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The fractional derivatives in the sense of the modified Riemann-Liouville derivative and Feng’s first integral method are employed
to obtain the exact solutions of the nonlinear space-time fractional ZKBBM equation and the nonlinear space-time fractional
generalized Fisher equation.The power of thismanageablemethod is presented by applying it to the above equations. Our approach
provides first integrals in polynomial form with high accuracy. Exact analytical solutions are obtained through establishing first
integrals. The present method is efficient and reliable, and it can be used as an alternative to establish new solutions of different
types of fractional differential equations applied in mathematical physics.

1. Introduction

Fractional differential equations have been the focus of many
studies due to their frequent appearance in various appli-
cations in physics, biology, engineering, signal processing,
systems identification, control theory, finance, and frac-
tional dynamics [1–3]. Recently, a large amount of literature
has been provided to construct the solutions of fractional
ordinary differential equations, fractional partial differential
equations (PDEs), and integral equations of physical interest.
Several powerful methods have been proposed to obtain
approximate and exact solutions of fractional differential
equations, such as the Adomian decomposition method [4,
5], the variational iteration method [6–8], the homotopy
analysis method [9–12], the homotopy perturbation method
[13–15], the Lagrange characteristic method [16], and the
fractional subequation method [17].

In [18], Jumarie proposed a modified Riemann-Liouville
derivative. With this kind of fractional derivative and some
useful formulas, we can convert fractional differential equa-
tions into integer-order differential equations by variable
transformation.

Feng [19] has introduced a reliable and effective method
called Feng’s first integral method to look for travelling wave

solutions of nonlinear PDEs. The basic idea of this method
is to construct a first integral with polynomial coefficients of
an explicit form to an equivalent autonomous planar system
by using division theorem. This method in comparison with
other methods has many advantages; it avoids a great deal of
complicated and tedious calculation and provides exact and
explicit travelling solutions with high accuracy.

Feng’s first integral method [20–26] can be used to con-
struct the exact solutions for some time fractional differential
equations.

Among the nonlinear PDEs there are two important
examples of fundamental interest in mathematical-physical
models: the nonlinear ZKBBM equation that describes the
wave water phenomena in the large wavelength limit and one
special case of nonlinear reaction-diffusion equation better
known as the generalized Fisher equation. Let us review some
general aspects about these two types of nonlinear PDEs.

The well-known Zakharov-Kuznetsov-Benjamin-Bona-
Mahony equation (ZKBBM equation) also referred to as the
regularized long wave equation (see [27, 28])

𝑈
𝑡

(𝑥, 𝑡) + 𝑈
𝑥

(𝑥, 𝑡) − 2𝑎𝑈 (𝑥, 𝑡) 𝑈
𝑥

(𝑥, 𝑡) − 𝑏𝑈
𝑡𝑥𝑥

(𝑥, 𝑡) = 0,

𝑡 > 0,

(1)
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was originally derived for water waves under the assumption
of small wave amplitude and large wavelength. The ZKBBM
equation describes approximately the unidirectional propa-
gation of long waves in certain nonlinear dispersive systems
and has been introduced in order to give a satisfactory
description for the small wave amplitude 𝑈(𝑥, 𝑡) in the large
wavelength regime in many other physical systems. It has
been used to account adequately for observable phenomena
such as the interaction of solitary waves and dissipationless
undular shocks; see [27].

The details of the derivation of the ZKBBM equation
differ, in different examples, but in general the essentials are
as follows.The first property of the systems in question is that
dispersive effects on infinitesimal waves vanish in the limit as
wavelength becomes infinite, and the limiting phase speed is
a constant (𝑐

0
> 0). Thus waves of extreme length, along the

+𝑥 propagation direction, are described by

𝑈
𝑡

(𝑥, 𝑡) + 𝑐
0
𝑈
𝑥

(𝑥, 𝑡) = 0, 𝑡 > 0, (2)

whose general solution is an arbitrary differentiable function
of 𝑥 − 𝑐

0
𝑡, where 𝑈

𝑡
= 𝜕𝑈/𝜕𝑡 and 𝑈

𝑥
= 𝜕𝑈/𝜕𝑥. In

certain applications (2) already has some validity as an
approximation for real waves of sufficiently small amplitude
and large wavelength but is not a valid approximation for very
large times, during which nonlinear and frequency dispersive
effects are accumulated to a significant level. These effects
require the introduction of at least a first order approximation
model to extend the range of validity of the model (1).

For the linearized equation (1) all values of 𝑈(𝑥, 𝑡) are
propagated with the same velocity (𝑑𝑥/𝑑𝑡) = 𝑐

0
. When the

nonlinear effects are taken into account, the characteristic
velocity becomes dependent linearly on 𝑈(𝑥, 𝑡) for the waves
of finite but small amplitude; therefore in the first order
approximation we obtain

1

𝑐
0

(
𝑑𝑥

𝑑𝑡
)

𝑢=const.
= 1 + 𝛽𝑈 (𝑥, 𝑡) , (3)

where 𝛽 is a constant. After the substitution of (3) into (2) the
following equation is obtained:

𝑈
𝑡

(𝑥, 𝑡) + 𝑐
0
𝑈
𝑥

(𝑥, 𝑡) + 𝑐
0
𝛽𝑈 (𝑥, 𝑡) 𝑈

𝑥
(𝑥, 𝑡) = 0, 𝑡 > 0.

(4)

Additionally the dispersive effects as suffered by waves of
finite but large wavelength in the model (2) are ignored. In
the first order approximation the dispersive effects transform
the model (2) into the following equation:

𝑈
𝑡

(𝑥, 𝑡) + 𝑐
0

(𝑈 (𝑥, 𝑡) + 𝛼𝑈
𝑡𝑥

(𝑥, 𝑡))
𝑥

= 0, 𝑡 > 0. (5)

Although for a self-consistent theory the two kinds of small
effects have to be considered simultaneously, the outcome of
such theories can generally be anticipated by considering the
two effects separately. That is, in a first approximation, the
above corrections are added separately into (2), and higher
order terms appear negligible in this approximation.

