 given by Yoshida is supersingular.

Thus the elliptic curve discrete logarithm problem (ECDLP),
and hence the CDHP on the one-dimensional subspace, is
vulnerable to the MOV attack. Duursma and Kiyavash [6]
showed that any elliptic curve that satisfies the conditions
of Theorem 3 is supersingular. Thus, using the VDP with
the full 𝑚-torsion points on an elliptic curve introduces
a vulnerability that needs to be compensated by choosing
larger parameters. To avoid this, the VDP may be used with
higher genus curves. Duursma and Kiyavash introduced an
infinite family of genus two hyperelliptic curves suitable for
the VDP defined over a finite field of odd characteristic.
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In this section, we provide an infinite family of genus two
hyperelliptic curves suitable for the VDP defined over a finite
field of even characteristic. Unless specified otherwise all the
fields will be of even characteristic and all the curves will be
over fields of even characteristic. For our purpose, we need a
hyperelliptic curve such that the Jacobian of the hyperelliptic
curve decomposes into two isogenous elliptic curves. Let𝐾be
a finite field of even characteristic. We consider the following
hyperelliptic curve of genus two over 𝐾:

𝐶 : 𝑦
2
+ 𝑦 =

𝑎

𝑥
3
+ 1

, (2)

where 𝑎 = 𝛼2 + 𝛼 for some 𝛼 ∈ 𝐾. Let 𝜔 and 𝜔 be the roots
of 𝑥2 + 𝑥 + 1 = 0. The automorphism group of (2) is𝐷

12
and

the automorphisms are

(1) (𝑥, 𝑦) id
󳨃→ (𝑥, 𝑦),

(2) (𝑥, 𝑦) 𝜄󳨃→ (𝑥, 𝑦 + 1),

(3) (𝑥, 𝑦) 𝑢󳨃→ (𝜔/𝑥, 𝑦 + 𝛼),

(4) (𝑥, 𝑦) 𝜄𝑢󳨃→ (𝜔/𝑥, 𝑦 + 𝛼 + 1),

(5) (𝑥, 𝑦) V
󳨃→ (𝜔𝑥, 𝑦),

(6) (𝑥, 𝑦) 𝜄V󳨃→ (𝜔𝑥, 𝑦 + 1),

(7) (𝑥, 𝑦) V2
󳨃→ (𝜔𝑥, 𝑦),

(8) (𝑥, 𝑦) 𝜄V
2

󳨃→ (𝜔𝑥, 𝑦 + 1),

(9) (𝑥, 𝑦) V𝑢
󳨃→ (𝜔/𝑥, 𝑦 + 𝛼),

(10) (𝑥, 𝑦) 𝜄V𝑢󳨃→ (𝜔/𝑥, 𝑦 + 𝛼 + 1),

(11) (𝑥, 𝑦) V2𝑢
󳨃→ (1/𝑥, 𝑦 + 𝛼),

(12) (𝑥, 𝑦) 𝜄V
2
𝑢

󳨃→ (1/𝑥, 𝑦 + 𝛼 + 1).

We state a theorem given by Kani and Rosen [9] without
proof which we use to show that the Jacobian of the hyper-
elliptic curve given by (2) decomposes into two isogenous
elliptic curves.

Theorem 7 (Kani and Rosen [9]). Given a curve 𝐶, let 𝐺 be a
finite subgroup of Aut(𝐶) such that 𝐺 = 𝐻

1
∪ ⋅ ⋅ ⋅ ∪ 𝐻

𝑡
where

the subgroups 𝐻
𝑖
of 𝐺 satisfy 𝐻

𝑖
∩ 𝐻
𝑗
= 1
𝐺
if 𝑖 ̸= 𝑗. Then one

has the following isogeny relation:

𝐽
𝑡−1

𝐶
× 𝐽
𝑔

𝐶/𝐺
∼ 𝐽
ℎ
1

𝐶/𝐻
1

× ⋅ ⋅ ⋅ × 𝐽
ℎ
𝑡

𝐶/𝐻
𝑡

, (3)

where 𝑔 = |𝐺| and ℎ
𝑖
= |𝐻
𝑖
| and 𝐽𝑚 means the product of 𝐽

with itself𝑚 times.

