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Based on Bernard et al.’s research, we focus on the Pareto optimal insurance design with the insured’s Rank-Dependent Expected
Utility (RDEU). Compared with their previous work, our novelties are the more general fixed cost function of the insurer and the
discussion of adverse selection andmoral hazard. In particular, Bernard et al. only consider the case in which the fixed cost function
of handling an indemnity is the linear function.However, the fixed cost function is not just linear functions in real insurancemarket.
So, we explore the more general fixed cost function including both the linear and nonlinear functions. On the other hand, we
consider adverse selection and moral hazard which are involved by Bernard et al. Leading adverse selection and moral hazard into
our research makes our results more practical and meaningful. Moreover, we provide an insight into the sensitivity of an optimal
solution for the insured’s initial wealth and the parameters related to the fixed cost function of handling an indemnity. We further
compare the two different utility functions of the insured in terms of influence of optimal policy analysis.

1. Introduction

In an economic system, both companies and individuals have
to face uncertainty in the future. In such a situation, the redis-
tribution of risk among the firms and individuals is facilitated.
Usually, persons use insurance policies for reallocating risk.
In the late 1960s,Mossin et al. initiated the insurance decision
analysis [1–3], where they focused on relationally purchasing
insurance from the viewpoint of an individual who has to
face a specific risk, given his preference structure and wealth
level. Their appealing research builds on the assumption
that the insurance policy is exogenously specified. However,
Borch [4] and Arrow [5, 6] object to Mossin’s opinion and
firmly believe that the insurance contract is not exogenous.
Sappington [7] provides a complete justification of principal-
agent modeling for the insurance problem. He sets up the
basic framework and the key model of game relationship
between the principal and the agent. Furthermore, he builds a
monitoring mechanism based on the prisoner’s dilemma and
builds an incentive mechanism by competition.

In contrast with Sappington’s principal-agent model, the
insured corresponds to the agent and the insurer corresponds
to the principal. Actually, our problem is different from his.

In his model, the agent first decides whether to accept or
reject the contract. After the agent signs the contract, he can
change his own expected utility by choosing the efficient level
of effort. In our model, the agent first determines whether to
accept or reject the contract too. But, once the agent agrees to
and signs the insurance contract, he cannot change his own
value function which is only determined by the random loss
𝑥.

Although there are obvious differences between our
models, our research is consistent with his basic framework.
We can make a close link with his research. (1) As an agent,
the insured should pay the upfront premium 𝑄 for sharing
the loss with the insurer. This is as if the insured has to pay
the “franchise fee” 𝑘 for the right to work for the principal;
(2) in his research, the agent will accept the contract offered
by the principal if and only if the subsequent self-interested
behavior under the terms of the contract provides the agent
with a level of expected utility that exceeds his reservation
level, 𝑈. The insured’s criterion of buying or not buying the
insurance is

𝑈
𝑅
(𝑤
0
− 𝑥 − 𝑄 + 𝐼 (𝑥)) ≥ 𝑈 (𝑤

0
− 𝑥) , (1)
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where𝑈(𝑤
0
−𝑥) is equal to𝑈 in his paper; (3) in his paper, this

contract promises payments, 𝑃, to the agent that are precisely
the principal’s valuation of the agent’s performance minus
some fixed constant 𝑘. Formally, 𝑃(𝑋) = 𝑉(𝑋) − 𝑘. This is
consistent with the insurer’s safety loading. In particular, the
insurer will price the indemnity in such a way that

𝑄 ≥ 𝐸 [𝐼 (𝑥) + 𝐶 (𝐼 (𝑥))] . (2)

In a competitive insurance market, we can understand
𝐸[𝐼(𝑥)+𝐶(𝐼(𝑥))] as theminimumprice of the indemnity 𝐼(𝑋)

for a risk-neutral insurer to participate in the business.
Beyond insurance policy analysis, expected utility theory

(EUT) has an underlying assumption that the decisionmaker
is rational and uniformly risk averse, only considering the
objective probability rather than the subjective probability
[8]. In reality, however, various decision makers’ behaviors
deviate from the implications of expected utility. Substantial
experimental and empirical evidence identifies that expected
utility theory is incompatible with human observed behavior.
The abundant paradoxes lead to the development of a more
realistic theory. It is dominant in prominent paradigms
that Tversky and Kahneman propose prospect theory (PT)
[9]. Later, they develop their prospect theory to cumulated
prospect theory (CPT) since CPT is consistent with the first-
order stochastic dominance [10]. In the context of CPT, they
incorporate human emotion into their investigation.

The incentive for the optimal decision, especially to the
optimal insurance policy, is extensively accepted.Quiggin [11]
revolutionized the classical expected utility theory (EUT) by
rank-dependent utility (RDU). His framework provides the
theoretical background for the essentiality of design of insur-
ance contracts. In 2000, Chateauneuf et al. [12] presented the
Choquet expected utility framework and gave some results
in the RDU framework as a special case. The Pareto efficient
insurance contracts under RDU are illustrated in Carlier
and Dana’s work [13, 14]. Dana and Scarsini [15] mention
optimal risk sharingwith background risk and briefly identify
the case of RDU. He and Zhou [16, 17] emphasize the
optimal insurance contract when the distortion is convex.
Subsequently, Carlier and Dana [18] investigate two-person
efficient risk-sharing problems about concave law-invariant
utilities and give a characterized result which is valid for any
RDU. Carlier and Dana [19] derive the optimal contingent
claim for two significant decision frameworks, the RDU and
the CP. However, these papers do not obtain the explicit
solution while Bernard et al. [20] do so, when the utility
function of the insured is concave.

Bernard et al.’s work inspires us to explore the optimal
insurance design under Rank-Dependent Expected Utility.
Compared with their research, our novelties are the gener-
alization of the cost function and the discussion of adverse
selection and moral hazard.

In detail, the key contribution of Bernard et al. is to get
the explicit solution of the optimal insurance contract. But
this result implicitly relies on the concavity of the extreme
point function 𝐻

𝜆
(𝑧) (equation (8) in the paper of Bernard

et al. [20]). However, 𝐻
𝜆
(𝑧) is concave, only when the fixed

cost of handling the indemnity 𝐶(𝐼(𝑥)) is a linear function

of 𝐼. So they only discuss the case in which the fixed cost
function is linear; that is, 𝐶(𝐼(𝑥)) = 𝜌𝐼(𝑥). However, in
a real insurance market, the different insurers have various
cost functions including linear functions and other nonlinear
functions. So, we pay attention to the more general cost
functions to make the results more practical. Generalizing
the fixed cost of handling the indemnity brings us a divers
obstacle fromBernard andZhou’s work: we are not sure about
the convexity or concavity of the extreme point function
𝐽(𝑧) ((32) in Section 3). In other words, this general cost
function results in uncertain monotonicity of the extreme
point function 𝐽(𝑧) which is different from the proposition
of the extreme point function 𝐻

𝜆
(𝑧) in Bernard and Zhou’s

article. Further, this uncertainty of monotonicity makes us
have to discuss the different monotonic intervals of 𝐽(𝑧)

and five different relationships between 𝐽(𝑧), 𝐹−1
𝑥
(𝑧), and

𝑘(𝑧) (see Figure 3) while Bernard and Zhou only need to
consider one monotonic interval of 𝐽(𝑧) and one relationship
between 𝐽(𝑧), 𝐹−1

𝑥
(𝑧), and 𝑘(𝑧) (see Figure 3). Although the

various relationships lead to complicated discussion, these
relationships make our novel results more general. In fact,
Case 1 in Figure 3 coincides with Bernard and Zhou’s Figure
2. Through discussing five different cases and the different
monotonic intervals, we attain the explicit solution which is
the general result applying to both the linear cost functions
and nonlinear functions.

Another novel contribution is the discussion about two
critical issues which are adverse selection and moral hazard
while Bernad and Zhou do not involve them. In particular,
we use the following bonus-malus system

𝑄

=

{

{

{

𝛿𝑄
0

if no accident occurred in the previous period

𝛾𝑄
0

if an accident occurred in the previous period

(3)

to determine the premium 𝑄, where 𝑄
0
is the premium in

the previous period. We can estimate 𝛿 and 𝛾 by empirical
data to decide the premium 𝑄. If 𝑄 is the premium in
the first period and we have no empirical data and 𝑄

0
, we

have to decide 𝑄 relying on the indexes associated with 𝑄,
such as age, gender, and occupation. Based on this fixed 𝑄,
we research the optimal problem for indemnity 𝐼(𝑥) under
Rank-Dependent Expected Utility. Although we only offer a
brief thought of how to decide 𝑄 and not carefully research
it, this significant thought not only makes close link between
these critical issues and our research but also offers the basic
framework for further research.

Recently, Dhiab investigates the demand for insurance
under the nonexpected utility theory [21]. He applies Rank-
Dependent Expected Utility (RDEU) to the insurance con-
tract. In his insurance context, agents behave not only
according to their probability distribution but also according
to their attitude towards risk.

Although Ben Dhiab’s research is similar to mine, there
are obvious differences between our researches. The impor-
tant difference is that we research the insurance problem
from different angles. In particular, he researches the optimal
insurance contract from the insured’s (or agent’s) point of
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view, so he only needs to maximize the RDEU of the insured
without considering the utility function of an insurer and
relative restrictive conditions. However, we study the optimal
insurance policy from an insurer’s point of view.Thus, we set
up the optimal insurance policy subjected to the restrictive
condition associated with the utility function of the insurer.
Meanwhile, the insurer’s utility functions and the optimal
solutions change due to different insurers’ cost functions
𝐶(𝐼). So, our calculations and results are more complicated
than his.