When the physical parameters and the scaling factors
presented in a particular example are appropriately absorbed

into the definition of the dependent variable 𝑈(𝑥, 𝑡) and
the independent variables 𝑥 and 𝑡, which are, respectively,
proportional to distance in the physical system and to time,
the ZKBBM equation is given by:

𝑈
𝑡

(𝑥, 𝑡) + 𝑈
𝑥

(𝑥, 𝑡) − 2𝑎𝑈 (𝑥, 𝑡) 𝑈
𝑥

(𝑥, 𝑡)

− 𝑏𝑈
𝑡𝑥𝑥

(𝑥, 𝑡) = 0, 𝑡 > 0.

(6)

Equation (6) can be extended in order to consider fractional
order derivatives obtaining the ZKBBMspace-time fractional
equation [29]:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = −𝐷

𝛼

𝑥
𝑈 (𝑥, 𝑡) + 2𝑎𝑈 (𝑥, 𝑡) 𝐷

𝛼

𝑥
𝑈 (𝑥, 𝑡)

+ 𝑏𝐷
𝛼

𝑡
(𝐷
2𝛼

𝑥
𝑈 (𝑥, 𝑡)) 𝑡 > 0, 0 < 𝛼 ≤ 1,

(7)

where𝐷
𝛼

𝑥
𝑈(𝑥, 𝑡) and𝐷

𝛼

𝑡
𝑈(𝑥, 𝑡) denotes the fractional deriva-

tive of order𝛼with respect to the independent variables𝑥 and
𝑡.

The second nonlinear PDE mentioned before, the gen-
eralized Fisher equation [30–32], can be obtained as a
special case of the reaction-diffusion equation. The reaction-
diffusion equation plays a fundamental role in a great number
of various models of heat and reaction-diffusion processes,
mathematical biology, chemistry, genetics, and many other
fields.

We start with the reaction-diffusion equation with power
nonlinearity (see, for example, [33]):

𝑈
𝑡

(𝑥, 𝑡) − 𝑈
𝑥𝑥

(𝑥, 𝑡) = 𝑓 (𝑈 (𝑥, 𝑡)) , 𝑡 > 0; (8)

here 𝑓(𝑈(𝑥, 𝑡)) is a sufficiently smooth polynomial function
satisfying the relations 𝑓(0) = 𝑓(1) = 0.

One particular expression for the function 𝑓(𝑈(𝑥, 𝑡)) in
(8) which satisfies these conditions is [33]

𝑈
𝑡

(𝑥, 𝑡) − 𝑈
𝑥𝑥

(𝑥, 𝑡)

= 𝑘 (− (𝑘 + 1) 𝑈
𝑛

(𝑥, 𝑡) + 𝜆
1
𝑈 (𝑥, 𝑡) + 𝜆

2
𝑈
(𝑛+1)/2

(𝑥, 𝑡)

+𝜆
3
𝑈
(3−𝑛)/2

(𝑥, 𝑡) + 𝜆
4
𝑈
2−𝑛

(𝑥, 𝑡)) , 𝑡 > 0,

(9)

where 𝜆
1
, . . . , 𝜆

4
are constants that satisfy the condition

imposed over 𝑓(𝑈(𝑥, 𝑡)) and 𝑛 is an arbitrary constant.
Equation (9) defines a special class of the nonlinear heat
equation, which includes many important applications in
some of the areasmentioned before. If we consider the special
case in (9) where 𝜆

2
= 𝜆
3

= 𝜆
4

= 0, 𝑛 = 6, and 𝜆
1

= 𝑘(𝑘+1) =

1, we obtain the generalized Fisher equation:

𝑈
𝑡

(𝑥, 𝑡) − 𝑈
𝑥𝑥

(𝑥, 𝑡) = 𝑈 (𝑥, 𝑡) (1 − 𝑈
6

(𝑥, 𝑡)) , 𝑡 > 0,

(10)

where in the original mathematical biology model 𝑈(𝑥, 𝑡)

denotes the population density and 𝑈(𝑥, 𝑡)(1 − 𝑈
6
(𝑥, 𝑡))

represents the population supply due to births and deaths.
The above equation has been introduced as a model for

the propagation of a mutant gene in mathematical biology
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[30–32] and can be extended to fractional order derivatives
obtaining the generalized Fisher space-time fractional equa-
tion:

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝐷

2𝛼

𝑥
𝑈 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡) (1 − 𝑈

6
(𝑥, 𝑡)) ,

𝑡 > 0, 0 < 𝛼 ≤ 1.

(11)

The present work investigates the applicability and effective-
ness of Feng’s first integral method to obtain new exact
analytical solutions for the nonlinear space-time fractional
Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM)
partial differential equation and the nonlinear space-time
fractional generalized Fisher equation.

We will show that, for the analytical solutions of the
ZKBBM fractional partial differential equation, one of the
advantages of Feng’s first integral method is the evaluation
of the constants involved in the analytical solutions that have
not been evaluated within the subequation method [29].
Furthermore for the analytical solutions of the space-time
fractional generalized Fisher equation, by applying Feng’s first
integralmethod, wewill obtain three new analytical solutions
that have not been obtained in previous works [30, 31, 33].

2. The Modified Riemann-Liouville Derivative
and Feng’s First Integral Method

In this section we present the main ideas of Feng’s first
integral method. This method considers the Jumarie modi-
fied Riemann-Liouville fractional derivative of order 𝛼; we
first give some definitions and properties of the modified
Riemann-Liouville derivative which are used further in this
paper.

Assume that 𝑓 : R → R, 𝑥 → 𝑓(𝑥) denotes a
continuous (but not necessarily differentiable) function. The
Jumarie modified Riemann-Liouville derivative of order 𝛼 is
defined by the expression [18]

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

1

Γ (1 − 𝛼)
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼−1

⋅ [𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉, 𝛼 < 0,

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥
∫

𝑥

0

(𝑥 − 𝜉)
−𝛼

⋅ [𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉 0 < 𝛼 < 1,

[𝑓
(𝛼−𝑛)

(𝑥)]
(𝑛)

𝑛 ≤ 𝛼 ≤ 𝑛 + 1, 𝑛 ≥ 1.