Theorem 8. The Jacobian of the hyperelliptic curve

𝐶 : 𝑦
2
+ 𝑦 =

𝑎

𝑥
3
+ 1

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝛼
2
+ 𝛼 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼 ∈ 𝐾,

(4)

Q0 Q1

P0 P1

∞0 ∞𝛼+1

P∞

K(x,y)

K(x)

Figure 1: Elliptic function field.

is isogenous to a product of elliptic curves 𝐸
1
and 𝐸

2
,

𝐸
1
: 𝑦
2
+ (𝛼 + 1) 𝑦 =

𝛼
4
+ 𝛼
2

𝑥
3
+ 𝑥

,

𝐸
2
: 𝑦
2
+ 𝛼𝑦 =

𝛼
4
+ 𝛼
2

𝑥
3
+ 𝑥

.

(5)

Proof. Let 𝜎 := V2𝑢 and 𝜏 := 𝜄V2𝑢 be automorphisms. We
compute 𝐶/⟨𝜎⟩ and 𝐶/⟨𝜏⟩. Since 𝑥 + 𝑥−1 and 𝑦2 + 𝛼𝑦 are
invariants under 𝜎, we set 𝑥 + 𝑥−1 = 𝑠, 𝑦2 + 𝛼𝑦 = 𝑡 and find
the relation between 𝑠 and 𝑡. We have

𝑡
2
+ (𝛼 + 1) 𝑡 =

𝛼
4
+ 𝛼
2

𝑠
3
+ 𝑠

. (6)

Thus 𝐶/⟨𝜎⟩ is

𝑡
2
+ (𝛼 + 1) 𝑡 =

𝛼
4
+ 𝛼
2

𝑠
3
+ 𝑠

. (7)

By Hurwitz genus formula, (7) is a genus 1 curve. Similarly,
we can compute 𝐶/⟨𝜏⟩. Since 𝑥 + 𝑥−1 and 𝑦2 + (𝛼 + 1)𝑦 are
invariants under 𝜏, to compute𝐶/⟨𝜏⟩we plug in 𝛼+1 instead
of 𝛼 in (7) to get

𝑡
2
+ 𝛼𝑡 =

𝛼
4
+ 𝛼
2

𝑠
3
+ 𝑠

(8)

which is also a genus 1 curve. By applying Theorem 7 with
Aut(𝐶) = 𝐷

12
, 𝐺 = ⟨𝜄⟩ ∪ ⟨𝜎⟩ ∪ ⟨𝜏⟩, and 𝑔 = 4, we have

Jac (𝐶)2 × Jac (P1)
4

∼ Jac (P1)
2

× 𝐸
2

1
× 𝐸
2

2
. (9)

By applying Poincaré’s complete reducibility theorem, we
conclude that Jac(𝐶) is isogenous to the product of the two
elliptic curves (7) and (8).

For ease of computation we transform the elliptic curves
𝐸
1
and 𝐸

2
into Weierstrass form. First, we consider

𝐸
1
: 𝑦
2
+ (𝛼 + 1) 𝑦 =

𝛼
4
+ 𝛼
2

𝑥
3
+ 𝑥

(10)

with elliptic function field as in Figure 1.
In Figure 1, 𝑃

𝑖
is the zero of 𝑥− 𝑖 and 𝑃

∞
is the pole of 𝑥 in

𝐾(𝑥). 𝑄
𝑖
is the extension of 𝑃

𝑖
and∞

0
,∞
𝛼+1

are extensions
of 𝑃
∞
. Since

div( 1

(𝑥 + 1) 𝑦

) = −2∞
0
+∞
𝛼+1

+ 𝑄
0
∈ 𝐿 (2∞

0
) ,

div( 1
𝑦

) = −3∞
0
+ 𝑄
0
+ 2𝑄
1
∈ 𝐿 (3∞

0
) ,

(11)
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we set

1

(𝑥 + 1) 𝑦

= 𝑋,

1

𝑦

= 𝑌 (12)

or

𝑥 =

𝑌

𝑋

+ 1, 𝑦 =

1

𝑌

. (13)

