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Mild solutions generated by a (𝑎, 𝑘)-regularized family to fractional stochastic relaxation equations are studied.Themain objective is
to establish the existence anduniqueness of square-mean asymptotically almost automorphicmild solutions to linear and semilinear
case of these equations. Under different hypotheses, some new theorems concerning the main objective are derived.

1. Introduction

Since the concept of almost automorphicity was introduced
by Bochner [1], the automorphic functions have been applied
to many areas such as ordinary as well as partial differential
equations, abstract differential equations, functional differ-
ential equations, and integral equations; see, for example,
[2–6]. For the details of basic theory and applications of
almost automorphic functions, we refer the reader to the
monographs of N’Guérékata [7, 8]. In the early eighties,
N’Guérékata introduced in [9] the concept of asymptotically
almost automorphic functions; that is, functions that tend to
an almost automorphic function at infinity, which is obvi-
ously a generalization of almost automorphicity. Since then,
this function has been developed and applied extensively; see,
for example, [10–14]. Recently, pseudoalmost automorphic
functions were introduced by Liang et al. in [15] and they
are more general than asymptotically almost automorphic
functions.They have been studied and developed extensively,
especially after the establishment of completeness of the space
of vector-valued pseudoalmost automorphic functions under
the supremum norm in [16]. For more details on these func-
tions, we refer the reader to [17–19]. Due to the importance
and applications of these functions in physics, mechanics,
and mathematical biology, the study of existence of almost
automorphic, asymptotically almost automorphic, and pseu-
doalmost automorphic solutions is becoming a very attractive
topic in the qualitative theory of differential equations.

For the last few decades, time-fractional differential equa-
tions have appeared as an essential tool for studying dynamics
of various complex processes on anomalous phenomena in
physics, finance, hydrology, and cell biology; see [20–23].
The importance of using fractional methods in physics for
describing slow decay processes and processes intermediate
between relaxation and oscillation was stressed by Nigmat-
ullin [24] in 1984. Various physical aspects of fractional
relaxation were discussed in [25, 26]. On the other hand,
the topic of almost automorphic solutions to the fractional
differential equations has also attracted a lot of attention, such
as in [27, 28].

Recently, there has been an increasing interest in extend-
ing certain classical deterministic results to stochastic cases.
The most important reason for such a consideration is that
most problems in real life are inevitably subject to some
random environmental effects. Thus, stochastic models are
more natural and realistic to describe phenomena in the
natural science; see [29]. In a very recent paper [30], the
authors extended the almost automorphic function to its
corresponding square-mean almost automorphic stochastic
process. Also the mean-square asymptotically and pseudoal-
most automorphic process were considered in the latter. For
more details on these stochastic processes, we refer the reader
to [31–34] and the references therein. However, to the best
of the author’s knowledge, there is no literature regarding
mean-square asymptotically almost automorphic solutions
for fractional stochastic relaxation equations. Such equations
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associated with a regularized resolvent family are important
in fluid dynamics; see [35, 36].

In this paper, we investigate the existence and uniqueness
of square-mean asymptotically almost automorphic solutions
to the fractional stochastic relaxation equations of the linear
form

d𝑢 (𝑡) − (𝐴D𝛼
𝑡
𝑢 (𝑡) − 𝑢 (𝑡)) d𝑡

= 𝑓 (𝑡) d𝑡 + 𝑔 (𝑡) d𝑊(𝑡) , 𝑡 > 0, 0 < 𝛼 < 1,

𝑢 (0) = 𝑥

(1)

and of the semilinear form

d𝑢 (𝑡) − (𝐴D𝛼
𝑡
𝑢 (𝑡) − 𝑢 (𝑡)) d𝑡

= 𝐹 (𝑡, 𝑢 (𝑡)) d𝑡 + 𝐺 (𝑡, 𝑢 (𝑡)) d𝑊(𝑡) ,

𝑡 > 0, 0 < 𝛼 < 1,

𝑢 (0) = 𝑥,

(2)

where 𝑢(⋅) takes values in a separable Hilbert space 𝐻, 𝐴 :