(12)

Some properties of the fractional modified Riemann-
Liouville derivative are

𝐷
𝛼

𝑥
𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛾 + 1 − 𝛼)
𝑥
𝛾−𝛼

,

𝐷
𝛼

𝑥
(𝑓 (𝑥) 𝑔 (𝑥)) = 𝑔 (𝑥) (𝐷

𝛼

𝑥
𝑓 (𝑥)) + 𝑓 (𝑥) (𝐷

𝛼

𝑥
𝑔 (𝑥)) ,

𝐷
𝛼

𝑥
𝑓 [𝑔 (𝑥)] = 𝑓



𝑔
[𝑔 (𝑥)] 𝐷

𝛼

𝑥
𝑔 (𝑥)

= (𝐷
𝛼

𝑔
𝑓 [𝑔 (𝑥)]) (𝑔


(𝑥))
𝛼

.

(13)

Now in order to introduce Feng’s first integral method
[19], let us consider the space-time fractional differential
equation with independent variables 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡 and

some function 𝑢:

𝐹 (𝑢, 𝐷
𝛼

𝑡
𝑢, 𝐷
𝛼

𝑥
1

𝑢, 𝐷
𝛼

𝑥
2

𝑢, 𝐷
𝛼

𝑥
3

𝑢, . . . , 𝐷
2𝛼

𝑡
𝑢,

𝐷
2𝛼

𝑥
1

𝑢, 𝐷
2𝛼

𝑥
2

𝑢, 𝐷
2𝛼

𝑥
3

𝑢, . . .) = 0.

(14)

Using the variable transformation

𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) = 𝑈 (𝜉) ,

𝜉 =
𝑙
1
𝑥
𝛼

1
+ 𝑙
2
𝑥
𝛼

2
+ ⋅ ⋅ ⋅ + 𝑙

𝑚
𝑥
𝛼

𝑚
+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
,

(15)

where 𝑙
𝑖
and 𝜆 are constants to be determined later, the

fractional differential equation (14) is reduced to a nonlinear
ordinary differential equation

𝐻 = 𝐻 (𝑈 (𝜉) , 𝑈


(𝜉) , 𝑈


(𝜉) , . . .) , (16)

where 𝑈

(𝜉) = 𝑑𝑈(𝜉)/𝑑𝜉.

We assume that (16) has a solution in the form

𝑈 (𝜉) = 𝑋 (𝜉) , (17)

and we introduce a new independent variable 𝑌(𝜉) = 𝑋

(𝜉),

which leads to the following new system of equations:

𝑋


(𝜉) = 𝑌 (𝜉) ,

𝑌


(𝜉) = 𝐺 (𝑋 (𝜉) , 𝑌 (𝜉)) .

(18)

Now, let us introduce the central idea of Feng’s first integral
method. By using the division theorem for two variables
in the complex domain C which is based on the Hilbert-
Nullstellensatz theorem [34], we can obtain one first integral
to (18) which can reduce (16) to a first order integrable
ordinary differential equation. An exact solution to (14) is
then obtained by solving this equation directly.

Division Theorem. Suppose that 𝑃(𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are
polynomials in C[𝑥, 𝑦], and 𝑃(𝑥, 𝑦) is irreducible in C[𝑥, 𝑦].
If 𝑄(𝑥, 𝑦) vanishes at all zero points of 𝑃(𝑥, 𝑦), then there
exists a polynomial 𝐻(𝑥, 𝑦) in C[𝑥, 𝑦] such that

𝑄 (𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) 𝐻 (𝑥, 𝑦) . (19)

3. Applications

In this section, we illustrate the applicability of Feng’s first
integral method to solve the nonlinear fractional partial
differential equations (7) and (11).
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Example 1. As a first example we consider the space-time
fractional ZKBBM equation (7):

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = −𝐷

𝛼

𝑥
𝑈 (𝑥, 𝑡) + 2𝑎𝑈 (𝑥, 𝑡) 𝐷

𝛼

𝑥
𝑈 (𝑥, 𝑡)

+ 𝑏𝐷
𝛼

𝑡
(𝐷
2𝛼

𝑥
𝑈 (𝑥, 𝑡)) , 𝑡 > 0, 0 < 𝛼 ≤ 1,

(20)

where 𝑎 and 𝑏 are arbitrary constants. By considering the
travelling wave transformation

𝑈 (𝑥, 𝑡) = 𝑈 (𝜉) , with: 𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
, (21)

where 𝑙 and 𝜆 are constants, substituting (21) into (20), we can
reduce (20) into an ordinary differential equation (ODE):

𝜆
𝑑𝑈 (𝜉)

𝑑𝜉
= −𝑙

𝑑𝑈 (𝜉)

𝑑𝜉
+ 2𝑎𝑙𝑈 (𝜉)

𝑑𝑈 (𝜉)

𝑑𝜉

+ 𝑏𝜆𝑙
2 𝑑

𝑑𝜉
(

𝑑
2
𝑈 (𝜉)

𝑑𝜉2
) ,

(22)

or

𝑑
3
𝑈 (𝜉)

𝑑𝜉3
=

𝜆 + 𝑙

𝑏𝜆𝑙2

𝑑𝑈 (𝜉)

𝑑𝜉
−

2𝑎

𝑏𝜆𝑙
𝑈 (𝜉)

𝑑𝑈 (𝜉)

𝑑𝜉
. (23)

Integrating (23) and 𝛾 being the integration constant, we have

𝑑
2
𝑈 (𝜉)

𝑑𝜉2
=

𝜆 + 𝑙

𝑏𝜆𝑙2
𝑈 (𝜉) −

𝑎

𝑏𝜆𝑙
𝑈
2

(𝜉) + 𝛾, (24)

and using (17) and (18), (24) is equivalent to the two-
dimensional autonomous system

𝑑𝑋 (𝜉)

𝑑𝜉
= 𝑌 (𝜉) ,

𝑑𝑌 (𝜉)

𝑑𝜉
=

𝜆 + 𝑙

𝑏𝜆𝑙2
𝑋 (𝜉) −

𝑎

𝑏𝜆𝑙
𝑋
2

(𝜉) + 𝛾.

(25)

According to Feng’s first integral method, we suppose that
𝑋(𝜉) and 𝑌(𝜉) are nontrivial solutions of (25), and 𝑄(𝑋, 𝑌)

is an irreducible polynomial in the complex domain C such
that

𝑄 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋 (𝜉)) 𝑌

𝑖
(𝜉) = 0, (26)

where 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚

(𝑋) ̸= 0. Due to the division theorem, there exists a
polynomial 𝑔(𝑋) + ℎ(𝑋)𝑌 in the complex domain C[𝑥, 𝑦]

such that

𝑑𝑄

𝑑𝜉
=

𝜕𝑄

𝜕𝑋

𝑑𝑋

𝑑𝜉
+

𝜕𝑄

𝜕𝑌

𝑑𝑌

𝑑𝜉

= (𝑔 (𝑋) + ℎ (𝑋) 𝑌 (𝑋))

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
= 0.