Another difference is that he does not present the quan-
tified relationship between the indemnity function 𝐼(𝑥) and
the random loss 𝑥 when the optimal insurance policies are
partial insurance and overinsurance. However, 𝐼 reveal the
accurately quantified relationship between the indemnity
function 𝐼(𝑥) and the random loss 𝑥 in Proposition 9.

Furthermore, there are two main differences on the
technological detail. (1) He supposes that the probability
weighting function (probability distortions) is always concave
or convex. But, the 𝑆-shape probability weighting function
is more reasonable than the concave or convex probabil-
ity weighting function, because Kahneman and Tversky
used sufficient experiments and evidences to extensively
demonstrate that not only do people often overweight low-
probability and certain outcomes but also the individual’s
attitude to the risk always changes. So, we employ the 𝑆-shape
probability weighting function; (2) Dhiab only discusses two
states of the nature which are the loss 𝑥with probability𝑝 and
no-loss with probability 1 − 𝑝. We explore the more general
and complicated case in which the loss 𝑥 is a random variable
on [0, 𝑤

0
]. The general 𝑥 means that we cannot attain the

optimal solution by directly calculating and simply discussing
as Dhiab does. So we have to use quantile function for solving
the optimal problem.

This paper is organized as follows: In Section 2, we set
up critical models. Section 3 explores the optimal solutions.
In Section 4, numerical analysis is performed. Section 5
summarizes the conclusions. In Section 6, we introduce the
further research. The paper ends with an the Appendix
containing the proofs.

2. The Model

In this section, we focus on the Pareto optimal insurance
contract where the insured has Rank-Dependent Expected
Utility [11] preference.

2.1. The Basic Setting

2.1.1. The Original Insurance Problem. Let (Ω,F,P) be a
probability space. An economic agent, called a policyholder
or the insured, is endowed with the initial wealth 𝑤

0
and

has to face the a nonnegative random loss 𝑥 with support in
[0, 𝑤
0
]. The initial wealth of the insurer is𝑊

0
. The loss 𝑥 is a

random variable with the probability density function 𝑝(𝑥).
The insured should pay the upfront premium 𝑄 for sharing
the loss with the insurer. If the insured stands to the loss 𝑥,
the insurer will pay out 𝐼(𝑥). We treat 𝐼(𝑥) as the indemnity

function of the loss or coverage function. The indemnity
principle compensates for the insured’s loss when an accident
happens. According to this rule, the policyholder cannot
collect more money than his actual loss. Hence, we assume
0 ≤ 𝐼(𝑥) ≤ 𝑥. The constraint condition implies that if there is
no loss there will be no reimbursement. As for the cost of the
insurer, we state that it includes two part, the administrative
expenses or other expenses and deadweight loss related to
the insured and the insurer. So, we suppose that the cost of
the insurer consists of fixed and variable components, which
depends on the size of the insurance payment. We denote the
cost by 𝐶(𝐼(𝑥)). And assume that 𝐶(0) = 𝑐 ≥ 0, 𝐶(𝐼) ≥ 0,
and 𝐶(𝐼) = 𝑎 ≥ 0.

We further suppose that the utility function of the insurer
is V(⋅). It is easy to see that the insurer’s final wealth is 𝑊

0
+

𝑄 − 𝐼(𝑥) − 𝐶(𝐼(𝑥)).Here, we suppose V(⋅) > 0 and V(⋅) = 0.
Consider there exit finite states of the world: the wealth

level 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
. And further assume that you can assign

probabilities to each of these outcomes. You are fairly opti-
mistic about your future, so you assign a probability 𝑝

𝑖
to the

wealth level 𝑤
𝑖
(𝑖 = 1, 2, . . . , 𝑛).∑𝑛

𝑖=1
𝑝
𝑖
= 1. We call the series

of wealth outcomes a prospect 𝑃
𝑛
and represent this situation

using the following convenient format:

𝑃
𝑛
(𝑝
1
, 𝑤
1
, 𝑝
2
, 𝑤
2
, . . . , 𝑝

𝑛−1
, 𝑤
𝑛−1

, 𝑤
𝑛
) . (4)

The value function 𝑉 represents the preferences in the EU
model. For a prospect 𝑃

𝑛
, preferences can be represented by a

functional such that

𝑉 (𝑃
𝑛
) =

𝑛

∑

𝑖=1

𝑝
𝑖
V (𝑤
𝑖
) , (5)

where V : R+ → R is a utility function, strictly increasing
and unique up to an affine positive transformation function.
The value function 𝑉 is linear in probabilities.

It is necessary to mention that when V(⋅) = 0, namely,
the insurer is risk-neutral, the utility function V(⋅) has an
important proposition that the expected utility function
equals the utility of the expected value; that is, 𝐸V(𝑃) =

V(𝐸(𝑃)), where 𝑃 is a prospect (see [22]). We suppose, for
simplicity, that there are only two states of the world: low
wealth 𝑤

𝑙
and high wealth 𝑤

ℎ
. And further assume that you

can assign probabilities to each of these outcomes. You are
fairly optimistic about your future, so you assign a probability
𝑝
1
to low wealth 𝑤

𝑙
and a probability 1 − 𝑝

1
to high wealth

𝑤
ℎ
. This situation can be represented by a prospect 𝑃 as the

following convenient format:

𝑃 (𝑝
1
, 𝑤
𝑙
, 𝑤
ℎ
) . (6)

Then, it is easy to write

𝐸V (𝑃) = 𝑝
1
V (𝑤
𝑙
) + (1 − 𝑝

1
) V (𝑤

ℎ
) ,

V (𝐸 (𝑃)) = V (𝑝
1
𝑤
𝑙
+ (1 − 𝑝

1
) 𝑤
ℎ
) .

(7)

Due to a risk-neutral utility function, from Figure 1, we
can attain 𝐸V(𝑃) = V(𝐸(𝑃)).

Generally, for a prospect

𝑃
𝑛
(𝑝
1
, 𝑤
1
, 𝑝
2
, 𝑤
2
, . . . , 𝑝

𝑛−1
, 𝑤
𝑛−1

, 𝑤
𝑛
) , (8)
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Figure 1: Utility function for a risk-neutral insurer.

a similar result is attained:

𝑉 (𝑃
𝑛
) = 𝐸V (𝑃

𝑛
) =

𝑛

∑

𝑖=1

𝑝
𝑖
V (𝑤
𝑖
) = V(

𝑛

∑

𝑖=1

𝑝
𝑖
𝑤
𝑖
)

= V (𝐸 (𝑃
𝑛
)) .

(9)

In the present paper, because the random loss 𝑥 has finite
number of values,

𝑉 (𝑊
0
+ 𝑄 − 𝐼 (𝑥) − 𝐶 (𝐼 (𝑥)))

= 𝐸 [V (𝑊
0
+ 𝑄 − 𝐼 (𝑥) − 𝐶 (𝐼 (𝑥)))]

= (𝐸 [𝑊
0
+ 𝑄 − 𝐼 (𝑥) − 𝐶 (𝐼 (𝑥))])

(10)

holds.
Meanwhile, our research relies on another essential

assumption that the utility function of the insured is 𝑢(⋅)

satisfying 𝑢(⋅) ≥ 0 and 𝑢(⋅) ≤ 0.

2.1.2. Rank-Dependent Expected Utility. Because the insured
prefers Rank-Dependent Expected Utility, we use the deci-
sion weights instead of using simple probabilities as expected
utility (see [22]).

Definition 1. Let 𝐹
𝑤
(⋅) be the cumulative distribution func-

tion (CDF) of a random variable 𝑤. The probability distor-
tions are denoted by 𝐺. One defines the probability weight
function (distortions) 𝐺 : [0, 1] → [0, 1]:

𝐺 (𝐹
𝑤
(𝑦)) =

𝐹
𝛾

𝑤
(𝑦)

(𝐹
𝛾

𝑤 (𝑦) + (1 − 𝐹
𝛾

𝑤 (𝑦))

𝛾

)

1/𝛾
,

with 0.28 < 𝛾 < 1.

(11)

Definition 2. Define the RDEUof the insured as (see [12, 23]):

𝑈
𝑅
(𝑤) = ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤
(𝑦))) , (12)

where 𝑤 is the final wealth of the insured and 𝑈
𝑅
(𝑤) is the

Choquet integral of 𝑢(⋅).

Since the insured’s final wealth is 𝑤 = 𝑤
0
− 𝑥 − 𝑄 + 𝐼(𝑥),

the RDEU of the insured is as follows:

𝑈
𝑅
(𝑤
0
− 𝑥 − 𝑄 + 𝐼 (𝑥))

= ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑥−𝑄+𝐼(𝑥)

(𝑦))) ,

(13)

where 𝐹
𝑤0−𝑥−𝑄+𝐼(𝑥)

is the cumulative distribution function
(CDF) of 𝑤 which is the function of the random variable 𝑥.
Thus, at this time, 𝐹

𝑤
is replaced by 𝐹

𝑤0−𝑥−𝑄+𝐼(𝑥)
.

2.1.3. The Optimal Insurance Problem. In order to attract
the insured in the business competition, the insurer has to
make the insured’s gain as much profitable as possible. To
explicitly explain the influence of the competition on the
optimal problem, we take an example. There two insurers, 𝐴
and 𝐵. Because of the different insurer designs of 𝐴 and 𝐵,
the insured’s RDEUs for 𝐴 is different from his RDEU for 𝐵.
RDEUs are respectively written as 𝑈𝑅

𝐴
and 𝑈

𝑅

𝐵
. If 𝑈𝑅
𝐴
> 𝑈
𝑅

𝐵
,

the insured prefers the insurer 𝐴 rather than 𝐵. Otherwise,
the insured is willing to choose the insurer 𝐵 but not𝐴. Since
there exit many insurers in a limited insurance market, each
insurer tries his best tomaximize the RDEU of the insured by
designing the optimal insurance contract for attracting more
clients.

