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It is a hot topic that circulant type matrices are applied to networks engineering. The determinants and inverses of Tribonacci
circulant type matrices are discussed in the paper. Firstly, Tribonacci circulant type matrices are defined. In addition, we show
the invertibility of Tribonacci circulant matrix and present the determinant and the inverse matrix based on constructing the
transformation matrices. By utilizing the relation between left circulant, 𝑔-circulant matrices and circulant matrix, the invertibility
of Tribonacci left circulant and Tribonacci 𝑔-circulant matrices is also discussed. Finally, the determinants and inverse matrices of
these matrices are given, respectively.

1. Introduction

Circulant type matrices have important applications in vari-
ous networks engineering. Exploiting the circulant structure
of the channelmatrices, Eghbali et al. [1] analysed the realistic
near fast fading scenarios with circulant frequency selective
channels. The optimum sampling in the one- and two-
dimensional (1D and 2D) wireless sensor networks (WSNs)
with spatial temporally correlated data was studied with
circulant matrices in [2]. The repeat space theory (RST)
was extended to apply to carbon nanotubes and related
molecular networks, where the corresponding matrices are
pseudocirculant in [3]. Preconditioners obtained by circulant
approximations of stochastic automata networks were con-
sidered in [4]. In [5], circulant mutation whose differential
equations obtained neither are of repliator-type nor can
they be transformed straightway into a linear equation was
introduced into autocatalytic reaction networks. Jing and
Jafarkhani [6] proposed distributed differential space-time
codes that work for networks with any number of relays
using circulant matrices. Wang and Cheng [7] studied the
existence of doubly periodic travelling waves in cellular net-
works involving the discontinuous Heaviside step function
by circulant matrix. Pais et al. [8] proved conditions for

the existence of stable limit cycles arising from multiple
distinct Hopf bifurcations of the dynamics in the case of
circulant fitness matrices.

Circulant type matrices have been put on the firm basis
with the work in [9, 10] and so on. Furthermore, the 𝑔-
circulantmatrices are focused on bymany researchers; for the
details please refer to [11–13] and the references therein.

Lately, some scholars gave the explicit determinant and
inverse of the circulant and skew-circulant involving famous
numbers. Jiang et al. [14] discussed the invertibility of cir-
culant type matrices with the sum and product of Fibonacci
and Lucas numbers and presented the determinants and the
inverses of thesematrices. Jiang et al. [15] considered circulant
type matrices with the 𝑘-Fibonacci and 𝑘-Lucas numbers
and presented the explicit determinant and inverse matrix
by constructing the transformationmatrices. Jiang and Hong
[16] gave exact form determinants of the RSFPLR circulant
matrices and the RSLPFL circulantmatrices involving Perrin,
Padovan, Tribonacci, and the generalized Lucas number by
the inverse factorization of polynomial. Bozkurt and Tam
gave determinants and inverses of circulant matrices with
Jacobsthal and Jacobsthal-Lucas numbers in [17]. Cambini
presented an explicit form of the inverse of a particular cir-
culantmatrix in [18]. Shen et al. considered circulantmatrices
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with Fibonacci and Lucas numbers and presented their
explicit determinants and inverses in [19].

The Tribonacci sequences are defined by the following
recurrence relations [20–22], respectively:

𝑇
𝑛
= 𝑇
𝑛−1

+ 𝑇
𝑛−2

+ 𝑇
𝑛−3

, (1)

where 𝑇
0
= 0, 𝑇

1
= 1, 𝑇

2
= 1, 𝑛 ≥ 3.

The first few values of the sequences are given by the
following table:

𝑛 0 1 2 3 4 5 6 7 8 ⋅ ⋅ ⋅

𝑇
𝑛

0 1 1 2 4 7 13 24 44 ⋅ ⋅ ⋅
. (2)

Let 𝑡
1
, 𝑡
2
, and 𝑡

3
be the roots of the characteristic equation

𝑥
3

− 𝑥
2

− 𝑥 − 1 = 0 and then we have

𝑡
1
+ 𝑡
2
+ 𝑡
3
= 1,

𝑡
1
𝑡
2
+ 𝑡
1
𝑡
3
+ 𝑡
2
𝑡
3
= −1,

𝑡
1
𝑡
2
𝑡
3
= 1.

(3)

Hence the Binet formulas of the sequences {𝑇
𝑛
} have the form

𝑇
𝑛
= 𝑏
1
𝑡
𝑛

1
+ 𝑏
2
𝑡
𝑛

2
+ 𝑏
3
𝑡
𝑛

3
, (4)

where 𝑏
𝑖
is the 𝑖th root of the polynomial 44𝑦3 − 2𝑦 − 1 for

𝑖 = 1, 2, 3.
In this paper, we consider circulant typematrices, includ-

ing the circulant and left circulant and 𝑔-circulant matrices.
If we suppose𝑇

𝑛
is the 𝑛th Tribonacci number, thenwe define

a Tribonacci circulant matrix which is an 𝑛 × 𝑛 matrix with
the following form:

𝐶𝑖𝑟𝑐 (𝑇
1
, 𝑇
2
, ⋅ ⋅ ⋅ , 𝑇

𝑛
)

=

[
[
[
[

[

𝑇
1

𝑇
2

⋅ ⋅ ⋅ 𝑇
𝑛

𝑇
𝑛

𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑛−1

.

.

.
.
.
.

.

.

.

𝑇
2

𝑇
3

⋅ ⋅ ⋅ 𝑇
1

]
]
]
]

]

.

(5)

Besides, a Tribonacci left circulant matrix is given by

𝐿𝐶𝑖𝑟𝑐 (𝑇
1
, 𝑇
2
, ⋅ ⋅ ⋅ , 𝑇

𝑛
)

=

[
[
[
[

[

𝑇
1

𝑇
2

⋅ ⋅ ⋅ 𝑇
𝑛

𝑇
2

𝑇
3

⋅ ⋅ ⋅ 𝑇
1

.

.

.
.
.
.

.

.

.