(27)

Suppose that 𝑚 = 1; by equating the coefficients of 𝑌
𝑖

(𝑖 =

2, 1, 0) on both sides of (27), we have

̇𝑎
1

(𝑋) = ℎ (𝑋) 𝑎
1

(𝑋) , (28a)

̇𝑎
0

(𝑋) = 𝑔 (𝑋) 𝑎
1

(𝑋) + ℎ (𝑋) 𝑎
0

(𝑋) , (28b)

𝑎
0

(𝑋) 𝑔 (𝑋) = 𝑎
1

(𝑋) (
𝜆 + 𝑙

𝑏𝜆𝑙2
𝑋 (𝜉) −

𝑎

𝑏𝜆𝑙
𝑋
2

(𝜉) + 𝛾)

= 𝑎
1

(𝑋) (𝜀𝑋 (𝜉) − 𝛽𝑋
2

(𝜉) + 𝛾) ,

(28c)

where

𝜀 =
𝜆 + 𝑙

𝑏𝜆𝑙2
, 𝛽 =

𝑎

𝑏𝜆𝑙
; (29)

since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1) are polynomials, then from (28a) we

deduce that 𝑎
1
(𝑋) is constant and ℎ(𝑋) = 0. For simplicity,

we take 𝑎
1
(𝑋) = 1. Balancing the degrees of 𝑔(𝑋) and 𝑎

0
(𝑋),

we conclude that

𝑔 (𝑋) = 𝑔
𝑚
0

𝑋
𝑚
0 + 𝑔
𝑚
1

𝑋
𝑚
1 , (30a)

𝑎
0

(𝑋) =

𝑔
𝑚
0

𝑋
𝑚
0
+1

𝑚
0

+ 1
+

𝑔
𝑚
1

𝑋
𝑚
1
+1

𝑚
1

+ 1
+ 𝐵
0
, (30b)

where 𝐵
0
is an arbitrary constant. Substituting 𝑎

0
(𝑋), 𝑎

1
(𝑋),

𝑔(𝑋), and ℎ(𝑋) into (28c) and setting all the coefficients of
powers of 𝑋 to be zero, we obtain a system of nonlinear
algebraic equations and by solving it, we obtain

𝑚
0

= −
1

2
, 𝑚

1
=

1

2
,

𝐵
0

= 0, 𝛾 =

𝑔
2

𝑚
0

𝑚
0

+ 1
= 2𝑔
2

𝑚
0

,

(31)

where

𝑔
𝑚
1

= (−
3

2
𝛽)

1/2

, 𝑔
𝑚
0

=
3

8
𝜀 (−

2

3𝛽
)

1/2

or

𝑔
𝑚
1

= − (−
3

2
𝛽)

1/2

, 𝑔
𝑚
0

= −
3

8
𝜀 (−

2

3𝛽
)

1/2

.

(32)

From the above conditions, four solutions can be obtained
for the space-time fractional ZKBBM partial differential
equation.

Case 1. When 𝑔
𝑚
0

= (3/8)𝜀(−2/3𝛽)
1/2, 𝑔
𝑚
1

= (−(3/2)𝛽)
1/2,

𝜀 < 0, and 𝛽 < 0,

𝑎
0

(𝑋) = 2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

. (33)

Now from the condition 𝑄(𝑋, 𝑌) = 0, we obtain

0 = 𝑎
0

(𝑋) + 𝑎
1

(𝑋) 𝑌 (𝜉) (34)

and therefore taking into account that 𝑎
1
(𝑋) = 1 and from

(33) it follows that

𝑌 (𝜉) = − (2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (35)
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Combining this first integral (𝑌(𝜉))with the two-dimensional
autonomous system of (18), the second order differential
equation (24) can be reduced to the following first order
differential equation:

𝑑𝑋 (𝜉)

𝑑𝜉
= − (2𝑔

𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (36)

We consider the following transformation:

𝑋 (𝜉) = 𝑍
2

(𝜉) , (37)

introduced by Wang [35]. With this transformation (36) can
be written as

𝑑𝑍 (𝜉)

𝑑𝜉
= − (𝑔

𝑚
0

+
1

3
𝑔
𝑚
1

𝑍
2
) (38)

or

𝑑𝑍 (𝜉)

𝑑𝜉
= |𝜀| (

3

32
𝛽



)

1/2

− (

𝛽


6
)

1/2

𝑍
2
, (39)

where 𝜀 = −|𝜀| and 𝛽 = −|𝛽|.
By solving (39), the following solutions are obtained:

𝑍 (𝜉) =

√3 |𝜀|
𝛽



2

tanh (√|𝜀| /8 𝜉)

𝛽


, (40)

or

𝑍 (𝜉) =

√3 |𝜀|
𝛽



2

coth (√|𝜀| /8 𝜉)

𝛽


, (41)

if we consider the case 𝑙 > 0 and 𝜆 > 0, and taking into
account (29) and (37), the solutions (40) and (41) reduce to

𝑋 (𝜉) =
6𝜎𝑏𝜆𝑙

𝑎
tanh2 (√−𝜎 𝜉) , (42)

or

𝑋 (𝜉) =
6𝜎𝑏𝜆𝑙

𝑎
coth2 (√−𝜎 𝜉) , (43)

with 𝜎 = −|𝜀|/8 = (𝑙 + 𝜆)/8𝑏𝑙
2
𝜆, where 𝑏 < 0 and 𝑎 > 0.