That is, the insurer will find the optimal solution of 𝑈𝑅:

Max
𝑄,𝐼(𝑥)

𝑈
𝑅
(𝑤
0
− 𝑥 − 𝑄 + 𝐼 (𝑥))

= ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑥−𝑄+𝐼(𝑥)

(𝑦))) .

(14)

On the other hand, as shown in Raviv [24], a necessary
condition for the insurer to offer such a policy is

𝐸 [V (𝑊
0
+ 𝑄 − 𝐼 (𝑥) − 𝐶 (𝐼 (𝑥)))] ≥ V (𝑊

0
) . (15)

Considering the impact of adverse selection and moral
hazard on the insurance contract [25–27], we can use the
following bonus-malus system

𝑄

=

{

{

{

𝛿𝑄
0

if no accident occurred in the previous period

𝛾𝑄
0

if an accident occurred in the previous period

(16)

to determine the premium 𝑄, where 𝑄
0
is the premium in

the previous period. We can estimate 𝛿 and 𝛾 by empirical
data to decide the premium 𝑄. If 𝑄 is the premium in the
first period and we have no empirical data and𝑄

0
, we have to

decide𝑄 relying on the indexes associatedwith𝑄, such as age,
gender, and occupation. Based on this fixed 𝑄, we research
the optimal problem of indemnity 𝐼(𝑥).

We denote by I the set of all indemnity functions; that
is, I := {𝐼(⋅) | 0 ≤ 𝐼(𝑥) ≤ 𝑥, ∀𝑥 ∈ [0, 𝑤

0
]}. The optimal

problem is as follows.



Journal of Applied Mathematics 5

Model 1. Consider

Max
𝐼(⋅)∈I

𝑈
𝑅
(𝑤
0
− 𝑥 − 𝑄 + 𝐼 (𝑥))

= ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑥−𝑄+𝐼(𝑥)

(𝑦)))

Subject to 𝐸 [V (𝑊
0
+ 𝑄 − 𝐼 (𝑥) − 𝐶 (𝐼 (𝑥)))] ≥ V (𝑊

0
) .

(17)

As Raviv has shown, if the insurer is risky-neutral, the
insurer will price the indemnity in such a way that

𝑄 ≥ 𝐸 [𝐼 (𝑥) + 𝐶 (𝐼 (𝑥))] . (18)

In a competitive insurance market, we can understand
𝐸[𝐼(𝑥) + 𝐶(𝐼(𝑥))] as the minimum price of the indemnity
𝐼(𝑥) for a risk-neutral insurer to participate in the business
(typically referred to as the insurer’s safety loading).

Noticing that the independent variable 𝐼(𝑥) ∈ I of the
function𝐶(⋅) is bounded and the function𝐶(⋅) is continuous,
we can say that 𝐶(⋅) is bounded. So, there exits finite 𝑄

satisfying restrict condition (18).
So, Model 1 can be rewritten as follows.

Model 2. Consider
Max
𝐼(⋅)∈I

𝑈
𝑅
(𝑤
0
− 𝑥 − 𝑄 + 𝐼 (𝑥))

= ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑥−𝑄+𝐼(𝑥)

(𝑦)))

Subject to 𝑄 ≥ 𝐸 [𝐼 (𝑥) + 𝐶 (𝐼 (𝑥))] .

(19)

Let 𝑅(𝑥) = 𝑥 − 𝐼(𝑥). 𝑅(𝑥) is the part of loss shared by the
insured and is the so-called retention function. Let

R = {𝑅 (⋅) | 0 ≤ 𝑅 (𝑥) ≤ 𝑥, ∀𝑥 ∈ [0, 𝑤
0
]} . (20)

Then, the above model becomes the following.

Model 3. Consider
Max
𝑅(𝑥)∈R

𝑈
𝑅
(𝑤
0
− 𝑄 − 𝑅 (𝑥))

= ∫

+∞

0

𝑢 (𝑦) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑄−𝑅(𝑥)

(𝑦)))

Subject to 𝑄 ≥ 𝐸 [𝑥 − 𝑅 (𝑥) + 𝐶 (𝑥 − 𝑅 (𝑥))] .

(21)

2.2. The Objective Model. Before we analyze this model, we
introduce some indispensable assumption and lemmas.

Assumption 3 (see [28]). The loss 𝑥 has no atom; that is, the
cumulative distribution function 𝐹(𝑥) of 𝑥 is the continuous
function. Accordingly, its quantile function 𝐹

−1

𝑥
: (0, 1) →

𝑅
+
is continuous.

Assumption 4 (see [22]). The probability weighting function
𝐺(⋅) : [0, 1] → [0, 1] and satisfies𝐺(0) = 0, 𝐺(1) = 1, 𝐺(⋅) ≥
0, and

𝐺

(𝑧) ≤ 0 if 𝑧 ∈ [0, 𝑧

0
]

𝐺

(𝑧) ≥ 0 if 𝑧 ∈ (𝑧

0
, 1] .

(22)

Lemma 5. Suppose 𝐴 is a constant. 𝑔(𝑥) is a random variable
with the probability density function 𝑓(⋅) and the cumulative
distribution function 𝐹

𝑔(𝑥)
(⋅). The according quantile function

𝐹
−1

𝑔(𝑥)
satisfies that

𝐹
−1

𝐴−𝑔(𝑥)
(𝑧) = 𝐴 − 𝐹

−1

𝑔(𝑥)
(1 − 𝑧) . (23)

The proof is seen in Appendix A.

Lemma 6 (see [28]). With Assumption 3, if 𝑅(𝑥) is a feasible
solution of Model 3, then 𝑅(𝑥) = 𝐹

−1

𝑅(𝑥)
(𝐹
𝑥
(𝑥)) is also feasible

with respect to Model 3 and 𝑅(𝑥) has the same law as 𝑅(𝑥).

From Lemmas 5 and 6, we can write the model as follows.

Model 4. Consider

Max
𝑘(𝑧)

∫

1

0

𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧) 𝑑𝑧

Subject to 0 ≤ 𝑘 (𝑧) ≤ 𝐹
−1

𝑥
(𝑧) , 0 < 𝑧 < 1,

𝑘 ∈ K,

𝑄 ≥ 𝐸 [𝑥 − 𝑘 (𝑧) + 𝐶 (𝑥 − 𝑘 (𝑧))] .

(24)

Here, 𝑘(𝑧) is a quantile function. K represents the set of
all quantile functions. That is, K = {𝑘 : (0, 1) → R |

𝑘(⋅) is nondecreasing and left-continuous}.

Detailedly, form Lemma 5, we can transform RDEU of
the insured into

𝑈
𝑅
(𝑤
0
− 𝑄 − 𝑅 (𝑥))

= ∫

+∞

0

𝑢 (𝑥) 𝑑 (−𝐺 (1 − 𝐹
𝑤0−𝑄−𝑅(𝑥)

(𝑥)))

= ∫

1

0

𝑢 (𝐹
−1

𝑤0−𝑄−𝑅(𝑥)
(𝑧)) 𝐺


(1 − 𝑧) 𝑑𝑧

= ∫

1

0

𝑢 (𝑤
0
− 𝑄 − 𝐹

−1

𝑅(𝑥)
(1 − 𝑧))𝐺


(1 − 𝑧) 𝑑𝑧

= −∫

0

1

𝑢 (𝑤
0
− 𝑄 − 𝐹

−1

𝑅(𝑥)
(𝑧)) 𝐺


(𝑧) 𝑑𝑧

= ∫

1

0

𝑢 (𝑤
0
− 𝑄 − 𝐹

−1

𝑅(𝑥)
(𝑧)) 𝐺


(𝑧) 𝑑𝑧

= ∫

1

0

𝑢 (𝑤
0
− 𝑄 − 𝑅 (𝑥))𝐺


(𝑧) 𝑑𝑧.

(25)

Let

𝑘 (𝑧) = 𝐹
−1

𝑅(𝑥)
(𝑧) = 𝐹

−1

𝑅(𝑥)
(𝐹
𝑥 (
𝑥)) = 𝑅 (𝑥) . (26)

Recalling Lemma 6, we can demonstrate that 𝑘(𝑧) satisfies the
constraints in Model 4.

With Lagrange dual method, we can obtain the auxiliary
problem.
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Model 5. Consider

Max
𝑘(𝑧)

𝑈
𝜆 (
𝑘 (𝑧) , 𝑧) = ∫

1

0

𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧) + 𝜆𝑘 (𝑧) − 𝜆𝐶 (𝐹

−1

𝑥
(𝑧) − 𝑘 (𝑧)) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

Subject to 0 ≤ 𝑘 (𝑧) ≤ 𝐹
−1

𝑥
(𝑧) , 0 < 𝑧 < 1,

𝑘 ∈ K.

(27)

3. The Results

3.1. The Piecewise Optimal Solution. Now, we only consider
the maximal value of

𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧) + 𝜆𝑘 (𝑧)

− 𝜆𝐶 (𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧)) .

(28)

Set

𝜕

𝜕𝑘 (𝑧)

[𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧) + 𝜆𝑘 (𝑧)

− 𝜆𝐶 (𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧))] = −𝑢


(𝑤
0
− 𝑄 − 𝑘 (𝑧))

⋅ 𝐺

(𝑧) + 𝜆 (1 + 𝐶


(𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧))) = 0.

(29)

Observing Taylor expansions of 𝑢(⋅) and 𝐶(⋅), we have

𝑢

(𝑤
0
− 𝑄 − 𝑘 (𝑧)) ≈ 𝑢


(𝑤
0
− 𝑄)

− 𝑢

(𝑤
0
− 𝑄) 𝑘 (𝑧) ,

𝐶

(𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧)) = 𝐶


(𝐹
−1

𝑥
(𝑧))

− 𝐶

(𝐹
−1

𝑥
(𝑧)) 𝑘 (𝑧) .