By plugging in 𝑥 and 𝑦 into 𝐸
1
, we get

𝑌
2
+ 𝑋𝑌 +

1

𝛼 + 1

𝑌 = 𝛼
2
(𝛼 + 1)𝑋

3
+

1

𝛼 + 1

𝑋. (14)

By the transformation

(𝑋, 𝑌) 󳨃󳨀→ (

𝑋

𝛼
2
(𝛼 + 1)

,

𝑌

𝛼
2
(𝛼 + 1)

) , (15)

the curve given by (14) is transformed into

𝑌
2
+ 𝑋𝑌 + 𝛼

2
𝑌 = 𝑋

3
+ 𝛼
2
𝑋. (16)

By the transformation

(𝑋, 𝑌) 󳨃󳨀→ (𝑋 + 𝛼
2
, 𝑌 + 𝛼

2
+ 𝛼
4
) , (17)

the curve given by (16) is transformed into

𝑌
2
+ 𝑋𝑌 = 𝑋

3
+ 𝛼
2
𝑋
2
+ 𝛼
8
+ 𝛼
6
. (18)

By the above transformations, we have the elliptic curve

𝐸
3
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝛼
2
𝑥
2
+ 𝛼
8
+ 𝛼
6 (19)

which is isomorphic to 𝐸
1
with 𝑗-invariant 𝑗 = (𝛼8 + 𝛼6)−1.

We plug in 𝛼 + 1 into 𝛼 in (19) to obtain the elliptic curve

𝐸
4
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ (𝛼 + 1)

2
𝑥
2
+ 𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2 (20)

which is isomorphic to 𝐸
2
with 𝑗-invariant 𝑗 = (𝛼8+𝛼6+𝛼4+

𝛼
2
)
−1. From now on we consider the two elliptic curves

𝐸
3
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝛼
2
𝑥
2
+ 𝛼
8
+ 𝛼
6 (21)

with 𝑗
1
= (𝛼
8
+ 𝛼
6
)
−1 and

𝐸
4
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ (𝛼 + 1)

2
𝑥
2
+ 𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2 (22)

with 𝑗
2
= (𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2
)
−1.

4. Three-Isogeny of 𝐸
3

and 𝐸
4

Themodular equation of level three is

Φ
3
(𝑥, 𝑦) = 𝑥

4
+ 𝑥
3
𝑦
3
+ 𝑦
4 (23)

which is the modular curve reduced modulo 2. Since
Φ
3
(𝑗
1
, 𝑗
2
) = 0, 𝐸

3
and 𝐸

4
are 3-isogenous. In this section we

find a 3-isogeny from 𝐸
3
to 𝐸
4
. We use the following theorem

in [10] to find an isogeny.

Theorem 9 (Lercier [10]). Let 𝐹 be a subgroup (of odd order)
of an elliptic curve 𝐸

𝑎
. If 𝑏 = 𝑎 + Σ

(𝑋
𝑠
,𝑌
𝑠
)∈𝐹
∗𝑌
𝑠
+ 𝑌
2

𝑠
, then there

exist isogenies between 𝐸
𝑎
and 𝐸

𝑏
of kernel 𝐹. One of these

isogenies is given by

(𝑋, 𝑌) 󳨃󳨀→ (𝑋 + ∑

𝑆∈𝐹
∗

𝑋
𝑃+𝑆
, 𝑌 + ∑

𝑆∈𝐹
∗

𝑌
𝑃+𝑆
) , (24)

where 𝐸
𝑎
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝑎, 𝑎 ∈ F∗

2
𝑛 .