Case 2. When 𝑔
𝑚
0

= (3/8)𝜀(−2/3𝛽)
1/2, 𝑔
𝑚
1

= (−(3/2)𝛽)
1/2,

𝜀 > 0, and 𝛽 < 0,

𝑎
0

(𝑋) = 2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

. (44)

Taking into account that 𝑎
1
(𝑋) = 1 and from (44) it follows

that

𝑌 (𝜉) = − (2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (45)

Combining this first integral (𝑌(𝜉))with the two-dimensional
autonomous system given by (18), the second order differen-
tial equation (24) can be reduced to the following first order
differential equation:

𝑑𝑋 (𝜉)

𝑑𝜉
= − (2𝑔

𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (46)

By using the transformation defined in (37), (46) can be
written as

𝑑𝑍 (𝜉)

𝑑𝜉
= −𝜀 (

3

32
𝛽



)

1/2

− (

𝛽


6
)

1/2

𝑍
2
, (47)

where 𝛽 = −|𝛽|.
By solving (47), the following solutions are obtained:

𝑍 (𝜉) = −

√3𝜀
𝛽



2

tan (√𝜀/8 𝜉)

𝛽


, (48)

or

𝑍 (𝜉) = −

√3𝜀
𝛽



2

cot (√𝜀/8 𝜉)

𝛽


, (49)

if we consider the case 𝑙 > 0 and 𝜆 > 0, and taking into
account (29) and (37), the solutions (48) and (49) reduce to

𝑋 (𝜉) = −
6𝜎𝑏𝜆𝑙

𝑎
tan2 (√𝜎 𝜉) , (50)

or

𝑋 (𝜉) = −
6𝜎𝑏𝜆𝑙

𝑎
cot2 (√𝜎 𝜉) , (51)

with 𝜎 = 𝜀/8 = (𝑙 + 𝜆)/8𝑏𝑙
2
𝜆, where 𝑏 > 0 and 𝑎 < 0.

Case 3. When 𝑔
𝑚
0

= −(3/8)𝜀(−2/3𝛽)
1/2, 𝑔
𝑚
1

= −(−(3/

2)𝛽)
1/2, 𝜀 < 0, and 𝛽 < 0,

𝑎
0

(𝑋) = 2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

. (52)

Taking into account that 𝑎
1
(𝑋) = 1 and from (52) it follows

that

𝑌 (𝜉) = − (2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (53)

Combining this first integral (𝑌(𝜉))with the two-dimensional
autonomous system given by (18), the second order differen-
tial equation (24) can be reduced to the following first order
differential equation:

𝑑𝑋 (𝜉)

𝑑𝜉
= − (2𝑔

𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (54)

By using the transformation defined in (37), (54) can be
written as

𝑑𝑍 (𝜉)

𝑑𝜉
= − |𝜀| (

3

32
𝛽



)

1/2

+ (

𝛽


6
)

1/2

𝑍
2
, (55)

where 𝜀 = −|𝜀| and 𝛽 = −|𝛽|.
By solving (55), the following solutions are obtained:

𝑍 (𝜉) = −

√3 |𝜀|
𝛽



2

tanh (√|𝜀| /8 𝜉)

𝛽


, (56)
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or

𝑍 (𝜉) = −

√3 |𝜀|
𝛽



2

coth (√|𝜀| /8 𝜉)

𝛽


, (57)

if we consider the case 𝑙 > 0 and 𝜆 > 0, and taking into
account (29) and (37), the solutions (56) and (57) reduce to

𝑋 (𝜉) =
6𝜎𝑏𝜆𝑙

𝑎
tanh2 (√−𝜎 𝜉) , (58)

or

𝑋 (𝜉) =
6𝜎𝑏𝜆𝑙

𝑎
coth2 (√−𝜎 𝜉) , (59)

with 𝜎 = −|𝜀|/8 = (𝑙 + 𝜆)/8𝑏𝑙
2
𝜆, where 𝑏 < 0 and 𝑎 > 0.

Case 4. When 𝑔
𝑚
0

= −(3/8)𝜀(−2/3𝛽)
1/2, 𝑔
𝑚
1

= −(−(3/

2)𝛽)
1/2, 𝜀 > 0, and 𝛽 < 0,

𝑎
0

(𝑋) = 2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

. (60)

Taking into account that 𝑎
1
(𝑋) = 1 and from (60) it follows

that

𝑌 (𝜉) = − (2𝑔
𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (61)

Combining this first integral (𝑌(𝜉))with the two-dimensional
autonomous system given by (18), the second order differen-
tial equation (24) can be reduced to the following first order
differential equation:

𝑑𝑋 (𝜉)

𝑑𝜉
= − (2𝑔

𝑚
0

𝑋
1/2

+
2

3
𝑔
𝑚
1

𝑋
3/2

) . (62)

By using the transformation defined in (37), (62) can be
written as

𝑑𝑍 (𝜉)

𝑑𝜉
= +𝜀 (

3

32
𝛽



)

1/2

+ (

𝛽


6
)

1/2

𝑍
2
, (63)

where 𝛽 = −|𝛽|.
By solving (63), the following solutions are obtained:

𝑍 (𝜉) =

√3𝜀
𝛽



2

tan (√𝜀/8 𝜉)

𝛽


, (64)

or

𝑍 (𝜉) =

√3𝜀
𝛽



2

cot (√𝜀/8 𝜉)

𝛽


, (65)

if we consider the case 𝑙 > 0 and 𝜆 > 0, and taking into
account (29) and (37), the solutions (64) and (65) reduce to

𝑋 (𝜉) = −
6𝜎𝑏𝜆𝑙

𝑎
tan2 (√𝜎 𝜉) , (66)

or

𝑋 (𝜉) = −
6𝜎𝑏𝜆𝑙

𝑎
cot2 (√𝜎 𝜉) , (67)

with 𝜎 = 𝜀/8 = (𝑙 + 𝜆)/8𝑏𝑙
2
𝜆, where 𝑏 > 0 and 𝑎 < 0.

For the nonlinear space-time fractional ZKBBM equa-
tion, we have successfully recovered the previously known
solutions, (42), (43), (48), (49), (58), (59), (66), and (67), that
have been found in [29]; furthermore, Feng’s first integral
method has evaluated the constant 𝜎 which has not been
evaluated in this previous work.

Example 2. Next we consider the nonlinear fractional gener-
alized Fisher equation (11):

𝐷
𝛼

𝑡
𝑈 (𝑥, 𝑡) = 𝐷

2𝛼

𝑥
𝑈 (𝑥, 𝑡) + 𝑈 (𝑥, 𝑡) (1 − 𝑈

6
(𝑥, 𝑡)) ,

𝑡 > 0, 0 < 𝛼 ≤ 1.