(30)

The above results are applied to (29); it is shown that

− (𝑢

(𝑤
0
− 𝑄) − 𝑢


(𝑤
0
− 𝑄) 𝑘 (𝑧)) 𝐺


(𝑧)

+ 𝜆 (1 + 𝐶

(𝐹
−1

𝑥
(𝑧)) − 𝐶


(𝐹
−1

𝑥
(𝑧)) 𝑘 (𝑧)) ≈ 0.

(31)

Then, not considering the other constraints in Model 5, we
can get the approximate optimal solution:

𝐽 (𝑧) =

𝜆 (1 + 𝐶

(𝐹
−1

𝑥
(𝑧))) − 𝑢


(𝑤
0
− 𝑄)𝐺


(𝑧)

𝜆𝐶

(𝐹
−1

𝑥
(𝑧)) − 𝐺


(𝑧) 𝑢

(𝑤
0
− 𝑄)

. (32)

In order to satisfy the first constraint inModel 5, we transform
𝑘(𝑧) into

𝐾 (𝑧) = max {0,min {𝐽 (𝑧) , 𝐹−1
𝑥

(𝑧)}} , 0 ≤ 𝑧 ≤ 1. (33)

Noting 𝑢

(⋅) ≥ 0, 𝑢(⋅) ≤ 0, and Assumption 4, we can

find that 𝐽(𝑧) is nondecreasing on [0, 𝑧
0
] which satisfies the

proposition of the quantile function. Hence, 𝐾(𝑧) satisfies
the second constraint in Model 5 on [0, 𝑧

0
]. However, it is

regretful that 𝐽(𝑧) is not nondecreasing on (𝑧
0
, 1] and we

cannot make sure that 𝐾(𝑧) nondecreasing on (𝑧
0
, 1]. So, we

hope to achieve a new solution suitable for all constraints in
Model 5 from𝐾(𝑧). We only pay attention to the case of 𝐽(𝑧)
in (𝑧
0
, 1]. Since, in (𝑧

0
, 1], 𝐽(𝑧) is not always decreasing or

increasing, we divide (𝑧
0
, 1] by monotonicity. If (𝑧

0
, 1] has

𝑁 increasing ranges and 𝑀 decreasing ranges, we denote
increasing range by (𝑑

𝑖
, 𝑒
𝑖
] (𝑖 = 0, 1, . . . , 𝑁 − 1) and a

decreasing range by (𝑒
𝑗
, 𝑑
𝑗+1

] (𝑗 = 0, . . . ,𝑀 − 1) (see
Figure 2).

In the first case in Figure 2, we can safely claim that 𝐽(𝑧) is
nondecreasing on [0, 𝑧

0
] and [𝑧

0
, 𝑒
0
] ([𝑧
0
, 𝑒
0
] is equivalent to

[𝑑
0
, 𝑒
0
]). So, we can look at [0, 𝑧

0
] and [𝑧

0
, 𝑒
0
] as one whole;

namely, we can deal with 𝐽(𝑧) on [0, 𝑒
0
] similar to that on

[0, 𝑧
0
]. At this time,we only need to discuss the rest part,

[𝑒
0
, 1]. 𝐽(𝑧) first decreases on [𝑒

0
, 𝑑
1
] and then increases on

[𝑑
1
, 𝑑
2
], which is the same as the second case in Figure 2. 𝐽(𝑧)

first decreases and then increases in (𝑒
0
, 1] and is similar to

the second case in Figure 2.
We denote the intersection point of 𝐹−1

𝑥
(𝑧) and 𝐽(𝑧) in

(𝑒
0
, 𝑑
1
] by 𝑠

1
. And write the intersection point of 𝑘(𝑧) and

𝐽(𝑧) on [𝑠
1
, 𝑑
1
] as 𝑠
2
. Now, we discuss each possible case (see

Figure 3).

Case 1. There exist 𝑠
1
and 𝑠
2
in (𝑒
0
, 𝑑
1
]. At this time, we denote

the intersection point of 𝑘(𝑧) and 𝐹
−1

𝑥
(𝑧) by 𝑚

0
. Denote the

intersection point of the horizontal line through𝑚
0
and 𝐽(𝑧)

on [𝑒
0
, 𝑑
1
] by 𝑙
0
and on [𝑑

1
, 𝑒
1
] by 𝑛

0
.

Case 2. There exists 𝑠
1
and does not exist 𝑠

2
in (𝑒
0
, 𝑑
1
]. In this

case, we denote the intersection point of 𝑘(𝑧) (here 𝑘(𝑧) is
equivalent to 𝐹

−1

𝑥
(𝑧)) and the horizontal line through 𝑑

1
by

𝑚
0
. And, set 𝑙

0
= 𝑛
0
= 𝑑
1
.

Case 3. Consider 𝐹−1
𝑥
(𝑧) ≥ 𝐽(𝑧) and there does not exist an

intersection of 𝐽(𝑧) and 𝑘(𝑧) on [𝑧
0
, 𝑑
1
]. In other words, there

does not exist 𝑠
1
. But we can look at 𝑒

0
as 𝑠
1
, then this case is

similar to the first case. We denote the intersection of 𝐽(𝑧)
and 𝑘(𝑧) on [𝑧

0
, 𝑑
1
] by 𝑠

2
. And, we denote the intersection

point of 𝑘(𝑧) and the horizontal line through 𝑠
2
by 𝑚
0
. It is

valuably noticed that 𝑘(𝑧) is 𝐽(𝑧) at this time. In fact,𝑚
0
is the

intersection point of 𝐽(𝑧) and the horizontal line through 𝑠
2
.

Besides, denote the intersection point of the horizontal line
through 𝑠

2
and 𝐽(𝑧) on [𝑑

1
, 𝑒
1
] by 𝑛

0
and 𝑙
0
= 𝑠
2
.

Case 4. Consider 𝐹−1
𝑥
(𝑧
0
) ≥ 𝐽(𝑧

0
) and there does not exist

an intersection of 𝐽(𝑧) and 𝑘(𝑧) on [𝑧
0
, 𝑑
1
]. At this time,
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we denote the intersection point of 𝑘(𝑧) which is 𝐽(𝑧) in
this case and the horizontal line through 𝑑

1
by 𝑚
0
. And, let

𝑙
0
= 𝑛
0
= 𝑑
1
.

Case 5. Consider 𝐹−1
𝑥
(𝑑
1
) < 𝐽(𝑑

1
). We denote the intersec-

tion of 𝐹−1
𝑥
(𝑧) and the vertical line through 𝑑

1
by𝑚
0
. And, let

𝑛
0
= 𝑙
0
= 𝑚
0
.

Let

𝐾
𝑚0

(𝑧) = 𝐾 (𝑧) 𝐼0≤𝑧≤𝑚0
+ 𝐾 (𝑚

0
) 𝐼
𝑛0>𝑧>𝑚0

,

0 < 𝑧 < 𝑛
0
.

(34)

Then, we can achieve an important lemma as follows.

Lemma 7. For the feasible solution 𝑘(𝑧) of Model 5, 𝐾
𝑚0
(𝑧)

satisfies the following:

(i) 𝑈
𝜆
(𝑘(𝑧), 𝑧) ≤ 𝑈

𝜆
(𝐾
𝑚0
(𝑧), 𝑧), 0 < 𝑧 < 𝑛

0
.

(ii) The equality holds if and only if 𝑘(𝑧) = 𝐾
𝑚0
(𝑧), 0 < 𝑧 <

𝑛
0
.

The proof is seen in Appendix B.

3.2. The Global Optimal Insurance Design. For the range
[𝑛
0
, 𝑒
2
], we can similary discuss to the range [0, 𝑒

1
]. In more

detail, we take [𝑛
0
, 𝑒
1
], [𝑒
1
, 𝑑
2
], and [𝑑

2
, 𝑒
3
] as [0, 𝑒

0
], [𝑒
0
, 𝑑
1
],

and [𝑑
1
, 𝑒
2
], respectively. We can obtain 𝐾

𝑚1
(𝑧) on [𝑛

0
, 𝑛
1
]

similar to𝐾
𝑚0
(𝑍) on [0, 𝑛

0
]. Generally, we can achieve𝐾

𝑚𝑖
(𝑧)

on [𝑛
𝑖−1

, 𝑛
𝑖
] similar to 𝐾

𝑚0
(𝑍) on [0, 𝑛

0
] (𝑖 = 1, 2, . . . , 𝑁 −

1 or𝑁 − 2).
Because we note that 𝑘(𝑧)must be the left-continuous, we

are particularly concerned with whether the value of 𝐾
𝑚1
(𝑧)

equals𝐾
𝑚0
(𝑧)which directly decides whether 𝑘(𝑧) is the left-

continuous. That is, does the following equality

𝐾
𝑚1

(𝑛
0
) = 𝐾
𝑚0

(𝑛
0
) (35)

hold?
In the first four cases, we can find 𝐹

−1

𝑥
(𝑛
0
) ≥ 𝐽(𝑛

0
). So,

𝐾(𝑛
0
) = 𝐽(𝑛

0
) and 𝐾

𝑚0
(𝑛
0
) = 𝐽(𝑛

0
) = 𝐾(𝑛

0
) = 𝐾

𝑚1
(𝑛
0
). In

the last case, we have 𝐹−1
𝑥
(𝑛
0
) ≤ 𝐽(𝑛

0
). So, 𝐾(𝑛

0
) = 𝐹

−1

𝑥
(𝑛
0
)

and𝐾
𝑚0
(𝑛
0
) = 𝐹
−1

𝑥
(𝑛
0
) = 𝐾(𝑛

0
) = 𝐾
𝑚1
(𝑛
0
).