𝑇
𝑛

𝑇
1

⋅ ⋅ ⋅ 𝑇
𝑛−1

]
]
]
]

]

,

(6)

where each row is a cyclic shift of the row above to the left.
A Tribonacci 𝑔-circulant matrix is an 𝑛 × 𝑛 matrix with

the following form:

𝐴
𝑔,𝑛

= (

𝑇
1

𝑇
2

⋅ ⋅ ⋅ 𝑇
𝑛

𝑇
𝑛−𝑔+1

𝑇
𝑛−𝑔+2

⋅ ⋅ ⋅ 𝑇
𝑛−𝑔

𝑇
𝑛−2𝑔+1

𝑇
𝑛−2𝑔+2

⋅ ⋅ ⋅ 𝑇
𝑛−2𝑔

.

.

.
.
.
. d

.

.

.

𝑇
𝑔+1

𝑇
𝑔+2

⋅ ⋅ ⋅ 𝑇
𝑔

), (7)

where 𝑔 is a nonnegative integer and each of the subscripts
is understood to be reduced modulo 𝑛. The first row of 𝐴

𝑔,𝑛

is (𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
), and its (𝑗 + 1)th row is obtained by giving

its 𝑗th row a right circular shift by 𝑔 positions (equivalently,
𝑔 mod 𝑛 positions). Note that 𝑔 = 1 or 𝑔 = 𝑛 + 1 yields
standard Tribonacci circulant matrix. If 𝑔 = 𝑛 − 1, then we
obtain Tribonacci left circulant matrix.

Lemma 1. The 𝑛 × 𝑛 tridiagonal matrix is given by

𝐴
𝑛
=
(
(
(

(

𝜏
2

𝜏
1

0

𝜏
3

𝜏
2

𝜏
1

𝜏
3

𝜏
2

𝜏
1

d d d
𝜏
3

𝜏
2

𝜏
1

𝜏
3

𝜏
2

𝜏
1

0 𝜏
3

𝜏
2

)
)
)

)

; (8)

then

det𝐴
𝑛

=

{{{{{{{{{{

{{{{{{{{{{

{

((𝜏
2
+√𝜏2
2
−4𝜏
1
𝜏
3
) /2)

𝑛+1

−((𝜏
2
−√𝜏2
2
− 4𝜏
1
𝜏
3
) /2)

𝑛+1

√𝜏2
2
− 4𝜏
1
𝜏
3

,

𝜏
2

2
̸= 4𝜏
1
𝜏
3
,

(𝑛 + 1) (
𝜏
2

2
)

𝑛

, 𝜏
2

2
= 4𝜏
1
𝜏
3
.

(9)

Proof. det𝐴
𝑛
= 𝜏
2
⋅ det𝐴

𝑛−1
− 𝜏
1
𝜏
3
⋅ det𝐴

𝑛−2
; let 𝑥 + 𝑦 =

𝜏
2
, 𝑥𝑦 = 𝜏

1
𝜏
3
and then let 𝑥, 𝑦 be the roots of the equation

𝑥
2

− 𝜏
2
𝑥 + 𝜏
1
𝜏
3
= 0.

We have

det𝐴
𝑛
= 𝑦
𝑛

+ 𝑥𝑦
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑥
𝑛−1

𝑦 + 𝑥
𝑛

=

{{{

{{{

{

𝑥
𝑛+1

− 𝑦
𝑛+1

𝑥 − 𝑦
, 𝑥 ̸= 𝑦,

(𝑛 + 1) 𝑥
𝑛

, 𝑥 = 𝑦,

(10)

where 𝑥 = (𝜏
2
+√𝜏2
2
− 4𝜏
1
𝜏
3
)/2 and 𝑦 = (𝜏

2
−√𝜏2
2
− 4𝜏
1
𝜏
3
)/2.

Hence,

det𝐴
𝑛

=

{{{{{{{{{{

{{{{{{{{{{

{

((𝜏
2
+ √𝜏2
2
− 4𝜏
1
𝜏
3
) /2)

𝑛+1

− ((𝜏
2
− √𝜏2
2
− 4𝜏
1
𝜏
3
) /2)

𝑛+1

√𝜏2
2
− 4𝜏
1
𝜏
3
,

,

𝜏
2

2
̸= 4𝜏
1
𝜏
3
,

(𝑛 + 1) (
𝜏
2

2
)

𝑛

, 𝜏
2

2
= 4𝜏
1
𝜏
3
.

(11)
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Lemma 2. Let

𝐵
𝑛
=

(
(
(
(
(

(

𝑎
1

𝑎
2

𝑎
3

⋅ ⋅ ⋅ 𝑎
𝑛−2

𝑎
𝑛−1

𝑎
𝑛

𝜏
2

𝜏
1

𝜏
3

𝜏
2

𝜏
1

𝜏
3

𝜏
2

𝜏
1

d d d
𝜏
3

𝜏
2

𝜏
1

𝜏
3

𝜏
2

𝜏
1

)
)
)
)
)

)

(12)

be an 𝑛 × 𝑛matrix; one has

det𝐵
𝑛
=

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝜏
𝑛−𝑖

1
𝑎
𝑖
⋅ det𝐴

𝑖−1
, (13)

where

det𝐴
𝑖−1

=

{{{{{{{{{{

{{{{{{{{{{

{

((𝜏
2
+ √𝜏2
2
− 4𝜏
1
𝜏
3
) /2)

𝑖

− ((𝜏
2
− √𝜏2
2
− 4𝜏
1
𝜏
3
) /2)

𝑖

√𝜏2
2
− 4𝜏
1
𝜏
3
,

,

𝜏
2

2
̸= 4𝜏
1
𝜏
3
,

𝑖(
𝜏
2

2
)

𝑖−1

, 𝜏
2

2
= 4𝜏
1
𝜏
3
.

(14)

Specifically, det𝐴
0
= 1.