(68)

By considering the following transformation,

𝑈
3

(𝑥, 𝑡) = 𝑦 (𝑥, 𝑡) , (69)

introduced by Wang [35], (68) can be written as

𝑦 (𝑥, 𝑡) 𝐷
𝛼

𝑡
𝑦 (𝑥, 𝑡)

= 𝑦 (𝑥, 𝑡) 𝐷
2𝛼

𝑥
𝑦 (𝑥, 𝑡) −

2

3
(𝐷
𝛼

𝑥
𝑦 (𝑥, 𝑡))

2

+ 3𝑦
2

(𝑥, 𝑡) (1 − 𝑦
2

(𝑥, 𝑡)) , 𝑡 > 0, 0 < 𝛼 ≤ 1.

(70)

By considering the travelling wave transformation,

𝑦 (𝑥, 𝑡) = 𝑦 (𝜉) , with: 𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
, (71)

where 𝑙 and 𝜆 are constants, (70) can be reduced to the
following nonlinear ordinary differential equation:

𝜆𝑦 (𝜉)
𝑑𝑦 (𝜉)

𝑑𝜉
= 𝑙
2
𝑦 (𝜉)

𝑑
2
𝑦 (𝜉)

𝑑𝜉2
−

2

3
𝑙
2

(
𝑑𝑦 (𝜉)

𝑑𝜉
)

2

+ 3𝑦
2

(𝜉) (1 − 𝑦
2

(𝜉)) , 0 < 𝛼 ≤ 1.

(72)

We assume that (72) has a solution in the form 𝑦(𝜉) = 𝑋(𝜉),
and using (18), (72) is equivalent to the two-dimensional
autonomous system:

𝑑𝑋 (𝜉)

𝑑𝜉
= 𝑌 (𝜉) ,

𝑙
2
𝑋 (𝜉)

𝑑𝑌 (𝜉)

𝑑𝜉
= 𝜆𝑋 (𝜉) 𝑌 (𝜉) +

2

3
𝑙
2

(𝑌 (𝜉))
2

− 3𝑋
2

(𝜉) (1 − 𝑋
2

(𝜉)) , 0 < 𝛼 ≤ 1.

(73)

According to Feng’s first integral method, we suppose that
𝑋(𝜉) and 𝑌(𝜉) are nontrivial solutions of (73), and 𝑄(𝑋, 𝑌)
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is an irreducible polynomial in the complex domain C such
that

𝑄 [𝑋 (𝜉) , 𝑌 (𝜉)] =

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋 (𝜉)) 𝑌

𝑖
(𝜉) = 0, (74)

where 𝑎
𝑖
(𝑋) (𝑖 = 0, 1, . . . , 𝑚) are polynomials of 𝑋 and

𝑎
𝑚

(𝑋) ̸= 0. Due to the division theorem, there exists a
polynomial 𝑔(𝑋) + ℎ(𝑋)𝑌 in the complex domain C[𝑋, 𝑌]

such that

𝑑𝑄

𝑑𝜉
=

𝜕𝑄

𝜕𝑋

𝑑𝑋

𝑑𝜉
+

𝜕𝑄

𝜕𝑌

𝑑𝑌

𝑑𝜉

= (𝑔 (𝑋) + ℎ (𝑋) 𝑌 (𝑋))

𝑚

∑

𝑖=0

𝑎
𝑖
(𝑋) 𝑌

𝑖
= 0.

(75)

Suppose that 𝑚 = 1; by equating the coefficients of 𝑌
𝑖

(𝑖 =

2, 1, 0) on both sides of (75), we have

̇𝑎
1

(𝑋) 𝑋 (𝜉) = 𝑎
1

(𝑋) [ℎ (𝑋) 𝑋 (𝜉) −
2

3
] , (76a)

̇𝑎
0

(𝑋) + 𝑎
1

(𝑋)
𝜆

𝑙2
= 𝑎
1

(𝑋) 𝑔 (𝑋) + 𝑎
0

(𝑋) ℎ (𝑋) , (76b)

𝑎
0

(𝑋) 𝑔 (𝑋) 𝑋 (𝜉) 𝑙
2

= −3𝑎
1
𝑋
2

(𝜉) (1 − 𝑋
2

(𝜉)) . (76c)

Since 𝑎
𝑖
(𝑋) (𝑖 = 0, 1) are polynomials, then from (76a)

we deduce that 𝑎
1
(𝑋) is constant and ℎ(𝑋) = 2/3𝑋. For

simplicity, we take 𝑎
1
(𝑋) = 1. Balancing the degrees of 𝑔(𝑋)

and 𝑎
0
(𝑋), we conclude that

𝑔 (𝑋) = 𝐴
0

+ 𝐵
0
𝑋,

𝑎
0

(𝑋) = A
0

+ B
0
𝑋 +

C
0
𝑋
2

2
.

(77)

Substituting 𝑎
0
(𝑋), 𝑎

1
(𝑋), 𝑔(𝑋), and ℎ(𝑋) into (76c) and

setting all the coefficients of powers of𝑋 to be zero, we obtain
a systemof nonlinear algebraic equations and by solving it, we
obtain

A
0

= 0, B
0

= 3 (𝐴
0

−
𝜆

𝑙2
) ,

C
0

=
3

2
𝐵
0
, 𝜆 =

5

4
𝐴
0
𝑙
2
,

𝐴
2

0
=

4

𝑙2
, 𝐵

2

0
=

4

𝑙2
;

(78)

therefore we obtain the following set of solutions:

𝐴
0

= ±
2

𝑙
, 𝐵

0
= ±

2

𝑙
. (79)

From the above conditions, four solutions can be obtained.