In order to find a 3-isogeny usingTheorem 9 we first find
the 3-torsion points of the elliptic curve 𝐸

3
. Let 𝑃 = (𝑥, 𝑦)

be a point of the elliptic curve 𝐸 : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎
2
𝑥
2
+ 𝑎
6

over a field of even characteristic with a point O at infinity.
Then −𝑃 = (𝑥, 𝑥 + 𝑦) and the formula for doubling a point
𝑃 = (𝑥, 𝑦) is

2𝑃 = (𝑥
2
+

𝑎
6

𝑥
2
, (𝑥 +

𝑦

𝑥

)(𝑥
2
+

𝑎
6

𝑥
2
) +

𝑎
6

𝑥
2
) . (25)

𝑃 = (𝑥, 𝑦) is a 3-torsion point if and only if 3𝑃 = O; that is,
2𝑃 = −𝑃. To find the 3-torsion points we set 𝑥2+𝑎

6
(𝑥
2
)
−1
= 𝑥

or 𝑥4 + 𝑥3 + 𝑎
6
= 0. If the equation 𝑥4 + 𝑥3 + 𝑎

6
= 0 has four

roots, say, 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
, then

𝐸 [3] = {O, (𝑥1, ±𝑦1) , (𝑥2, ±𝑦2) , (𝑥3, ±𝑦3) , (𝑥4, ±𝑦4)} ,

(26)

where 𝑦2
𝑖
+ 𝑥
𝑖
𝑦
𝑖
= 𝑥
3

𝑖
+ 𝑎
2
𝑥
2

𝑖
+ 𝑎
6
. Now we find two of the

3-torsion points of 𝐸
3
. Since 𝛼2 is a root for 𝑥4 + 𝑥3 + 𝛼8 + 𝛼6

we plug in 𝑥 = 𝛼
2 in 𝐸

3
and solve for 𝑦 to get 𝑦 = 𝛼

4 or
𝛼
2
+ 𝛼
4. The two points 𝑅

1
= (𝛼
2
, 𝛼
4
) and 𝑄

1
= (𝛼
2
, 𝛼
2
+ 𝛼
4
)

are 3-torsion points of 𝐸
3
: 𝑦
2
+𝑥𝑦 = 𝑥

3
+𝛼
2
𝑥
2
+𝛼
8
+𝛼
6. Let

𝐹 = {O, 𝑅
1
, 𝑄
1
} be a subgroup of the elliptic curve 𝐸

3
and let

𝐸
󸀠

3
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝛼
8
+ 𝛼
6
,

𝐸
󸀠

4
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2

(27)

be two elliptic curves. There exists an isomorphism 𝜑
1
:

𝐸
3
→ 𝐸
󸀠

3
defined by 𝜑

1
(𝑥, 𝑦) = (𝑥, 𝑦+ 𝑠𝑥), where 𝑠2 +𝑠 = 𝛼2.

Then

𝜑
1
(𝑅
1
) = 𝑅
󸀠

1
= (𝛼
2
, 𝛼
4
+ 𝑠𝛼
2
) ,

𝜑
1
(𝑄
1
) = 𝑄

󸀠

1
= (𝛼
2
, 𝛼
2
+ 𝛼
4
+ 𝑠𝛼
2
) ,

𝜑
1
(O) = O.

(28)

Then 𝐹󸀠 = {O, 𝑅󸀠
1
, 𝑄
󸀠

1
} is a subgroup of an elliptic curve 𝐸󸀠

3
.

We can apply Theorem 9 to 𝐸󸀠
3
and 𝐸󸀠

4
with subgroup 𝐹󸀠 to

get a 3-isogeny 𝜑
2
: 𝐸
󸀠

3
→ 𝐸
󸀠

4
defined as

𝜑
2
(𝑥, 𝑦) = (𝑥 +

𝛼
2

𝑥 + 𝛼
2
+

𝛼
4

(𝑥 + 𝛼
2
)
2
,

𝑦 +

𝛼
4

𝑥 + 𝛼
2
+

𝛼
2
𝑦
2
+ 𝛼
4
𝑦 + 𝛼
10
+ 𝛼
6

(𝑥 + 𝛼
2
)
3

) .