Proof. Accoding to the last column determinant expansion
and Lemma 1, we obtain

det𝐵
𝑛
= 𝜏
1
⋅ det 𝐵

𝑛−1
+ (−1)

𝑛+1

𝑎
𝑛
⋅ det𝐴

𝑛−1

= 𝜏
1
(𝜏
1
⋅ det 𝐵

𝑛−2
+ (−1)

𝑛

𝑎
𝑛−1

⋅ det𝐴
𝑛−2

)

+ (−1)
𝑛+1

𝑎
𝑛
⋅ det𝐴

𝑛−1

= 𝜏
𝑛−1

1
⋅ det𝐵

1
+ (−1)

1+2

𝜏
𝑛−2

1
𝑎
2
⋅ det𝐴

1

+ (−1)
1+3

𝜏
𝑛−3

1
𝑎
3
⋅ det𝐴

2

+ ⋅ ⋅ ⋅ + (−1)
1+𝑛

𝑎
𝑛
⋅ det𝐴

𝑛−1

=

𝑛

∑

𝑖=1

(−1)
1+𝑖

𝜏
𝑛−𝑖

1
𝑎
𝑖
⋅ det𝐴

𝑖−1
.

(15)

2. Determinant and Inverse of Tibonacci
Circulant Matrix

In this section, let 𝐷
𝑛
= 𝐶𝑖𝑟𝑐(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

circulant matrix. Firstly, we give the determinant of the
matrix 𝐷

𝑛
. Afterwards, we discuss the invertibility of the

matrix𝐷
𝑛
, and we find the inverse of the matrix𝐷

𝑛
.

Theorem 3. Let 𝐷
𝑛

= 𝐶𝑖𝑟𝑐(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

circulant matrix; then we have

det𝐷
𝑛
= [𝑇

1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [−𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
,

(16)

where 𝑇
𝑛
is the 𝑛th Tribonacci number, and

Δ =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
,

𝛿
1
= (𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

) (𝑇
1
− 𝑇
𝑛+1

)
𝑛−3

+

𝑛−2

∑

𝑖=2

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

𝑇
𝑛−𝑖−1

⋅ det𝐴
𝑖−1

,

𝛿
2
=

𝑛−2

∑

𝑖=1

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ⋅ det𝐴
𝑖−1

,

det𝐴
𝑖−1

=

{{{{{{{{{

{{{{{{{{{

{

((𝑏 + √𝑏2 − 4𝑎𝑐) /2)
𝑖

− ((𝑏 − √𝑏2 − 4𝑎𝑐) /2)
𝑖

√𝑏2 − 4𝑎𝑐
,

𝑏
2

̸= 4𝑎𝑐,

𝑖(
𝑏

2
)

𝑖−1

, 𝑏
2

= 4𝑎𝑐,

𝑎 = 𝑇
1
− 𝑇
𝑛+1

,

𝑏 = −𝑇
𝑛
− 𝑇
𝑛−1

,

𝑐 = −𝑇
𝑛
.

(17)

Proof. Obviously, det𝐷
1
= 1 satisfies (16). In the case where

𝑛 > 1, let

Γ
1
=

(
(
(
(
(
(

(

1 0

−1 1

−1 1 −1

−1 1 −1 −1

0 1 −1 −1 −1

.

.

. c c c c
0 1 −1 −1 −1

0 1 −1 −1 −1

)
)
)
)
)
)

)

,

Π
1
=
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 Δ
𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 Δ
𝑛−3

0 ⋅ ⋅ ⋅ 1 0

.

.

.
.
.
.

.

.

. c
.
.
.

.

.

.

0 Δ 1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)

)

(18)
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be two 𝑛 × 𝑛matrices and then we have

Γ
1
𝐷
𝑛
Π
1
=
(
(
(

(

𝑇
1

𝑝
1

𝑇
𝑛−1

𝑇
𝑛−2

⋅ ⋅ ⋅ 𝑇
3

𝑇
2

0 𝑝
2

𝜑
3

𝜑
4

⋅ ⋅ ⋅ 𝜑
𝑛−1

𝜑
𝑛

0 𝑝
3

𝜙 𝑇
𝑛−3

⋅ ⋅ ⋅ 𝑇
2

𝑇
1

0 0 𝑏 𝑎

0 0 𝑐 𝑏 𝑎

d d d
𝑐 𝑏 𝑎

)
)
)

)

, (19)

where

𝑝
1
=

𝑛−1

∑

𝑖=1

𝑇
𝑖+1

Δ
𝑛−(𝑖+1)

,

𝑝
2
= 𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ,

𝑝
3
= −𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

,

𝜑
𝑖
= 𝑇
𝑛+3−𝑖

− 𝑇
𝑛+2−𝑖

, (𝑖 = 3, . . . , 𝑛) ,

𝜙 = 𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

,

Δ =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
,

𝑎 = 𝑇
1
− 𝑇
𝑛+1

, 𝑏 = −𝑇
𝑛
− 𝑇
𝑛−1

, 𝑐 = −𝑇
𝑛
.

(20)

We obtain

det Γ
1
det𝐷
𝑛
detΠ
1

= 𝑇
1
⋅ (𝑝
2
𝛿
1
− 𝑝
3
𝛿
2
)

= [𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [−𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
,

(21)

where

𝛿
1
= (𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

) (𝑇
1
− 𝑇
𝑛+1

)
𝑛−3

+

𝑛−2

∑

𝑖=2

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

⋅ 𝑇
𝑛−𝑖−1

⋅ det𝐴
𝑖−1

,

𝛿
2
=

𝑛−2

∑

𝑖=1

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ⋅ det𝐴
𝑖−1

.

(22)

Let

B
𝑛
= (

(

𝜙 𝑇
𝑛−3

⋅ ⋅ ⋅ 𝑇
3

𝑇
2

𝑇
1

𝑏 𝑎

𝑐 𝑏 𝑎

d d d
𝑐 𝑏 𝑎

𝑐 𝑏 𝑎

)

)

,

C
𝑛
= (

(

𝜑
3

𝜑
4

⋅ ⋅ ⋅ 𝜑
𝑛−2

𝜑
𝑛−1

𝜑
𝑛

𝑏 𝑎

𝑐 𝑏 𝑎

d d d
𝑐 𝑏 𝑎

𝑐 𝑏 𝑎

)

)

(23)

be two (𝑛 − 2) × (𝑛 − 2)matrices, and 𝛿
1
= detB

𝑛
, and 𝛿

2
=

detC
𝑛
.