Case 1. When 𝐴
0

= 2/𝑙 and 𝐵
0

= 2/𝑙,

𝑎
0

(𝑋) = −
3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
. (80)

Now from the condition 𝑄(𝑋, 𝑌) = 0 we obtain

0 = 𝑎
0

(𝑋) + 𝑎
1

(𝑋) 𝑌 (𝜉) , (81)

and therefore taking into account that 𝑎
1
(𝑋) = 1 and from

(81) it follows that

𝑌 (𝜉) =
3

2𝑙
𝑋 −

3

2𝑙
𝑋
2
. (82)

If we consider the definition given in (18) one finally obtains

𝑑𝑋 (𝜉)

𝑑𝜉
=

3

2𝑙
𝑋 −

3

2𝑙
𝑋
2
. (83)

By solving the above equation the solution to (72) is obtained:

𝑋 (𝜉) =
1

1 + 𝑐
1
𝑒−3𝜉/2𝑙

; (84)

if we consider the case 𝑐
1

= 1, the solution (84) reduces to

𝑋 (𝜉) =
1

2
(1 + tanh(

3𝜉

4𝑙
)) , (85)

with 𝜆 = 5𝑙/2. Taking into account (69), the solution to the
Fisher equation (68) is given by

𝑈 (𝑥, 𝑡) = (
1

2
(1 + tanh(

3𝜉

4𝑙
)))

1/3

, (86)

with

𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
. (87)

Case 2. When 𝐴
0

= −2/𝑙 and 𝐵
0

= 2/𝑙,

𝑎
0

(𝑋) =
3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
. (88)

Now from the condition 𝑄(𝑋, 𝑌) = 0 we obtain

0 = 𝑎
0

(𝑋) + 𝑎
1

(𝑋) 𝑌 (𝜉) , (89)

and therefore taking into account that 𝑎
1
(𝑋) = 1 and from

(88), it follows that

𝑌 (𝜉) = − (
3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
) . (90)

If we consider the definition given in (18), one finally obtains

𝑑𝑋 (𝜉)

𝑑𝜉
= − (

3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
) . (91)

By solving the above equation, the solution to (72) is obtained:

𝑋 (𝜉) =
1

𝑐
1
𝑒3𝜉/2𝑙 − 1

; (92)

if we consider the case 𝑐
1

= 1, the solution (92) reduces to

𝑋 (𝜉) = −
1

2
(1 − coth(

3𝜉

4𝑙
)) , (93)
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with 𝜆 = −5𝑙/2. Taking into account (69), the solution to the
Fisher equation (68) is given by

𝑈 (𝑥, 𝑡) = (−
1

2
(1 − coth(

3𝜉

4𝑙
)))

1/3

, (94)

with

𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
. (95)

Case 3. When 𝐴
0

= 2/𝑙 and 𝐵
0

= −2/𝑙,

𝑎
0

(𝑋) = − (
3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
) . (96)

Now from the condition 𝑄(𝑋, 𝑌) = 0, we obtain

0 = 𝑎
0

(𝑋) + 𝑎
1

(𝑋) 𝑌 (𝜉) , (97)

and therefore taking into account that 𝑎
1
(𝑋) = 1 and from

(96), it follows that

𝑌 (𝜉) = (
3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
) . (98)

If we consider the definition given in (18), one finally obtains

𝑑𝑋 (𝜉)

𝑑𝜉
= (

3

2𝑙
𝑋 +

3

2𝑙
𝑋
2
) . (99)

By solving the above equation, the solution to (72) is obtained:

𝑋 (𝜉) =
1

𝑐
1
𝑒−3𝜉/2𝑙 − 1

; (100)

if we consider the case 𝑐
1

= 1, the solution (100) reduces to

𝑋 (𝜉) = −
1

2
(1 + coth(

3𝜉

4𝑙
)) , (101)

with 𝜆 = 5𝑙/2. Taking into account (69), the solution to the
Fisher equation (68) is given by

𝑈 (𝑥, 𝑡) = (−
1

2
(1 + coth(

3𝜉

4𝑙
)))

1/3

, (102)

with

𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
. (103)

Case 4. When 𝐴
0

= −2/𝑙 and 𝐵
0

= −2/𝑙,

𝑎
0

(𝑋) =
3

2𝑙
𝑋 −

3

2𝑙
𝑋
2
. (104)

Now from the condition 𝑄(𝑋, 𝑌) = 0, we obtain

0 = 𝑎
0

(𝑋) + 𝑎
1

(𝑋) 𝑌 (𝜉) , (105)

and therefore taking into account that 𝑎
1
(𝑋) = 1 and from

(104), it follows that

𝑌 (𝜉) = − (
3

2𝑙
𝑋 −

3

2𝑙
𝑋
2
) . (106)

If we consider the definition given in (18), one finally obtains

𝑑𝑋 (𝜉)

𝑑𝜉
= − (

3

2𝑙
𝑋 −

3

2𝑙
𝑋
2
) . (107)

By solving the above equation, the solution to (72) is obtained:

𝑋 (𝜉) =
1

𝑐
1
𝑒3𝜉/2𝑙 + 1

; (108)

if we consider the case 𝑐
1

= 1, the solution (108) reduces to

𝑋 (𝜉) =
1

2
(1 − tanh(

3𝜉

4𝑙
)) , (109)

with 𝜆 = −5𝑙/2. Taking into account (69), the solution to the
Fisher equation (68) is given by

𝑈 (𝑥, 𝑡) = (
1

2
(1 − tanh(

3𝜉

4𝑙
)))

1/3

, (110)

with

𝜉 =
𝑙𝑥
𝛼

+ 𝜆𝑡
𝛼

Γ (1 + 𝛼)
. (111)

For the nonlinear space-time generalized fractional Fisher
equation, we have successfully recovered the previously
known solution (110) that has been found in [31], but to the
best of our knowledge the solutions (86), (94), and (102) have
not been obtained previously in the literature.

4. Conclusions

Feng’s first integral method was applied successfully to obtain
new exact analytical solutions of the nonlinear space-time
fractional ZKBBM equation and the nonlinear space-time
fractional generalized Fisher equation. These solutions can
be very useful as a starting point of comparison when
some approximate methods are applied to these nonlinear
space-time fractional equations. The performance of Feng’s
first integral method is reliable and effective to obtain new
solutions. This method has more advantages: it is direct and
concise. Thus, the proposed method can be extended to
solvemany systems of nonlinear fractional partial differential
equations in mathematical and physical sciences.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors gratefully acknowledge the Universidad Autón-
oma de la Ciudad de Mexico for supporting and facilitating
this research work.



Journal of Applied Mathematics 9

References

[1] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley &
Sons, New York, NY, USA, 1993.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, vol. 204 of
North-Holland Mathematics Studies, Elsevier Science, Amster-
dam, The Netherlands, 2006.

[3] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, San Diego,
Calif, USA, 1999.

[4] A. M. El-Sayed, S. Z. Rida, and A. A. Arafa, “Exact solutions of
fractional-order biological populationmodel,”Communications
in Theoretical Physics, vol. 52, no. 6, pp. 992–996, 2009.