(29)
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Define 𝜑
3
: 𝐸
󸀠

4
→ 𝐸
4
by

𝜑
3
(𝑥, 𝑦) = (𝑥, 𝑦 + (𝑠 + 𝜔) 𝑥) . (30)

Then 𝜑
3
is an isomorphism from 𝐸

󸀠

4
to 𝐸
4
.

Let 𝜑 = 𝜑
3
∘ 𝜑
2
∘ 𝜑
1
: 𝐸
3
→ 𝐸
4
. Then

𝜑 (𝑥, 𝑦) = (𝑥 +

𝛼
2

𝑥 + 𝛼
2
+

𝛼
4

(𝑥 + 𝛼
2
)
2
,

𝑦 + 𝜔𝑥 +

𝛼
4

𝑥 + 𝛼
2

+

𝛼
2
(𝑦 + 𝑠𝑥)

2

+ 𝛼
4
(𝑦 + 𝑠𝑥) + 𝛼

10
+ 𝛼
6

(𝑥 + 𝛼
2
)
3

) ,

(31)

where 𝑠2 + 𝑠 = 𝛼2 is a 3-isogeny over the extension field of𝐾.
Thus we have proved the following theorem.

Theorem 10. Let 𝐸 and 𝐸󸀠 be two elliptic curves defined over
F
2
𝑛 by

𝐸 : 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ 𝛼
2
𝑥
2
+ 𝛼
8
+ 𝛼
6

𝑤𝑖𝑡ℎ 𝑗 = (𝛼
8
+ 𝛼
6
)

−1

,

𝐸
󸀠
: 𝑦
2
+ 𝑥𝑦 = 𝑥

3
+ (𝛼 + 1)

2
𝑥
2
+ 𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2

𝑤𝑖𝑡ℎ 𝑗 = (𝛼
8
+ 𝛼
6
+ 𝛼
4
+ 𝛼
2
)

−1

.

(32)

Then

𝜑 (𝑥, 𝑦) = (𝑥 +

𝛼
2

𝑥 + 𝛼
2
+

𝛼
4

(𝑥 + 𝛼
2
)
2
,

𝑦 + 𝜔𝑥 +

𝛼
4

𝑥 + 𝛼
2

+

𝛼
2
(𝑦 + 𝑠𝑥)

2

+ 𝛼
4
(𝑦 + 𝑠𝑥) + 𝛼

10
+ 𝛼
6

(𝑥 + 𝛼
2
)
3

) ,

(33)

where 𝜔 is a primitive third root of unity and 𝑠2 + 𝑠 = 𝛼2 is a
3-isogeny over the extension field of F

2
𝑛 .

5. VDP on Hyperelliptic Curves over Fields of
Even Characteristic

In this section, we set up the VDP on the hyperelliptic curve
𝐶 and prove that the VDP defined on the hyperelliptic curve
𝐶 is hard in general by showing the existence of a distortion
eigenvector base. We have shown that the Jacobian of

𝐶 : 𝑦
2
+ 𝑦 =

𝑎

𝑥
3
+ 1

(34)

decomposes into a product of two elliptic curves 𝐸
3
and 𝐸

4

which are 3-isogenous over the extension field that contains

the third roots of unity and 𝑠, where 𝑠2 + 𝑠 = 𝛼2. 𝐸
3
and 𝐸

4

have the same number of points over the extension field. We
set up the VDP on 𝐶 as follows.

Choose

𝐶 : 𝑦
2
+ 𝑦 =

𝑎

𝑥
3
+ 1

(35)

such that 𝐸
3
has a large cyclic subgroup Z/𝑚Z of rational

points over F
𝑞
, where 𝑞 = 2𝑛, 𝑛 is odd, and𝑚 is a prime greater

than 3. Then we choose as two-dimensional vector space V
the 𝑚-torsion points Z/𝑚Z × Z/𝑚Z in the Jacobian of the
hyperelliptic curve 𝐶 over the extension field F

𝑞
2 and choose

as one-dimensional subspace V󸀠 the subspace Z/𝑚Z of V
that is rational over F

𝑞
.