Aoccording to Lemma 2, thus

𝛿
1
= (𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

) (𝑇
1
− 𝑇
𝑛+1

)
𝑛−3

+

𝑛−2

∑

𝑖=2

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

⋅ 𝑇
𝑛−𝑖−1

⋅ det𝐴
𝑖−1

,

𝛿
2
=

𝑛−2

∑

𝑖=1

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ⋅ det𝐴
𝑖−1

.

(24)

While

det Γ
1
= detΠ

1
= (−1)

(𝑛−1)(𝑛−2)/2

, (25)

we have

det𝐷
𝑛
= [𝑇

1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [−𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
.

(26)

Theorem 4. Let 𝐷
𝑛

= 𝐶𝑖𝑟𝑐(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

circulant matrix; if 𝑛 ̸= 2 and 𝑛 ̸= 2𝑘𝜋(arctan(±√4𝑎𝑐 − 𝑏2/

−𝑏))
−1

(𝑘 = 1, 2, . . . , 𝑛 − 1), then𝐷
𝑛
is an invertible matrix.

Proof. When 𝑛 = 2 in Theorem 3, then we have det𝐷
2
= 0.

Hence,𝐷
2
is not invertible.

In the case where 𝑛 > 2, since𝑇
𝑛
= 𝑏
1
𝑡
𝑛

1
+𝑏
2
𝑡
𝑛

2
+𝑏
3
𝑡
𝑛

3
, where

𝑏
𝑖
is the 𝑖th root of the polynomial 44𝑦3 − 2𝑦 − 1, we have

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑗=1

𝑇
𝑗
(𝜔
𝑘

)
𝑗−1

=

𝑛

∑

𝑗=1

(𝑏
1
𝑡
𝑗

1
+ 𝑏
2
𝑡
𝑗

2
+ 𝑏
3
𝑡
𝑗

3
) (𝜔
𝑘

)
𝑗−1
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=
𝑏
1
𝑡
1
(1 − 𝑡
𝑛

1
)

1 − 𝑡
1
𝜔𝑘

+
𝑏
2
𝑡
2
(1 − 𝑡
𝑛

2
)

1 − 𝑡
2
𝜔𝑘

+
𝑏
3
𝑡
3
(1 − 𝑡
𝑛

3
)

1 − 𝑡
3
𝜔𝑘

=
1 − 𝑇
𝑛+1

+ (−𝑇
𝑛
− 𝑇
𝑛−1

) 𝜔
𝑘

− 𝑇
𝑛
𝜔
2𝑘

1 − 𝜔𝑘 − 𝜔2𝑘 − 𝜔3𝑘

(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(27)

If there exists 𝜔
𝑙

(𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓(𝜔𝑙) =

0, we obtain 1 − 𝑇
𝑛+1

+ (−𝑇
𝑛
− 𝑇
𝑛−1

)𝜔
𝑘

− 𝑇
𝑛
𝜔
2𝑘

= 0

for 1 − 𝜔
𝑘

− 𝜔
2𝑘

− 𝜔
3𝑘

̸= 0. Thus, 𝜔𝑙 = (𝑇
𝑛
+ 𝑇
𝑛−1

±

√(−𝑇
𝑛
− 𝑇
𝑛−1

)
2

+ 4𝑇
𝑛
(𝑇
1
− 𝑇
𝑛+1

))/ − 2𝑇
𝑛
.

Let 𝑎 = 𝑇
1
−𝑇
𝑛+1

, 𝑏 = −𝑇
𝑛
−𝑇
𝑛−1

, and 𝑐 = −𝑇
𝑛
; if 𝑏2−4𝑎𝑐 ≥

0, we have 𝜔𝑙 is a real number.
While

𝜔
𝑙

= exp(2𝑙𝜋𝑖

𝑛
) = cos(2𝑙𝜋

𝑛
) + 𝑖 sin(2𝑙𝜋

𝑛
) , (28)

sin(2𝑙𝜋/𝑛) = 0. We have 𝜔
𝑙

= −1 for 0 < (2𝑙𝜋/𝑛) < 2𝜋,
but 1 − 𝜔

𝑘

− 𝜔
2𝑘

− 𝜔
3𝑘

= 0. We obtain 𝑓(𝜔
𝑘

) ̸= 0 for any
𝜔
𝑘

(𝑘 = 1, 2, . . . , 𝑛 − 1), while 𝑓(1) = ∑
𝑛

𝑗=1
𝑇
𝑗
= −(1/2)(1 −

𝑇
𝑛
− 𝑇
𝑛+2

) ̸= 0.
If 𝑏2 − 4𝑎𝑐 < 0, 𝜔𝑙 is an imaginary number.
If

cos(2𝑙𝜋

𝑛
) =

𝑇
𝑛
+ 𝑇
𝑛−1

−2𝑇
𝑛

sin(2𝑙𝜋

𝑛
) =

√−4𝑇
𝑛
(𝑇
1
− 𝑇
𝑛+1

) − (−𝑇
𝑛
− 𝑇
𝑛−1

)
2

−2𝑇
𝑛

(29)

or

cos(2𝑙𝜋

𝑛
) =

𝑇
𝑛
+ 𝑇
𝑛−1

−2𝑇
𝑛

,

sin(2𝑙𝜋

𝑛
) = −

√−4𝑇
𝑛
(𝑇
1
− 𝑇
𝑛+1

) − (−𝑇
𝑛
− 𝑇
𝑛−1

)
2

−2𝑇
𝑛

,

(30)

we obtain 𝑛 = 2𝑘𝜋(arctan(±√4𝑎𝑐 − 𝑏2/ − 𝑏))
−1

, such that
𝑓(𝜔
𝑙

) = 0. If 1 − 𝜔
𝑘

− 𝜔
2𝑘

− 𝜔
3𝑘

= 0, we have 𝜔
𝑘

= −1

and if 𝑛 is an even number, then 𝑓(𝜔
𝑘

) = ∑
𝑛

𝑗=1
𝑇
𝑗
(𝜔
𝑘

)
𝑗−1

=

𝑇
1
− 𝑇
2
+ ⋅ ⋅ ⋅ − 𝑇

𝑛
< 0. By Lemma 1 in [15], the proof is

completed.