Hence, the function 𝐾
𝑚0
(𝑧)𝐼
0≤𝑧≤𝑛0

+ 𝐾
𝑚1
(𝑧)𝐼
𝑛0<𝑧≤𝑛1

on
[0, 𝑛
1
] is nondecreasing and left-continuous. Generally, the

range [𝑛
𝑖−1

, 𝑛
𝑖
] is researched similarly. Ultimately, noticing

(35), we can indicate the nondecreasing and left-continuous
function𝐾(𝑧) on [0, 1] as follows:

𝐾 (𝑧) =

{

{

{

𝐾
𝑚0

(𝑧) 𝐼0≤𝑧≤𝑛0
+ 𝐾
𝑚1

(𝑧) 𝐼𝑛0<𝑧≤𝑛1
+ ⋅ ⋅ ⋅ + 𝐾

𝑚𝑁−1
(𝑧) 𝐼𝑛𝑁−2<𝑧≤1

if 𝑀 = 𝑁

𝐾
𝑚0

(𝑧) 𝐼0≤𝑧≤𝑛0
+ ⋅ ⋅ ⋅ + 𝐾

𝑚𝑁−2
(𝑧) 𝐼𝑛𝑁−3<𝑧≤𝑛𝑁−2

+ 𝐾 (𝑧) 𝐼𝑛𝑁−2<𝑧≤1
if 𝑀 < 𝑁.

(36)

Now, we can attain the following conclusion.

Theorem 8. For and feasible solution 𝑘(𝑧) of Model 5, 𝐾(𝑧)
satisfies the following:

(i) 𝑈
𝜆
(𝑘(𝑧), 𝑧) ≤ 𝑈

𝜆
(𝐾(𝑧), 𝑧), 0 < 𝑧 < 1.

(ii) Theequality holds if and only if 𝑘(𝑧) = 𝐾(𝑧), 0 < 𝑧 < 1.

The proof is seen in Appendix C.
FromTheorem 8, we can reduce Model 5 to the auxiliary

problem with Lagrange dual method.

Model 6. Consider

Max
𝑘(𝑧)

𝑈
𝜆 (
𝑘 (𝑧) , 𝑧) = int1

0
𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧)

+ 𝜆𝑘 (𝑧)

− 𝜆𝐶 (𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧)) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥) ,

(37)

where 𝑘(𝑧) is satisfied to (36).

Now, we desire to solve the original optimal problem
through 𝑈

𝜆
(𝐾(𝑧), 𝑧). We can attain the key proposition as

follows.

Proposition 9. The optimal solution of Model 1 is as follows:

𝐼
∗
(𝑥) = 𝑥 − 𝐾 (𝑛

𝑖
) 𝐼
𝑛𝑖+1>𝑧>𝑛𝑖

,

𝐹
−1

𝑥
(𝑛
𝑖+1

) > 𝑥 > 𝐹
−1

𝑥
(𝑛
𝑖
) ,

(38)

where

𝐾(𝑛
𝑖
) 𝐼
𝑛𝑖+1>𝑧>𝑛𝑖

= 𝐾
𝑛𝑖
(𝑧) = 𝐾

𝑚𝑖+1
(𝑧) . (39)
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Figure 3: Different cases.

The proof is seen in Appendix D.

Remark 10. Comparing the conclusion with the result in
the substance of Bernard and Zhou’s paper, we cannot help
asking why does our conclusion seem simpler than Zhou and

Bernard’s one, while our fixed cost of handling an indemnity
is more general than Bernard’s research? It is because we
subtly make 𝐽(𝑧) become segments, [𝑛

𝑖
, 𝑛
𝑖+1

], before solving
this optimal problem which delicately simplifies the form of
solution.
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4. Numerical Analysis

In this section, we provide an insight into the optimal result
with a numerical simulation. We suppose the loss 𝑥 satisfies
truncated Pareto distribution on [0, 𝑤

0
]. That is, the density

function is

𝑓 (𝑥) =

{
{

{
{

{

1

1 − 2
−𝛼

𝛼

𝑤
0

(

𝑤
0

2𝑤
0
− 𝑥

)

𝛼+1

0 ≤ 𝑥 ≤ 𝑤
0

0 others.
(40)

Accordingly, its distribution function is

𝐹 (𝑥) = ∫

𝑥

0

𝑓 (𝑡) 𝑑𝑡

= ∫

𝑥

0

1

1 − 2
−𝛼

𝛼

𝑤
0

(

𝑤
0

2𝑤
0
− 𝑡

)

𝛼+1

𝑑𝑡

=

1

1 − 2
−𝛼
𝑤
𝛼

0
(2𝑤
0
− 𝑡)
−𝛼








𝑥

0

=

1

1 − 2
−𝛼
𝑤
𝛼

0
[(2𝑤
0
− 𝑥)
−𝛼

− (2𝑤
0
)
−𝛼
] .

(41)

As for the insured’s utility function, we discuss two different
kinds of utility functions. They are separately

𝑢 (𝑤) =

1

1 − 𝛽

𝑤
1−𝛽

,

𝑢 (𝑤) = log𝑤.
(42)

We let the fixed cost function of handling an indemnity be

𝐶 (𝐼) =

𝑎

2

𝐼
2
+ 𝑏𝐼 + 𝑐, 𝑎, 𝑏 ≥ 0. (43)

The probability weighting function (see [10]) is

𝐺 (𝑧) =

𝑧
𝛾

(𝑧
𝛾
+ (1 − 𝑧)

𝛾
)
1/𝛾

, 𝛾 ≈ 0.61. (44)

Then,

𝐺

(𝑧) =

𝛾𝑧
𝛾−1

(𝑧
𝛾
+ (1 − 𝑧)

𝛾
)
1/𝛾

− 𝑧
𝛾
(1/𝛾) (𝑧

𝛾
+ (1 − 𝑧)

𝛾
)
1/𝛾−1

(𝛾𝑧
𝛾−1

− 𝛾 (1 − 𝑧)
𝛾−1

)

(𝑧
𝛾
+ (1 − 𝑧)

𝛾
)
2/𝛾

,

𝛾 ≈ 0.61.

(45)

In the body of this section,wemainly focus on the optimal
solutions’ sensitivity to the fixed cost function of handling
an indemnity and the initial wealth of the insured. Here, we
choose the utility function of the insured 𝑢(𝑤) = log𝑤.

Firstly, we consider that different parameters in the fixed
cost function of an indemnity impact an optimal insurance
contract. We fix the initial wealth of the insured 𝑤

0
= 7,

the premium 𝑄 = 0.3𝑤
0
= 2.1, and 𝑏 = 1. By setting 𝑎 =

0.1, 0.5, 2.0, 15.0 (See Figure 4), we display that the optimal
indemnity depends on the values of 𝑎 since the change of
𝑎 effects curvature of 𝐽(𝑧). Particularly, as for large losses
and small losses, the larger 𝑎 becomes, the higher the limit
of the indemnity becomes and the smaller the deductible
becomes. Meanwhile, as for medium losses, when the loss is
larger than the fixed threshold value (here the fixed threshold
value is about 1.0), the insurer will fully pay for the losses.
When the loss is smaller than this fixed threshold value,
there is partial reimbursement. With increasing the value of
𝑎, the proportion of the partial payment becomes higher.
Until 𝑎 = 15.0, the proportion of the partial indemnity
almost reaches 1; that is, the partial reimbursement becomes
the full payment. Moreover, when 𝑎 = 15.0, the limit of
the indemnity nearly runs up to 3.0 and the deductible
almost disappears. In a word, the raise of the parameter
𝑎 makes the insurance contract more beneficial for the
insured. In particular, when 𝑎 = 15.0, the insured can get

full reimbursement under the limit of the indemnity without
the deductible.

Sequently, we also carry out the sensitivity of an optimal
solution to 𝑏. Similar to the above, we fix the initial wealth
of the insured 𝑤

0
= 7, the premium 𝑄 = 0.3𝑤

0
= 2.1, and

𝑎 = 0.5 first. Then, let 𝑏 = 0.1, 0.3, 1.0, 2.0 (see Figure 5).
Figure 5 describes that 𝑏 dominates the values of 𝐽(𝑧) rather
than the shape of 𝐽(𝑧) which leads to the change of optimal
solutions. Particularly, for large losses, with increasing the
value of 𝑏, the limit of recovery rises. This effect of 𝑏 is
similar to 𝑎, but the impact of 𝑏 is not more obvious than
𝑎. Simultaneously, as for small losses, the raise of 𝑏 also
decreases the deductible. Of course, we also notice medium
losses. With our best endeavors, it is not difficult to show that
when the loss is larger than a threshold value, the insured
will get full reimbursement. When the loss is smaller than
this threshold value, there is a partial payment. It is necessary
to make a special note that this threshold is distinguished
from the threshold value in the case of the parameter 𝑎.
This threshold increases with the value of 𝑏 raising. At the
same time, the proportion of the partial indemnity does not
depend on the parameter 𝑏, which is different from the case
of the parameter 𝑎. Until 𝑏 = 2.0, the deductible almost
reaches 0 and the limit of the indemnity nearly runs up to the
maximal value that is about 3.0. In short, the raise of 𝑏 is more
advantageous for the insured. In particular, when 𝑏 = 2.0,
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Figure 4: Different parameters of the cost 𝑎.

the insured can get full reimbursement under the limit of the
indemnity without the deductible.