The following is a summary of the VDP setting:

𝐶 : 𝑦
2
+ 𝑦 =

𝑎

𝑥
3
+ 1

, 𝑎 = 𝛼
2
+ 𝛼. (36)

Jac(𝐶) is Jacobian of the curve 𝐶, as

V =

Z

𝑚Z
×

Z

𝑚Z
⊂ Jac (𝐶) (F

𝑞
2) , (37)

where 𝑞 = 2
𝑛, 𝑛 is odd, and 𝑚 is a prime greater than 3.

Consider

V
󸀠
=

Z

𝑚Z
⊂ Jac (𝐶) (F

𝑞
) . (38)

Let 𝜔 be a primitive third root of unity and let

𝜙 : (𝑥, 𝑦) 󳨃󳨀→ (𝜔𝑥, 𝑦) ,

𝐹 : (𝑥, 𝑦) 󳨃󳨀→ (𝑥
𝑞
, 𝑦
𝑞
) .

(39)

Let 𝑒 ∈ Jac(𝐶)(F
𝑞
) and let 𝑙 = 2

−1
(mod𝑚). We will show

that (𝑒, 𝜙󸀠(𝑒)) is a distortion eigenvector base, where𝜙󸀠 = 𝑙+𝜙.

Lemma 11. For any element 𝑒 ∈ Jac(𝐶)(F
𝑞
), 𝑞 = 2𝑛,

𝜙 (𝜙 (𝑒)) = −𝑒 − 𝜙 (𝑒) , (40)

and if 𝑛 is odd then

𝐹 (𝜙 (𝑒)) = −𝐹 (𝑒) − 𝜙 (𝐹 (𝑒)) = −𝑒 − 𝜙 (𝑒) . (41)

Proof. Let 𝑃 be a point in 𝐶. Since 𝜙(𝜙2(𝑃) + 𝜙(𝑃) + 𝑃) =
𝑃+𝜙
2
(𝑃) + 𝜙(𝑃), 𝜙2(𝑃) + 𝜙(𝑃) +𝑃 is fixed by 𝜙. Thus 𝜙2(𝑃) +

𝜙(𝑃) + 𝑃 ∈ 𝐶/⟨𝜙⟩. Since 𝜙(𝑥3) = 𝑥3, 𝐶/⟨𝜙⟩ is

𝑦
2
+ 𝑦 =

𝑎

𝑥 + 1

. (42)

Equation (42) has genus 0. Therefore the class number of the
Jacobian of (42) is 1 and hence 𝜙2 +𝜙+1 = 0. We have proved
(40).

We need to show that 𝜙2 ∘ 𝐹 = 𝐹 ∘ 𝜙:

(𝜙
2
∘ 𝐹) (𝑥, 𝑦) = (𝜔

2
𝑥
𝑞
, 𝑦
𝑞
) ,

(𝐹 ∘ 𝜙) (𝑥, 𝑦) = (𝜔
𝑞
𝑥
𝑞
, 𝑦
𝑞
) .

(43)

If 𝑛 is odd, then 2 ≡ 2𝑛 (mod 3) and hence 𝜙2 ∘𝐹 = 𝐹∘𝜙.
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Theorem 12. For an element 𝑒 ∈ 𝐽𝑎𝑐(𝐶)(F
𝑞
) of prime order

𝑚 > 3, {𝑒, 𝜙󸀠(𝑒)} is a distortion eigenvector base forV.