Lemma 5. Let Φ = ( 𝑎 𝑉
𝑈 𝐴

) be an 𝑛 × 𝑛matrix; then

Φ
−1

= (

1

ℓ
−
1

ℓ
𝑉𝐴
−1

−
1

ℓ
𝐴
−1

𝑈 𝐴
−1

+
1

ℓ
𝐴
−1

𝑈𝑉𝐴
−1

), (31)

where ℓ = 𝑎 − 𝑉𝐴
−1

𝑈, 𝑉 is a row vector, and 𝑈 is a column
vector.

Proof. Consider

(
𝑎 𝑉

𝑈 𝐴
) ⋅(

1

ℓ
−
1

ℓ
𝑉𝐴
−1

−
1

ℓ
𝐴
−1

𝑈 𝐴
−1

+
1

ℓ
𝐴
−1

𝑈𝑉𝐴
−1

)

= (
1 0

0 𝐼
𝑛−1

) = 𝐼
𝑛
,

(

1

ℓ
−
1

ℓ
𝑉𝐴
−1

−
1

ℓ
𝐴
−1

𝑈 𝐴
−1

+
1

ℓ
𝐴
−1

𝑈𝑉𝐴
−1

) ⋅ (
𝑎 𝑉

𝑈 𝐴
)

= (
1 0

0 𝐼
𝑛−1

) = 𝐼
𝑛
.

(32)

Lemma 6. Let the matrixG = [𝑔
𝑖,𝑗
]
𝑛−3

𝑖,𝑗=1
be of the form

𝑔
𝑖,𝑗

=

{{{{

{{{{

{

𝑇
1
− 𝑇
𝑛+1

, 𝑖 = 𝑗,

−𝑇
𝑛
− 𝑇
𝑛−1

, 𝑖 = 𝑗 + 1,

−𝑇
𝑛
, 𝑖 = 𝑗 + 2,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

(33)

then the inverseG−1 = [𝑔
󸀠

𝑖,𝑗
]
𝑛−3

𝑖,𝑗=1
of the matrixG is equal to

𝑔
󸀠

𝑖,𝑗
=

{{

{{

{

1

𝑇
1
− 𝑇
𝑛+1

(
𝛽
𝑖−𝑗+1

− 𝛼
𝑖−𝑗+1

𝛽 − 𝛼
) , 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗,

(34)

where

𝛼 = −
(−𝑇
𝑛
−𝑇
𝑛−1

)+√(−𝑇
𝑛
−𝑇
𝑛−1

)
2

+ 4𝑇
𝑛
(𝑇
1
−𝑇
𝑛+1

)

2 (𝑇
1
− 𝑇
𝑛+1

)
,

𝛽 = −
(−𝑇
𝑛
− 𝑇
𝑛−1

) − √(−𝑇
𝑛
− 𝑇
𝑛−1

)
2

+ 4𝑇
𝑛
(𝑇
1
− 𝑇
𝑛+1

)

2 (𝑇
1
− 𝑇
𝑛+1

)
.

(35)

Proof. Let 𝑐
𝑖,𝑗

= ∑
𝑛−3

𝑘=1
𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗
. Obviously, 𝑐

𝑖,𝑗
= 0 for 𝑖 < 𝑗. In

the case where 𝑖 = 𝑗, we obtain

𝑐
𝑖,𝑖
= 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑖
= (𝑇
1
− 𝑇
𝑛+1

) ⋅
1

𝑇
1
− 𝑇
𝑛+1

= 1. (36)
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For 𝑖 ≥ 𝑗 + 1, we obtain

𝑐
𝑖,𝑗

=

𝑛−3

∑

𝑘=1

𝑔
𝑖,𝑘
𝑔
󸀠

𝑘,𝑗

= 𝑔
𝑖,𝑖−2

𝑔
󸀠

𝑖−2,𝑗
+ 𝑔
𝑖,𝑖−1

𝑔
󸀠

𝑖−1,𝑗
+ 𝑔
𝑖,𝑖
𝑔
󸀠

𝑖,𝑗

= − 𝑇
𝑛
⋅

1

𝑇
1
− 𝑇
𝑛+1

(
𝛽
𝑖−𝑗−1

− 𝛼
𝑖−𝑗−1

𝛽 − 𝛼
)

+ (−𝑇
𝑛
− 𝑇
𝑛−1

) ⋅
1

𝑇
1
− 𝑇
𝑛+1

(
𝛽
𝑖−𝑗

− 𝛼
𝑖−𝑗

𝛽 − 𝛼
)

+ (𝑇
1
− 𝑇
𝑛+1

) ⋅
1

𝑇
1
− 𝑇
𝑛+1

(
𝛽
𝑖−𝑗+1

− 𝛼
𝑖−𝑗+1

𝛽 − 𝛼
)

= 0.

(37)

Hence, we verifyGG−1 = 𝐼
𝑛−3

, where 𝐼
𝑛−3

is (𝑛 − 3) × (𝑛 − 3)

identity matrix. Similarly, we can verify G−1G = 𝐼
𝑛−3

. Thus,
the proof is completed.