𝐷(𝐴) ⊂ L2(P, 𝐻) → L2(P, 𝐻) is a linear densely
defined operator which is to be specified later, and 𝑊(𝑡)

is a two-sided standard one-dimensional Brownian motion
defined on the filtered probability space (Ω,F,P,F

𝑡
).F
𝑡
=

𝜎{𝑊(𝑢) − 𝑊(V); 𝑢, V ≤ 𝑡} is the natural filtration generated
by the Brownian motion and P is the underlying probability
measure. Here 𝑓, 𝑔, 𝐹, 𝐺 are appropriate functions to be
specified later.

The paper is organized as follows. In Section 2, we briefly
introduce some basic notations, definitions, and lemmas
which are important for the proof of our main result.
Section 3 presents our main results concerning existence and
uniqueness of square-mean asymptotically almost automor-
phic solutions to a linear and semilinear case. Two different
kinds of conditions for the linear and semilinear case are
considered. Section 4 concludes the work in this paper and
introduces the related work in progress.

2. Preliminaries and Basic Properties

Throughout this paper, we assume that (𝐻, ‖ ⋅ ‖) is a real
separable Hilbert space, (Ω,F,P) is a probability space, and
L2(P, 𝐻) is the space of all 𝐻-valued random variables 𝑥
such that, for all 𝑥 ∈ L2(P, 𝐻), we have the expected value
E‖𝑥‖2 = ∫

Ω

‖𝑥‖2dP < ∞. So L2(P, 𝐻) is a Banach space
equipped with the norm ‖𝑥‖L2 = (∫

Ω

‖𝑥‖2dP)1/2.
We denote by 𝐶

0
(R+,L2(P, 𝐻)) the space of all con-

tinuous functions ℎ : R+ → L2(P, 𝐻) such that
lim
𝑡→∞

E‖ℎ(𝑡)‖2 = 0, and by 𝐶
0
(R+ ×L2(P, 𝐻),L2(P, 𝐻))

the space of all continuous functions ℎ : R+ ×L2(P, 𝐻) →

L2(P, 𝐻) such that lim
𝑡→∞

E‖ℎ(𝑡, 𝑥)‖2 = 0 uniformly for 𝑥
in any compact subset ofL2(P, 𝐻).

Definition 1. A stochastic process 𝑥 : R → L2(P, 𝐻) is said
to be mean-square continuous or continuous inL2(P, 𝐻) if

lim
𝑡→ 𝑠

E ‖𝑥 (𝑡) − 𝑥 (𝑠)‖
2

= 0. (3)

Definition 2. A mean-square continuous process 𝑥 : R →

L2(P, 𝐻) is said to be square-mean almost automorphic
(mean-square is defined by taking the mean of square of an
object; square-mean is misnomer since it indicates taking
square of the mean. However, I have retained it in paper due
to the fact that the terminology is used in all primer papers
on this subject) if, for every sequence of real numbers (𝑠

𝑛
)
𝑛∈N,

there is a subsequence (𝑠
𝑛
)
𝑛∈N and a stochastic process 𝑦 :

R → L2(P, 𝐻) such that

lim
𝑛→∞

E
𝑥 (𝑡 + 𝑠𝑛) − 𝑦 (𝑡)


2

= 0,

lim
𝑛→∞

E
𝑦 (𝑡 − 𝑠𝑛) − 𝑥 (𝑡)


2

= 0

(4)

for each 𝑡 ∈ R.

Let𝐴𝐴(R,L2(P, 𝐻))be the collection of all square-mean
almost automorphic stochastic processes. There are several
properties of the space 𝐴𝐴(R,L2(P, 𝐻)).