Proof. We begin by showing that {𝑒, 𝜙󸀠(𝑒)} is an eigenvector
base for V. Suppose that 𝑙𝑒 + 𝜙(𝑒) = 𝜙

󸀠
(𝑒) ∈ ⟨𝑒⟩; that is,

𝜙(𝑒) = 𝛽𝑒 for some 𝛽 ∈ Z/𝑚Z. Thus 𝜙(𝑒) ∈ Jac(𝐶)(F
𝑞
). By

(40) of Lemma 11, we have 𝛽2𝑒 = −𝑒−𝛽𝑒; that is, 𝛽2 = −1−𝛽.
By (41) of Lemma 11, we have 𝛽𝑒 = −𝑒−𝛽𝑒; that is, (2𝛽+1)𝑒 =
0. Thus

0 = (2𝛽 + 1) (2𝛽 + 1) 𝑒 = (4𝛽
2
+ 4𝛽 + 1)

= (−4 − 4𝛽 + 4𝛽 + 1) 𝑒 = −3𝑒.

(44)

This is a contradiction to the assumption 𝑚 > 3. Hence
{𝑒, 𝜙
󸀠
(𝑒)} is a basis for V. Note that 𝐹(𝑒) = 𝑒. By Lemma 11,

we have

𝐹 (𝜙
󸀠
(𝑒)) = 𝐹 (𝑙𝑒 + 𝜙 (𝑒))

= 𝑙𝑒 − 𝑒 − 𝜙 (𝑒)

= 𝑙𝑒 − 𝑒 + 𝑙𝑒 − 𝜙
󸀠
(𝑒)

= 𝜙
󸀠
(𝑒) .

(45)

Thus {𝑒, 𝜙󸀠(𝑒)} is an eigenvector base. Now we show that
{𝑒, 𝜙
󸀠
(𝑒)} is a distortion eigenvector base by showing the

existence of a homomorphism 𝜙
󸀠󸀠 and an integer 𝑑 ̸≡

0 (mod𝑚) with the property 𝜙󸀠󸀠𝜙󸀠 = 𝑑 on ⟨𝑒⟩. Let 𝜙󸀠󸀠 =
𝑙 + 𝜙
2 and let 𝑑 = 𝑙

2
− 𝑙 + 1. Since the dual isogeny ̂𝜙 of 𝜙

is ̂𝜙 = 𝜙2, we have

𝜙
󸀠󸀠
𝜙
󸀠
= (𝑙 + 𝜙

2
) (𝑙 + 𝜙) = 𝑙

2
+ 𝑙 (𝜙

2
+ 𝜙) + 𝜙

2
𝜙

= 𝑙
2
− 𝑙 + 1 = 𝑑.

(46)

We have shown that the basis {𝑒, 𝜙󸀠(𝑒)} is a distortion
eigenvector base and hence proved that the VDP for the
proposed family of hyperelliptic curves is hard in general. It
is permitted that the VDP be easy for some bases. In fact,
for the bases {𝑒, 𝜙(𝑒)} and {𝑒, 𝜙󸀠(𝑒)} the VDP can be solved
easily. Using the criteria for strong bases for the VDP given
in [8], we may choose {𝑒

1
, 𝑒
2
} with 𝑒

1
, 𝑒
2
∉ ⟨𝑒⟩ ∪ ⟨𝜙(𝑒)⟩ as

our basis for the VDP, for example, 𝑒
1
= 𝛼
11
𝑒 + 𝛼
12
𝜙(𝑒) and

𝑒
2
= 𝛼
21
𝑒 + 𝛼

22
𝜙(𝑒), where 𝛼

11
, 𝛼
12
, 𝛼
21
, 𝛼
22
∈ Z/𝑚Z are

nonzero and 𝛼
11
𝛼
22
− 𝛼
12
𝛼
21

̸≡ 0 (mod𝑚).

6. Conclusion

Yoshida and Fujiwara introduced a new watermarking
scheme for cryptographic data which is based on VDP.
Duursma and Kiyavash showed that elliptic curves are not
suitable for VDP and presented an infinite family of genus
two hyperelliptic curves suitable for the VDP defined over a
finite field of odd characteristic. In this paper, we introduce
an infinite family of genus two hyperelliptic curves suitable
for the VDP defined over a finite field of even characteristic.
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