Theorem 7. Let 𝐷
𝑛

= 𝐶𝑖𝑟𝑐(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be an invertible

Tribonacci circulant matrix; then one has

𝐷
−1

𝑛
= 𝐶𝑖𝑟𝑐 (𝑥

󸀠

2
+ (−1 −

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
,

− 𝑥
󸀠

2
+ (−1 +

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
, 𝑥
󸀠

𝑛
, 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
,

𝑥
󸀠

𝑛−2
− 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
, . . . , 𝑥

󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
− 𝑥
󸀠

6
) ,

(38)

where

𝑝
2
= 𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ,

𝑝
3
= −𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

,

𝑥
󸀠

1
= 0,

𝑥
󸀠

2
=

1

𝑝
2

,

𝑥
󸀠

3
=

𝛾
3

ℓ
+
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

𝑥
󸀠

4
= −

𝛾
3
∑
𝑛−3

𝑖=2
𝑔
𝑖1
𝜌
𝑖+3

ℓ
+

𝑛−3

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+3

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−3

𝑖=1
𝑔
𝑖1
𝜌
𝑖+3

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

.

.

.

𝑥
󸀠

𝑘
= −

𝛾
3
∑
𝑛−𝑘+1

𝑖=2
𝑔
𝑖1
𝜌
𝑖+𝑘−1

ℓ
+

𝑛−𝑘+1

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+𝑘−1

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−𝑘+1

𝑖=1
𝑔
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

(𝑘 ≥ 4) .

(39)

Proof. Let

Γ
2
= (

1 0 0 ⋅ ⋅ ⋅ 0

0 1

0 −
𝑝
3

𝑝
2

1 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ d ⋅ ⋅ ⋅

0 0 0 ⋅ ⋅ ⋅ 1

); (40)

thus

Γ
2
Γ
1
𝐷
𝑛
Π
1
=
(
(
(

(

𝑇
1

𝑝
1

𝑇
𝑛−1

𝑇
𝑛−2

⋅ ⋅ ⋅ 𝑇
3

𝑇
2

0 𝑝
2

𝜑
3

𝜑
4

⋅ ⋅ ⋅ 𝜑
𝑛−1

𝜑
𝑛

0 0 𝜌
3

𝜌
4

⋅ ⋅ ⋅ 𝜌
𝑛−1

𝜌
𝑛

0 0 𝑏 𝑎

0 0 𝑐 𝑏 𝑎

d d d
𝑐 𝑏 𝑎

)
)
)

)

,

(41)

where

𝜌
3
= 𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

−
𝑝
3

𝑝
2

(𝑇
𝑛
− 𝑇
𝑛−1

) ,

𝜌
𝑖
= 𝑇
𝑛−𝑖+1

−
𝑝
3

𝑝
2

(𝑇
𝑛−𝑖+3

− 𝑇
𝑛−𝑖+2

)

(𝑖 = 4, 5, ⋅ ⋅ ⋅ , 𝑛) ,

𝜑
𝑖
= 𝑇
𝑛+3−𝑖

− 𝑇
𝑛+2−𝑖

, (𝑖 = 3, . . . , 𝑛) .

(42)

According to Lemma 5, let

𝐹 = (

𝜌
3

𝑉

𝑈 G
) (43)

be an (𝑛 − 2) × (𝑛 − 2)matrix and we obtain

𝐹
−1

= (

1

ℓ
−
𝑉G−1

ℓ

−
G−1𝑈

ℓ
G−1 +

𝑈𝑉G−1

ℓ

) , (44)
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where

𝜌
3
= 𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

−
𝑝
3

𝑝
2

(𝑇
𝑛
− 𝑇
𝑛−1

) ,

𝑈 = (−𝑇
𝑛
− 𝑇
𝑛−1

, −𝑇
𝑛
, 0, . . . , 0)

𝑇

,

𝑉 = (𝜌
4
, 𝜌
5
, . . . , 𝜌

𝑛
) ,

ℓ = 𝜌
3
− 𝑏

𝑛−3

∑

𝑖=1

𝑔
𝑖1
𝜌
𝑖+3

− 𝑐

𝑛−4

∑

𝑖=1

𝜌
𝑖+4

.

(45)

Let

Π
2
=
(
(
(

(

1 −𝑝
1

−𝑇
𝑛−1

+
𝑝
1
𝜑
3

𝑝
2

⋅ ⋅ ⋅ −𝑇
2
+
𝑝
1
𝜑
𝑛

𝑝
2

0 1
−𝜑
3

𝑝
2

⋅ ⋅ ⋅
−𝜑
𝑛

𝑝
2

0 0 1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1

)
)
)

)

,

(46)

where

𝑝
1
=

𝑛−1

∑

𝑖=1

𝑇
𝑖+1

Δ
𝑛−(𝑖+1)

,

𝑝
2
= 𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) ,

𝜑
𝑖
= 𝑇
𝑛+3−𝑖

− 𝑇
𝑛+2−𝑖

, (𝑖 = 3, . . . , 𝑛) ,

Δ =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
,

𝑎 = 𝑇
1
− 𝑇
𝑛+1

, 𝑏 = −𝑇
𝑛
− 𝑇
𝑛−1

, 𝑐 = −𝑇
𝑛
.

(47)

We have

Γ
2
Γ
1
𝐷
𝑛
Π
1
Π
2
= D
1
⊕ 𝐹, (48)

whereD
1
= diag(𝑇

1
, 𝑝
2
) is a diagonalmatrix andD

1
⊕𝐹 is the

direct sum ofD
1
and 𝐹. If we denote Γ = Γ

2
Γ
1
andΠ = Π

1
Π
2
,

we obtain

𝐷
−1

𝑛
= Π (D

−1

1
⊕ 𝐹
−1

) Γ. (49)

Since the last row elements of the matrix Π are 0, 1, (𝑇
𝑛−1

−

𝑇
𝑛
)/𝑝
2
, (𝑇
𝑛−2

− 𝑇
𝑛−1

)/𝑝
2
, . . . , (𝑇

3
− 𝑇
4
)/𝑝
2
, (𝑇
2
− 𝑇
3
)/𝑝
2
, then

the elements of last row of Π(D−1
1

⊕ 𝐹
−1

) are given by the
following equations:

𝑥
󸀠

1
= 0,

𝑥
󸀠

2
=

1

𝑝
2

,

𝑥
󸀠

3
=

𝛾
3

ℓ
+
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

𝑥
󸀠

4
= −

𝛾
3
∑
𝑛−3

𝑖=2
𝑔
𝑖1
𝜌
𝑖+3

ℓ
+

𝑛−3

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+3

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−3

𝑖=1
𝑔
𝑖1
𝜌
𝑖+3

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

.