Now, we are interested in the influence of the insured’s
initial wealth on the optimal solution. Similar to the above
parameters, we fix the premium 𝑄 = 0.3𝑤

0
, 𝑎 = 0.5, and

𝑏 = 1.0 and set 𝑤
0

= 4.5, 5.2, 8.0, 20. It is a surprise to
find the different relationship between 𝐽(𝑧) and 𝐹

−1

𝑥
(𝑧) (see

Figure 6) with different values of the initial wealth of insured
𝑤
0
. It is not difficult to obtain the optimal solutions, through

the above discussion of five different cases in Section 3 (see
Figure 3). The computation of the optimal solution identifies
the independent threshold value which plays the pivotal role
in relationship between 𝐽(𝑧) and 𝐹−1

𝑥
(𝑧) and the choice of the

optimal contract. This threshold is 𝑤
0
= 5.2 in Figure 6. In

particular, when 𝑤
0
= 5.2, 𝐹−1

𝑥
(𝑧) tangents to 𝐽(𝑧). When

𝑤
0
< 5.2, 𝐽(𝑧) and 𝐹

−1

𝑥
(𝑧) are disjoined. When 𝑤

0
> 5.2,

𝐹
−1

𝑥
(𝑧) intersects 𝐽(𝑧).The various relationships between 𝐽(𝑥)

and 𝐹
−1

𝑥
(𝑧) makes us attain the different optimal solutions.

Specifically, when 𝑤
0

= 4.5, 5.2, three different segments
constitute the optimal solution, which, respectively, represent
the limit of indemnity, deductible, and the full payment for
medium losses. It is valuably noticed that, comparing 𝑤

0
=

4.5 and 𝑤
0

= 5.2, the limit of recovery is higher in the
case of 𝑤

0
= 5.2 than the one in the case of 𝑤

0
= 4.5.

Another important point, aswe think, is that all of the optimal
solutions when 𝑤

0
< 5.2 are the same. The optimal solutions

consist of four segments, when 𝑤
0

= 7.0, 𝑤
0

= 8.0, and
𝑤
0
= 15.0.These cases aremore complicated than the cases of

𝑤
0
= 4.5 and 𝑤

0
= 5.2, since there are other threshold values

between full and partial indemnity formedium losses. Mean-
while, we emphasize that, with increasing the value of 𝑤

0
,

the threshold value for medium losses becomes smaller and
smaller. Further, this rise of the initial wealth of the insured
𝑤
0
makes the deductible becomes smaller. Until 𝑤

0
= 20,
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Figure 5: Different parameters of the cost 𝑏.

both the threshold for medium losses and the deductible
scarcely exit. Simultaneously, the limit of the recovery nearly
reaches the maximal value which is about 10.0. Namely, all of
the losses under 10 can be fully reimbursed at this time.

After testing the sensitivity of the optimal insurance
policy, we compare the different utility functions of the
insured in terms of the influence of the optimal solution.
We fix necessary parameters, the initial wealth of the insured
𝑤
0
= 4.5, the premium 𝑄 = 0.3𝑤

0
= 2.1, 𝑎 = 0.5, and

𝑏 = 1. Figure 7 indicates that the various utility functions do
not change the shapes of 𝐽(𝑧) expect for shifting up.This shift
brings the optimal insurance contract some tiny distinctions.
When

𝑢 (𝑤) =

1

1 − 𝛽

𝑤
1−𝛽

, (46)

the numerical analysis reveals that the limit of the recovery is
about 2.0 and the insurer must fully pay for losses under the
limit of the indemnity. Meanwhile, when

𝑢 (𝑤) = log𝑤, (47)

there are a small deductible for small losses and a partial
payment for medium losses.

5. Conclusion

In contrast with Bernard et al.’s work, our main contributions
are main two aspects. On the one hand, we generalize the
fixed cost functions. Besides, through the mathematically
sophisticated and complicated derivation of solution, we
state the considerably surprising and subtle solution in
explicit form for both the linear cost functions and the
nonlinear cost functions.The shortcoming of prospect theory
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is that a conventional well-posed problem becomes an ill-
posed problem with prospect theory. The nonexistence of
an explicit solution impedes the progress in the application
and impact of prospect theory. Hence, the generally novel
results are meaningful and significant. On the other hand,
The adverse selection and moral hazard are considered
by us while Bernard et al. do not involve them. We use
bonus-malus system and the empirical test to decide the
premium 𝑄. Based on the fixed 𝑄, we further explore the
optimal insurance design under Rand-Dependent Expected
Utility. Because we focus on the optimal insurance contract
for the general cost functions, we only provide a brief
thought of how to determine the premium 𝑄 and not
carefully study it. However, this significant idea not only
makes close relationship between these critical issues and our
research but also offers the basic framework for the further
research.

Compared with the Ben Dhiab’s research, our novelty
is researched from the different perspective. Particularly, he
researches the optimal insurance contract from the insured’s
(or agent’s) point of view, so he only needs to maximize
the RDEU of the insured without considering the utility
function of an insurer and relative restrictive conditions.
However, we study the optimal insurance policy from an
insurer’s point of view. Furthermore, I reveal the accurately
quantified relationship between the indemnity function 𝐼(𝑥)

and the random loss 𝑥 while he does not present the
quantified relationship between the indemnity function 𝐼(𝑥)

and the random loss 𝑥 in the cases of partial insurance and
overinsurance. On the technological detail, we employ the 𝑆-
shape probability weighting function and suppose that the
loss 𝑥 is a random variable on [0, 𝑤

0
], whereas Ben Dhiab

only assumes that the probabilityweighting function is always
concave or convex and the loss 𝑥 with probability 𝑝 and

no-loss with probability 1 − 𝑝. Sufficient evidences state that
our assumptions are more practical than his.

In the numerical aspect, we tested the sensitivity of an
optimal insurance contract for the fixed cost function of
handling the indemnity, the initial wealth of the insured,
and two different utility functions of the insured in the
numerical means. For the parameter 𝑎, raising the value of
𝑎makes the insurance policy more beneficial for the insured,
because the raising the parameter 𝑎 can increase the limit of
recovery and the proportion of indemnity for medium losses.
Meanwhile, raising 𝑎 can decrease the deductible. Similar to
the parameter 𝑎, increasing the parameter 𝑏 also brings the
insured more profit. It is the main reason that increasing
parameter 𝑏 can increase the limit of reimbursement and
reduce the deductible while the larger parameter 𝑏makes the
threshold value between full and partial payments become
smaller and the partial reimbursement be almost replaced by
full indemnity.

6. Further Research

Although we have achieved notable and novel findings, this
research is not perfect. For example, we only involve two
kinds of utility functions of the insured and do not discuss
others. As for different utility functions, we believe the
sensitivity of optimal insurance design for the fixed cost of
handling the indemnity and the initial wealth of the insured
is different. But, we only emphasize the sensitivity of utility
function 𝑢(𝑤) = log(𝑤). Besides, the alterable parameters in
our problem are far more than the illustrated parameters 𝑎,
𝑏, and 𝑤

0
by us. Other parameters’ variety, we believe, will

impact the optimal solution.
In the optimal insurance contract, there are some impor-

tant game relationships, which are the relationship between
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principal-agent, agent-agent, and principal-principal. In the
latter research, we will pay attention to these game relation-
ships. Particularly, based on Sappington’s frameworks, wewill
combine the monitoring and competition with the optimal
insurance contract under Rank-Dependent Expected Utility.
Besides, considering the critical issues, adverse selection, and
moral hazard in the optimal insurance, we will apply bonus-
malus system and empirical tests to decide the premium 𝑄

and further research the dynamic optimal insurance design
relying on the fixed the premium 𝑄.

Appendices

A. The Proof of Lemma 5

Proof. Suppose the probability density function of 𝐴 − 𝑔(𝑥)

is𝐻(⋅). Noticing that

𝑓 (𝑡) = 𝑓 (𝑔 (𝑥) = 𝑡) = 𝑓 (𝐴 − 𝑔 (𝑥) = 𝐴 − 𝑡)

= 𝐻 (𝐴 − 𝑡) ,

(A.1)

we have sound reason to state that

∫

𝐴−𝑡

−∞

𝐻(𝑦) 𝑑𝑦 = 1 − ∫

𝑡

−∞

𝑓 (𝑦) 𝑑𝑦. (A.2)

With the definition of the cumulative distribution function,
it is easy to see that

𝐹
𝑔(𝑥) (

𝑡) = ∫

𝑡

−∞

𝑓 (𝑥) 𝑑𝑥,

𝐹
𝑎−𝑔(𝑥) (

𝐴 − 𝑡) = ∫

𝐴−𝑡

−∞

𝐻(𝑥) 𝑑𝑥.

(A.3)

Let

𝑧 = 𝐹
𝑎−𝑔(𝑥) (

𝐴 − 𝑡) = ∫

𝐴−𝑡

−∞

𝐻(𝑥) 𝑑𝑥. (A.4)

With (A.2), we have

1 − 𝑧 = 𝐹
𝑔(𝑥) (

𝑡) = ∫

𝑡

−∞

𝑓 (𝑥) 𝑑𝑥. (A.5)

Hence,

𝐴 − 𝑡 = 𝐹
−1

𝐴−𝑔(𝑥)
(𝑧) ,

𝑡 = 𝐹
−1

𝑔(𝑥)
(1 − 𝑧) .

(A.6)

So,

𝐹
−1

𝐴−𝑔(𝑥)
(𝑧) = 𝐴 − 𝐹

−1

𝑔(𝑥)
(1 − 𝑧) . (A.7)

B. The Proof of Lemma 7

Proof. To simply write this proof, we set

ℎ (𝑘 (𝑧) , 𝑧) = 𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧) + 𝜆𝑘 (𝑧)

− 𝜆𝐶 (𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧)) .