[5] M. Safari, D. D. Ganji, and M. Moslemi, “Application of He’s
variational iteration method and Adomian’s decomposition
method to the fractional KdV-Burgers-KURamoto equation,”
Computers & Mathematics with Applications, vol. 58, no. 11-12,
pp. 2091–2097, 2009.

[6] M. Inc, “The approximate and exact solutions of the space-
and time-fractional Burgers equations with initial conditions by
variational iteration method,” Journal of Mathematical Analysis
and Applications, vol. 345, no. 1, pp. 476–484, 2008.

[7] G.-c.Wu andE.W. Lee, “Fractional variational iterationmethod
and its application,” Physics Letters, A, vol. 374, no. 25, pp. 2506–
2509, 2010.

[8] F. Fouladi, E. Hosseinzadeh, A. Barari, and G. Domairry,
“Highly nonlinear temperature-dependent fin analysis by vari-
ational iteration method,” Heat Transfer Research, vol. 41, no. 2,
pp. 155–165, 2010.

[9] L. Song and H. Zhang, “Solving the fractional BBM-Burgers
equation using the homotopy analysis method,” Chaos, Solitons
and Fractals, vol. 40, no. 4, pp. 1616–1622, 2009.

[10] S. Abbasbandy andA. Shirzadi, “Homotopy analysismethod for
multiple solutions of the fractional Sturm-Liouville problems,”
Numerical Algorithms, vol. 54, no. 4, pp. 521–532, 2010.

[11] H. Bararnia, G. Domairry, M. Gorji, and A. Rezania, “An
approximation of the analytic solution of some nonlinear
heat transfer in fin and 3D diffusion equations using HAM,”
NumericalMethods for Partial Differential Equations, vol. 26, no.
1, pp. 1–13, 2010.

[12] M. M. Rashidi, G. Domairry, A. DoostHosseini, and S. Dinar-
vand, “Explicit approximate solution of the coupled KdV equa-
tions by using the homotopy analysis method,” International
Journal of Mathematical Analysis, vol. 2, no. 9–12, pp. 581–589,
2008.

[13] Z. Z. Ganji, D. D. Ganji, A. D. Ganji, and M. Rostamian,
“Analytical solution of time-fractional Navier-Stokes equa-
tion in polar coordinate by homotopy perturbation method,”
NumericalMethods for Partial Differential Equations, vol. 26, no.
1, pp. 117–124, 2010.

[14] K. A. Gepreel, “The homotopy perturbation method applied
to the nonlinear fractional Kolmogorov-Petrovskii-PISkunov
equations,”AppliedMathematics Letters, vol. 24, no. 8, pp. 1428–
1434, 2011.

[15] P. K. Gupta andM. Singh, “Homotopy perturbationmethod for
fractional Fornberg-Whitham equation,” Computers & Mathe-
matics with Applications, vol. 61, no. 2, pp. 250–254, 2011.

[16] J. Guy, “Lagrange characteristic method for solving a class
of nonlinear partial differential equations of fractional order,”
Applied Mathematics Letters, vol. 19, no. 9, pp. 873–880, 2006.

[17] S. Zhang and H.-Q. Zhang, “Fractional sub-equation method
and its applications to nonlinear fractional PDEs,” Physics
Letters A, vol. 375, no. 7, pp. 1069–1073, 2011.

[18] G. Jumarie, “Modified Riemann-Liouville derivative and frac-
tional Taylor series of nondifferentiable functions further
results,”Computers&Mathematics with Applications, vol. 51, no.
9-10, pp. 1367–1376, 2006.

[19] Z. Feng, “The first-integral method to study the Burgers-
Korteweg-de Vries equation,” Journal of Physics A: Mathemat-
ical and General, vol. 35, no. 2, pp. 343–349, 2002.

[20] Z. Feng and R. Knobel, “Traveling waves to a Burgers-
Korteweg-de Vries-type equation with higher-order nonlinear-
ities,” Journal of Mathematical Analysis and Applications, vol.
328, no. 2, pp. 1435–1450, 2007.

[21] Z. Feng, “Traveling wave behavior for a generalized Fisher
equation,” Chaos, Solitons and Fractals, vol. 38, no. 2, pp. 481–
488, 2008.

[22] K. R. Raslan, “The first integral method for solving some
important nonlinear partial differential equations,” Nonlinear
Dynamics, vol. 53, no. 4, pp. 281–286, 2008.

[23] B. Lu, H. Zhang, and F. Xie, “Travelling wave solutions of
nonlinear partial equations by using the first integral method,”
AppliedMathematics and Computation, vol. 216, no. 4, pp. 1329–
1336, 2010.

[24] N. Taghizadeh, M. Mirzazadeh, and F. Farahrooz, “Exact solu-
tions of the nonlinear Schrödinger equation by the first integral
method,” Journal ofMathematical Analysis andApplications, vol.
374, no. 2, pp. 549–553, 2011.

[25] B. Lu, “The first integral method for some time fractional
differential equations,” Journal of Mathematical Analysis and
Applications, vol. 395, no. 2, pp. 684–693, 2012.

[26] M. Eslami, B. Fathi Vajargah, M. Mirzazadeh, and A. Biswas,
“Application of first integral method to fractional partial differ-
ential equations,” Indian Journal of Physics, vol. 88, no. 2, pp.
177–184, 2014.

[27] T. B. Benjamin, J. L. Bona, and J. J. Mahony, “Model equations
for long waves in nonlinear dispersive systems,” Philosophical
Transactions of the Royal Society of London A, vol. 272, no. 1220,
pp. 47–78, 1972.

[28] A.-M. Wazwaz, “The extended tanh method for new compact
and noncompact solutions for the KP-BBM and the ZK-BBM
equations,” Chaos, Solitons and Fractals, vol. 38, no. 5, pp. 1505–
1516, 2008.

[29] J. Alzaidy, “Fractional sub-equationmethod and its applications
to the space-time fractional differential equations in mathe-
matical physics,” British Journal of Mathematics & Computer
Science, vol. 3, no. 2, pp. 153–163, 2013.

[30] R. A. Fisher, “The wave of advance of advantageous genes,”
Annals of Eugenics, vol. 7, no. 4, pp. 355–369, 1937.
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