.

.

𝑥
󸀠

𝑘
= −

𝛾
3
∑
𝑛−𝑘+1

𝑖=2
𝑔
𝑖1
𝜌
𝑖+𝑘−1

ℓ
+

𝑛−𝑘+1

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+𝑘−1

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−𝑘+1

𝑖=1
𝑔
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

(𝑘 ≥ 4) ,

(50)

where

𝛾
𝑖
=

𝑇
𝑛−𝑖+2

− 𝑇
𝑛−𝑖+3

𝑝
2

, (𝑖 = 3, 4 . . . , 𝑛) ,

𝜌
3
= 𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

−
𝑝
3

𝑝
2

(𝑇
𝑛
− 𝑇
𝑛−1

) ,

𝜌
𝑖
= 𝑇
𝑛−𝑖+1

−
𝑝
3

𝑝
2

(𝑇
𝑛−𝑖+3

− 𝑇
𝑛−𝑖+2

)

(𝑖 = 4, 5, . . . , 𝑛) .

(51)

By Lemma 6, if 𝐷−1
𝑛

= 𝐶𝑖𝑟𝑐(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), then its last row

elements are given by the following equations:

𝑥
2
= −𝑥
󸀠

2
+ (−1 +

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
,

𝑥
3
= 𝑥
󸀠

𝑛
,

𝑥
4
= 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
,

𝑥
5
= 𝑥
󸀠

𝑛−2
− 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
,

.

.

.

𝑥
𝑘
= 𝑥
󸀠

𝑛−𝑘+3
− 𝑥
󸀠

𝑛−𝑘+4
− 𝑥
󸀠

𝑛−𝑘+5
− 𝑥
󸀠

𝑛−𝑘+6

(5 < 𝑘 ≤ 𝑛) ,

𝑥
1
= 𝑥
󸀠

2
+ (−1 −

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
.

(52)

Hence, the proof is compeleted.
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3. Determinant and Inverse of Tibonacci Left
Circulant Matrix

In this section, let 𝐷󸀠
𝑛
= 𝐿𝐶𝑖𝑟𝑐(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tibonacci

left circulant matrix. By using the obtained conclusions, we
give a determinant formula for thematrix𝐷󸀠

𝑛
. Afterwards, we

discuss the invertibility of the matrix 𝐷
󸀠

𝑛
. The inverse of the

matrix𝐷󸀠
𝑛
is also presented.According to Lemma2 in [15] and

Theorems 3, 4, and 7, we can obtain the following theorems.

Theorem 8. Let 𝐷󸀠
𝑛
= 𝐿𝐶𝑖𝑟𝑐(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

left circulant matrix; then one has

det𝐷󸀠
𝑛
= (−1)

(𝑛−1)(𝑛−2)/2

× [[𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [ − 𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

)

+

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
] ,

(53)

where 𝑇
𝑛
is the 𝑛th Tribonacci number.

Theorem 9. Let 𝐷
󸀠

𝑛
= 𝐿𝐶𝑖𝑟𝑐(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tri-

bonacci left circulant matrix. If 𝑛 ̸= 2 and 𝑛 ̸=

2𝑘𝜋(arctan(±√4𝑎𝑐 − 𝑏2/ − 𝑏))
−1

(𝑘 = 1, 2, . . . , 𝑛−1), then𝐷󸀠
𝑛

is an invertible matrix.

Theorem 10. Let 𝐷󸀠
𝑛
= 𝐿𝐶𝑖𝑟𝑐(𝑇

1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

left circulant matrix. If𝐷
𝑛
is an invertible matrix, then we have

𝐷
󸀠

𝑛

−1

= 𝐶𝑖𝑟𝑐 (𝑥
󸀠

2
+ (−1 −

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
,

𝑥
󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
− 𝑥
󸀠

6
, . . . , 𝑥

󸀠

𝑛−2
− 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
,

𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
, 𝑥
󸀠

𝑛
, −𝑥
󸀠

2
+ (−1 +

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
) ,

(54)

where

𝑥
󸀠

1
= 0,

𝑥
󸀠

2
=

1

𝑝
2

,

𝑥
󸀠

3
=

𝛾
3

ℓ
+
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

𝑥
󸀠

4
= −

𝛾
3
∑
𝑛−3

𝑖=2
𝑔
𝑖1
𝜌
𝑖+3

ℓ
+

𝑛−3

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+3

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−3

𝑖=1
𝑔
𝑖1
𝜌
𝑖+3

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

.

.

.

𝑥
󸀠

𝑘
= −

𝛾
3
∑
𝑛−𝑘+1

𝑖=2
𝑔
𝑖1
𝜌
𝑖+𝑘−1

ℓ
+

𝑛−𝑘+1

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+𝑘−1

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−𝑘+1

𝑖=1
𝑔
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

(𝑘 ≥ 4) .

(55)

4. Determinant and Inverse of Tibonacci
𝑔-Circulant Matrix

In this section, let 𝐷
𝑔,𝑛

= 𝑔-Circ(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a

Tibonacci 𝑔-circulant matrix. By using the obtained conclu-
sions, we give a determinant formula for the matrix 𝐷

𝑔,𝑛
.

Afterwards, we discuss the invertibility of the matrix 𝐷
𝑔,𝑛
.

The inverse of the matrix 𝐷
𝑔,𝑛

is also presented. From
Lemmas 3 and 4 in [15] andTheorems 3, 4, and 7, we deduce
the following results.

Theorem 11. Let𝐷
𝑔,𝑛

= 𝑔-Circ(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tribonacci

𝑔-circulant matrix and (𝑛, 𝑔) = 1; then one has

det𝐷
𝑔,𝑛

= detQ
𝑔
⋅ [[𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [ − 𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

)

+

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
] ,

(56)

where 𝑇
𝑛
is the 𝑛th Tribonacci number.