(B.1)

Then,

𝑈
𝜆 (
𝑘 (𝑧) , 𝑧) = ∫

𝑛0

0

𝑢 (𝑤
0
− 𝑄 − 𝑘 (𝑧)) 𝐺


(𝑧)

+ 𝜆𝑘 (𝑧) − 𝜆𝐶 (𝐹
−1

𝑥
(𝑧) − 𝑘 (𝑧)) 𝑑𝑧 + 𝜆 (𝑄

− 𝐸𝑥) = ∫

𝑛0

0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

= ∫

𝑚0

0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + ∫

𝑙0

𝑚0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧

+ ∫

𝑛0

𝑙0

ℎ (𝑧) (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥) = 𝐼
1
+ 𝐼
2

+ 𝐼
3
+ 𝜆 (𝑄 − 𝐸𝑥) .

(B.2)

It is easy to see that 𝐾(𝑧) is the unique maximal value
of ℎ(𝑘(𝑧), 𝑧) on [0, 𝐹

−1

𝑥
(𝑧)] for each fixed 𝑧 ∈ (0, 𝑛

0
). So,

ℎ(𝑘(𝑧), 𝑧)(𝑥) is strictly increasing on [0, 𝐾(𝑧)] and strictly
decreasing on [𝐾(𝑧), 𝐹

−1

𝑥
(𝑧)].

We firstly discuss 𝐼
1
. On [0, 𝑚

0
], if 𝑘(𝑧) ≥ 𝐾(𝑧), then

𝑘(𝑧) ∈ [𝐾(𝑧), 𝐹
−1

𝑥
(𝑧)]. Since ℎ(𝑘(𝑧), 𝑧) is strictly decreasing

on [𝐾(𝑧), 𝐹
−1

𝑥
(𝑧)],

ℎ (𝑘 (𝑧) , 𝑧) ≤ ℎ (𝐾 (𝑧) , 𝑧) = ℎ (𝐾
𝑚0

(𝑧) , 𝑧) ; (B.3)

if 𝑘(𝑧) ≤ 𝐾(𝑧), then 𝑘(𝑧) ∈ [0, 𝐾(𝑧)]. Since ℎ(𝑘(𝑧), 𝑧) is
strictly increasing on [0, 𝐾(𝑧)],

ℎ (𝑘 (𝑧) , 𝑧) ≤ ℎ (𝐾 (𝑧) , 𝑧) = ℎ (𝐾
𝑚0

(𝑧) , 𝑧) . (B.4)

Therefore, we have

𝐼
1
= ∫

𝑚0

0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 ≤ ∫

𝑚0

0

ℎ (𝐾 (𝑧) , 𝑧) 𝑑𝑧

= ∫

𝑚0

0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧.

(B.5)

In the next discussion, we focus on 𝐼
2
. On [𝑚

0
, 𝑙
0
],

𝑘 (𝑧) ≤ 𝐾
𝑚0

(𝑧) = 𝐾 (𝑚
0
) ≤ 𝐾 (𝑧) . (B.6)

Consider 𝑘(𝑧) ∈ [0, 𝐾(𝑍)] and 𝐾
𝑚0
(𝑧) ∈ [0, 𝐾(𝑍)]; hence,

ℎ(𝑘(𝑧), 𝑧) ≤ ℎ(𝐾
𝑚0
(𝑧), 𝑧).That is,

𝐼
2
= ∫

𝑙0

𝑚0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 ≤ ∫

𝑙0

𝑚0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧. (B.7)

As for 𝐼
2
, noticing under Cases 2, 4, and 5 𝑛

0
= 𝑙
0
, we have

𝐼
3
= ∫

𝑛0

𝑙0

ℎ (𝑧) (𝑘 (𝑧) , 𝑧) 𝑑𝑧

= ∫

𝑛0

𝑙0

ℎ (𝑧) (𝐾𝑚0
(𝑧) , 𝑧) 𝑑𝑧 = 0.

(B.8)

Under Cases 1 and 3, we have sound reason to state that

𝐾 (𝑧) ≤ 𝐾
𝑚0

(𝑧) = 𝐾 (𝑚
0
) ≤ 𝑘 (𝑧) (B.9)

on [𝑙
0
, 𝑛
0
].
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Since ℎ(𝑘(𝑧), 𝑧) is strictly decreasing on [𝐾(𝑧), 𝐹
−1

𝑥
(𝑧)],

ℎ (𝑘 (𝑧) , 𝑧) ≤ ℎ (𝐾 (𝑧) , 𝑧) = ℎ (𝐾
𝑚0

(𝑧) , 𝑧) . (B.10)

So,

𝐼
3
= ∫

𝑛0

𝑙0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 ≤ ∫

𝑛0

𝑙0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧. (B.11)

Now, we come to (B.2); it is easy to see that

𝑈
𝜆 (
𝑘 (𝑧) , 𝑧) = 𝐼

1
+ 𝐼
2
+ 𝐼
3
+ 𝜆 (𝑄 − 𝐸𝑥)

≤ ∫

𝑚0

0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧

+ ∫

𝑙0

𝑚0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧

+ ∫

𝑛0

𝑙0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥)

= ∫

𝑛0

0

ℎ (𝐾
𝑚0

(𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

= 𝑈
𝜆
(𝐾
𝑚0

(𝑧) , 𝑧)

(B.12)

and the equality holds if and only if 𝑘(𝑧) = 𝐾
𝑚0
(𝑧), 0 < 𝑧 <

𝑛
0
.

C. The Proof of Theorem 8

Proof. Recalling Lemma 7, we can achieve a more general
result

For feasible solution 𝑘(𝑧) of Model 5, 𝐾
𝑚𝑖
(𝑧) satisfies the

following:
(i) 𝑈
𝜆
(𝑘(𝑧), 𝑧) ≤ 𝑈

𝜆
(𝐾
𝑚𝑖
(𝑧), 𝑧), 𝑛

𝑖−1
< 𝑧 < 𝑛

𝑖
.

(ii) The equality holds if and only if 𝑘(𝑧) = 𝐾
𝑚0
(𝑧), 𝑛
𝑖−1

<

𝑧 < 𝑛
𝑖
.

Therefore, when𝑁 = 𝑀, we have

𝑈
𝜆 (
𝑘 (𝑧) , 𝑧) = ∫

1

0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

= ∫

𝑛0

0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + ∫

𝑛1

𝑛0

ℎ (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + ⋅ ⋅ ⋅

+ ∫

𝑛𝑁−2

𝑛𝑁−3

ℎ (𝑧) (𝑘 (𝑧) , 𝑧) 𝑑𝑧

+ ∫

1

𝑛𝑁−2

ℎ (𝑧) (𝑘 (𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

≤ ∫

𝑛0

0

ℎ (𝐾
𝑚0

(𝑧) 𝐼0≤𝑧≤𝑛0
, 𝑧) 𝑑𝑧

+ ∫

𝑛1

𝑛0

ℎ (𝐾
𝑚1

(𝑧) 𝐼𝑛0<𝑧≤𝑛1
, 𝑧) 𝑑𝑧 + ⋅ ⋅ ⋅

+ ∫

𝑛𝑁−2

𝑛𝑁−3

ℎ (𝑧) (𝐾𝑚𝑁−2
(𝑧) 𝐼𝑛𝑁−3<𝑧≤𝑛𝑁−2

, 𝑧) 𝑑𝑧

+ ∫

1

𝑛𝑁−2

ℎ (𝑧) (𝐾𝑚𝑁−1
(𝑧) 𝐼𝑛𝑁−2<𝑧≤1

, 𝑧) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥)

= ∫

1

0

ℎ (𝐾 (𝑧) , 𝑧) 𝑑𝑧 + 𝜆 (𝑄 − 𝐸𝑥)

= 𝑈
𝜆
(𝐾 (𝑧) , 𝑧)

(C.1)

and the equality holds if and only if 𝑘(𝑧) = 𝐾(𝑧), 0 < 𝑧 < 1.
When𝑁 ̸= 𝑀, we slip the detailed proof, since the result

is derived in a similar means to the above case of𝑁 = 𝑀.

D. The Proof of Proposition 9

Proof. Due to 𝐾(𝑧) being piecewise function, we take
𝐾
𝑚𝑖+1

(𝑧) on [𝑛
𝑖
, 𝑛
𝑖+1

] into account without loss of generality.
Consider

𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧) , 𝑧)

= ∫

𝑛𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾

𝑚𝑖+1
(𝑧)) 𝐺


(𝑧)

+ 𝜆 (𝐾
𝑚𝑖+1

(𝑧) − 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾

𝑚𝑖+1
(𝑧))) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥)

= ∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾

𝑚𝑖+1
(𝑧)) 𝐺


(𝑧)

+ 𝜆 (𝐾
𝑚𝑖+1

(𝑧) − 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾

𝑚𝑖+1
(𝑧))) 𝑑𝑧

+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾

𝑚𝑖+1
(𝑧)) 𝐺


(𝑧)

+ 𝜆 (𝐾
𝑚𝑖+1

(𝑧) − 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾

𝑚𝑖+1
(𝑧))) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥) = ∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝐺


(𝑧)

+ 𝜆 (𝐾 (𝑧) − 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧))) 𝑑𝑧

+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
)) 𝐺

(𝑧)

+ 𝜆 (𝐾 (𝑚
𝑖+1

) − 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
))) 𝑑𝑧

+ 𝜆 (𝑄 − 𝐸𝑥)

= ∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝐺


(𝑧) 𝑑𝑧

+ ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝐾 (𝑧) 𝑑𝑧

− ∫

𝑚𝑖+1

𝑛𝑖

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝑧
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+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
)) 𝐺

(𝑧) 𝑑𝑧

+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝜆𝐾 (𝑚
𝑖+1

) 𝑑𝑧

− ∫

𝑛𝑖+1

𝑚𝑖+1

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝑧 + 𝜆 (𝑄

− 𝐸𝑥) .