Theorem 12. Let 𝐷
𝑔,𝑛

= 𝑔-Circ(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
) be a Tri-

bonacci 𝑔-circulant matrix and (𝑛, 𝑔) = 1. If 𝑛 ̸= 2 and
𝑛 ̸= 2𝑘𝜋(arctan(±√4𝑎𝑐 − 𝑏2/ − 𝑏))

−1

(𝑘 = 1, 2, . . . , 𝑛 − 1),
then𝐷

𝑔,𝑛
is an invertible matrix.

Theorem 13. Let 𝐷
𝑔,𝑛

= 𝑔-Circ(𝑇
1
, 𝑇
2
, ..., 𝑇
𝑛
) be a Tribonacci

𝑔-circulant matrix and (𝑛, 𝑔) = 1. If𝐷
𝑛
is an invertible matrix,

then one has

𝐷
−1

𝑔,𝑛
= [𝐶𝑖𝑟𝑐 (𝑥

󸀠

2
+ (−1 −

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
,

− 𝑥
󸀠

2
+ (−1 +

𝑝
3

𝑝
2

)𝑥
󸀠

3
− 𝑥
󸀠

4
, 𝑥
󸀠

𝑛
, 𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
, 𝑥
󸀠

𝑛−2

−𝑥
󸀠

𝑛−1
− 𝑥
󸀠

𝑛
, . . . , 𝑥

󸀠

3
− 𝑥
󸀠

4
− 𝑥
󸀠

5
− 𝑥
󸀠

6
)]Q

𝑇

𝑔
,

(57)
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where
𝑥
󸀠

1
= 0,

𝑥
󸀠

2
=

1

𝑝
2

,

𝑥
󸀠

3
=

𝛾
3

ℓ
+
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

𝑥
󸀠

4
= −

𝛾
3
∑
𝑛−3

𝑖=2
𝑔
𝑖1
𝜌
𝑖+3

ℓ
+

𝑛−3

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+3

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−3

𝑖=1
𝑔
𝑖1
𝜌
𝑖+3

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

.

.

.

𝑥
󸀠

𝑘
= −

𝛾
3
∑
𝑛−𝑘+1

𝑖=2
𝑔
𝑖1
𝜌
𝑖+𝑘−1

ℓ
+

𝑛−𝑘+1

∑

𝑖=1

𝑔
𝑖1
𝛾
𝑖+𝑘−1

−
(𝑇
1
− 𝑇
𝑛+1

)∑
𝑛−𝑘+1

𝑖=1
𝑔
𝑖1
𝜌
𝑖+𝑘−1

∑
𝑛−2

𝑖=2
𝑔
𝑖1
𝛾
𝑖+2

ℓ
,

(𝑘 ≥ 4) .

(58)

5. Conclusion

The related problem of Tribonacci circualnt type matrices is
studied in this paper. We not only discuss nonsingularity of
Tibonacci circulant type matrices, but also give the explicit
determinant and inverse of Tribonacci circulant matrix,
Tribonacci left circualantmatrix, andTribonacci 𝑔-circualant
matrix. Furthermore, according to Theorem 11 in [23] and
the result in Theorem 3 in the paper, identities can be easily
obtained:

(1 − 𝑇
𝑛+1

)
𝑛

− (𝑐
𝑛

1
+ 𝑑
𝑛

1
) + (−𝑇

𝑛
)
𝑛

L
−𝑛

− L
𝑛

= [𝑇
1
− 𝑇
𝑛
+

𝑛−2

∑

𝑖=1

Δ
𝑖

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

)] 𝛿
1

− [−𝑇
𝑛
+ Δ (𝑇

1
− 𝑇
𝑛
− 𝑇
𝑛−1

) +

𝑛−3

∑

𝑖=1

Δ
𝑖+1

𝑇
𝑛−𝑖−2

]𝛿
2
,

(59)

where 𝑇
𝑛
is the 𝑛th Tribonacci number, L

𝑛
is the 𝑛th

generalized Lucas number, and

𝑐
1
=

(𝑇
𝑛+2

− 𝑇
𝑛+1

) + 𝜇
1

2
,

𝑑
1
=

(𝑇
𝑛+2

− 𝑇
𝑛+1

) − 𝜇
1

2
,

𝜇
1
= √(𝑇

𝑛+2
− 𝑇
𝑛+1

)
2

− 4𝑇
𝑛
(𝑇
𝑛+1

− 1),

Δ =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
,

𝛿
1
= (𝑇
1
− 𝑇
𝑛
− 𝑇
𝑛−1

) (𝑇
1
− 𝑇
𝑛+1

)
𝑛−3

+

𝑛−2

∑

𝑖=2

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

⋅ 𝑇
𝑛−𝑖−1

det𝐴
𝑖−1

,

𝛿
2
=

𝑛−2

∑

𝑖=1

(−1)
1+𝑖

(𝑇
1
− 𝑇
𝑛+1

)
𝑛−𝑖−2

(𝑇
𝑛−𝑖+1

− 𝑇
𝑛−𝑖

) det𝐴
𝑖−1

,

det𝐴
𝑖−1

=

{{{{{{{{{

{{{{{{{{{

{

((𝑏 + √𝑏2 − 4𝑎𝑐) /2)
𝑖

− ((𝑏 − √𝑏2 − 4𝑎𝑐) /2)
𝑖

√𝑏2 − 4𝑎𝑐
,

𝑏
2

̸= 4𝑎𝑐,

𝑖(
𝑏

2
)

𝑖−1

, 𝑏
2

= 4𝑎𝑐.

𝑎 = 𝑇
1
− 𝑇
𝑛+1

, 𝑏 = −𝑇
𝑛
− 𝑇
𝑛−1

, 𝑐 = −𝑇
𝑛
.

(60)

In addition, we will develop solving the problem in [24–
26] by circulant matrices technology.
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