(D.1)

Let

𝐼 = ∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝐺


(𝑧) 𝑑𝑧,

𝐼𝐼 = ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝐾 (𝑧) 𝑑𝑧,

𝐼𝐼𝐼 = −∫

𝑚𝑖+1

𝑛𝑖

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝑧,

𝐼𝑉 = ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
)) 𝐺

(𝑧) 𝑑𝑧,

𝑉 = ∫

𝑛𝑖+1

𝑚𝑖+1

𝜆𝐾 (𝑚
𝑖+1

) 𝑑𝑧,

𝑉𝐼 = −∫

𝑛𝑖+1

𝑚𝑖+1

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝑧.

(D.2)

Then,

𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧) , 𝑧) = 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉 + 𝑉 + 𝑉𝐼

+ 𝜆 (𝑄 − 𝐸𝑥) ,

𝐼 = ∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝐺


(𝑧) 𝑑𝑧

= −∫

𝑚𝑖+1

𝑛𝑖

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝑑 (𝐺 (𝑛

𝑖+1
)

− 𝐺 (𝑧))

= ∫

𝑚𝑖+1

𝑛𝑖

(𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑧)) 𝑑𝑢 (𝑤0
− 𝑄 − 𝐾 (𝑧))

− 𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑧)) (𝐺 (𝑛

𝑖+1
) − 𝐺 (𝑧))






𝑚𝑖+1

𝑛𝑖

= −∫

𝑚𝑖+1

𝑛𝑖

(𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑧))

⋅ 𝑢

(𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝑑𝐾 (𝑧) − 𝑢 (𝑤

0
− 𝑄

− 𝐾 (𝑚
𝑖+1

)) (𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑚
𝑖+1

)) + 𝑢 (𝑤
0
− 𝑄

− 𝐾 (𝑛
𝑖
)) (𝐺 (𝑛

𝑖+1
) − 𝐺 (𝑛

𝑖
)) .

𝐼𝑉 = ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
)) 𝐺

(𝑧) 𝑑𝑧

= ∫

𝑛𝑖+1

𝑚𝑖+1

𝑢 (𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
)) 𝑑𝐺 (𝑧) = 𝑢 (𝑤

0

− 𝑄 − 𝐾 (𝑚
𝑖+1

)) (𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑚
𝑖+1

)) .

(D.3)

So,

𝐼 + 𝐼𝑉 = −∫

𝑚𝑖+1

𝑛𝑖

(𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑧))

⋅ 𝑢

(𝑤
0
− 𝑄 − 𝐾 (𝑧)) 𝑑𝐾 (𝑧) + 𝑢 (𝑤

0
− 𝑄

− 𝐾 (𝑛
𝑖
)) (𝐺 (𝑛

𝑖+1
) − 𝐺 (𝑛

𝑖
)) .

(D.4)

Similarly,

𝐼𝐼 = ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝐾 (𝑧) 𝑑𝑧

= 𝜆𝐾 (𝑧) 𝑧|
𝑚𝑖+1

𝑛𝑖
− ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝑧 𝑑𝐾 (𝑧)

= 𝜆𝐾 (𝑚
𝑖+1

)𝑚
𝑖+1

− 𝜆𝐾 (𝑛
𝑖
) 𝑛
𝑖
− ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝑧 𝑑𝐾 (𝑧)

𝑉 = ∫

𝑛𝑖+1

𝑚𝑖+1

𝜆𝐾 (𝑚
𝑖+1

) 𝑑𝑧 = 𝜆𝐾 (𝑚
𝑖+1

) 𝑧





𝑛𝑖+1

𝑚𝑖+1

= 𝜆𝐾 (𝑚
𝑖+1

) (𝑛
𝑖+1

− 𝑚
𝑖+1

) .

(D.5)

Hence,

𝐼𝐼 + 𝑉 = −𝜆𝐾 (𝑛
𝑖
) 𝑛
𝑖
− ∫

𝑚𝑖+1

𝑛𝑖

𝜆𝑧 𝑑𝐾 (𝑧)

+ 𝜆𝐾 (𝑚
𝑖+1

) 𝑛
𝑖+1

,

𝐼𝐼𝐼 = −∫

𝑚𝑖+1

𝑛𝑖

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝑧

= ∫

𝑚𝑖+1

𝑛𝑖

𝑧 𝑑𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧))

− 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑧







𝑚𝑖+1

𝑛𝑖

= ∫

𝑚𝑖+1

𝑛𝑖

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐹

−1

𝑥
(𝑧)

− ∫

𝑚𝑖+1

𝑛𝑖

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐾 (𝑧)

− 𝐶 (𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

))𝑚
𝑖+1

+ 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖
) − 𝐾 (𝑛

𝑖
)) 𝑛
𝑖
,
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𝑉𝐼 = −∫

𝑛𝑖+1

𝑚𝑖+1

𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝑧

= ∫

𝑛𝑖+1

𝑚𝑖+1

𝑧 𝑑𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
))

− 𝐶 (𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑧







𝑛𝑖+1

𝑚𝑖+1

= ∫

𝑛𝑖+1

𝑚𝑖+1

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝐹
−1

𝑥
(𝑧)

− 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖+1

) − 𝐾 (𝑚
𝑖+1

)) 𝑛
𝑖+1

+ 𝐶 (𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

))𝑚
𝑖+1

.

(D.6)

Thus,

𝐼𝐼𝐼 + 𝑉𝐼

= ∫

𝑚𝑖+1

𝑛𝑖

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐹

−1

𝑥
(𝑧)

− ∫

𝑚𝑖+1

𝑛𝑖

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐾 (𝑧)

+ 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖
) − 𝐾 (𝑛

𝑖
)) 𝑛
𝑖

+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝐹
−1

𝑥
(𝑧)

− 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖+1

) − 𝐾 (𝑚
𝑖+1

)) 𝑛
𝑖+1

.

(D.7)

Then,

𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧) , 𝑧)

= −∫

𝑚𝑖+1

𝑛𝑖

(𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑧)) 𝑢

(𝑤
0
− 𝑄 − 𝐾 (𝑧))

+ 𝜆𝑧 + 𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐾 (𝑧)

+ ∫

𝑚𝑖+1

𝑛𝑖

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑧)) 𝑑𝐹

−1

𝑥
(𝑧)

+ ∫

𝑛𝑖+1

𝑚𝑖+1

𝑧𝐶

(𝐹
−1

𝑥
(𝑧) − 𝐾 (𝑚

𝑖+1
)) 𝑑𝐹
−1

𝑥
(𝑧)

− 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖+1

) − 𝐾 (𝑚
𝑖+1

)) 𝑛
𝑖+1

+ 𝑢 (𝑤
0
− 𝑄

− 𝐾 (𝑛
𝑖
)) (𝐺 (𝑛

𝑖+1
) − 𝐺 (𝑛

𝑖
)) − 𝜆𝐾 (𝑛

𝑖
) 𝑛
𝑖

+ 𝜆𝐾 (𝑚
𝑖+1

) 𝑛
𝑖+1

+ 𝐶 (𝐹
−1

𝑥
(𝑛
𝑖
) − 𝐾 (𝑛

𝑖
)) 𝑛
𝑖

+ 𝜆 (𝑄 − 𝐸𝑥) .

(D.8)

We plan to find𝑚∗
𝑖+1

such that

𝑈
𝜆
(𝐾
𝑚
∗

𝑖+1

(𝑧) , 𝑧) = max
𝑛𝑖<𝑚𝑖+1≤𝑛𝑖+1

𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧) , 𝑧) (D.9)

in order to obtain the global optimal solution.

It is easy to get

𝜕𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧) , 𝑧)

𝜕𝑚
𝑖+1

= − (𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑚
𝑖+1

)) 𝑢

(𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
))

− 𝜆𝑚
𝑖+1

− 𝑚
𝑖+1

𝐶

(𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

))

+ 𝑚
𝑖+1

𝐶

(𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

))

− 𝑚
𝑖+1

𝐶

(𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

))

= − (𝐺 (𝑛
𝑖+1

) − 𝐺 (𝑚
𝑖+1

)) 𝑢

(𝑤
0
− 𝑄 − 𝐾 (𝑚

𝑖+1
))

− 𝜆𝑚
𝑖+1

− 𝑚
𝑖+1

𝐶

(𝐹
−1

𝑥
(𝑚
𝑖+1

) − 𝐾 (𝑚
𝑖+1

)) .

(D.10)

Noticing 𝑢(⋅) ≥ 0 and 𝐶

(⋅) ≥ 0, we can show 𝜕𝑈

𝜆
(𝐾
𝑚𝑖+1

(𝑧),
𝑧)/𝜕𝑚

𝑖+1
≤ 0. In other words, 𝑈

𝜆
(𝐾
𝑚𝑖+1

(𝑧), 𝑧) decreases on
[𝑛
𝑖
, 𝑛
𝑖+1

]. So, when 𝑚
𝑖+1

= 𝑛
𝑖
, we can get the maximal value

of 𝑈
𝜆
(𝐾
𝑚𝑖+1

(𝑧), 𝑧). Therefore,

𝐾
𝑚𝑖+1

(𝑧) = 𝐾
𝑛𝑖
(𝑧) = 𝐾 (𝑛

𝑖
) 𝐼
𝑛𝑖+1>𝑧>𝑛𝑖

. (D.11)

It is not difficult to come to the conclusion that the optimal
solution of Model 1 is as follows:

𝐼
∗
(𝑥) = 𝑥 − 𝐾 (𝑛

𝑖
) 𝐼
𝑛𝑖+1>𝑧>𝑛𝑖

,

𝐹
−1

𝑥
(𝑛
𝑖+1

) > 𝑥 > 𝐹
−1

𝑥
(𝑛
𝑖
) .

(D.12)
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