Lemma 3 (see [30]). If 𝑥, 𝑥
1
, and 𝑥

2
are all square-mean

almost automorphic stochastic processes, then

(1) 𝑥
1
+ 𝑥
2
is square-mean almost automorphic;

(2) 𝜆𝑥 is square-mean almost automorphic for every scalar
𝜆;

(3) there exists a constant 𝑀 > 0 such that
sup
𝑡∈R‖𝑥(𝑡)‖L2 ≤ 𝑀. That is, 𝑥 is bounded in

L2(P, 𝐻).

Lemma 4 (see [30]). 𝐴𝐴(R,L2(P, 𝐻)) is a Banach space
when it is equipped with the norm

‖𝑥‖
∞
:= sup
𝑡∈R

(E ‖𝑥 (𝑡)‖
2

)
1/2

, (5)

for 𝑥 ∈ 𝐴𝐴(R,L2(P, 𝐻)).

Definition 5. A function 𝑓 : R × L2(P, 𝐻) → L2(P, 𝐻),
(𝑡, 𝑥) → 𝑓(𝑡, 𝑥), which is jointly continuous, is said to be
square-mean almost automorphic in 𝑡 ∈ R for each 𝑥 ∈

L2(P, 𝐻) if, for every sequence of real numbers {𝑠
𝑛
}
𝑛∈N, there

exists a subsequence {𝑠
𝑛
} such that, for some function 𝑓, the

following hold:

lim
𝑛→∞

E

𝑓 (𝑡 + 𝑠

𝑛
, 𝑥) − 𝑓 (𝑡, 𝑥)



2

= 0,

lim
𝑛→∞

E

𝑓 (𝑡 − 𝑠

𝑛
, 𝑥) − 𝑓 (𝑡, 𝑥)



2

= 0

(6)

for each 𝑡 ∈ R and each 𝑥 ∈ L2(P, 𝐻).

Lemma 6 (see [30]). Let 𝑓 : R × L2(P, 𝐻) → L2(P, 𝐻),
(𝑡, 𝑥) → 𝑓(𝑡, 𝑥) be square-mean almost automorphic in 𝑡 for
each 𝑥 ∈ L2(P, 𝐻) and assume that 𝑓 satisfies a Lipschitz
condition in the following sense:

E
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)


2

≤ 𝐿E
𝑥 − 𝑦


2 (7)
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for all 𝑥, 𝑦 ∈ L2(P, 𝐻) and for 𝑡 ∈ R, where 𝐿 > 0 is
independent of 𝑡. Then, for any square-mean almost automor-
phic process 𝑥 : R → L2(P, 𝐻), the stochastic process 𝐹 :

R → L2(P, 𝐻) given by 𝐹(𝑡) := 𝑓(𝑡, 𝑥(𝑡)) is square-mean
almost automorphic.

Definition 7. A continuous function 𝑓 : R+ → L2(P, 𝐻) is
said to be square-mean asymptotically almost automorphic if
it can be written as 𝑓 = 𝑔 + ℎ, where 𝑔 ∈ 𝐴𝐴(R,L2(P, 𝐻))

and ℎ ∈ 𝐶
0
(R+,L2(P, 𝐻)). Let 𝐴𝐴𝐴(R+,L2(P, 𝐻)) denote

the collection of all such functions.

Definition 8. A continuous function 𝑓 : R+ ×L2(P, 𝐻) →

L2(P, 𝐻) is said to be square-mean asymptotically almost
automorphic in 𝑡 uniformly for 𝑥 in compact subsets of
L2(P, 𝐻) if it can be written as 𝑓 = 𝑔+ℎ, where 𝑔 ∈ 𝐴𝐴(R×

L2(P, 𝐻),L2(P, 𝐻)) andℎ ∈ 𝐶
0
(R+×L2(P, 𝐻),L2(P, 𝐻)).

Let𝐴𝐴𝐴(R+ ×L2(P, 𝐻),L2(P, 𝐻)) denote the collection of
all such functions.

Let 𝐾 ⊂ L2(P, 𝐻) and 𝑌 ⊂ R. Also let 𝐶
𝐾
(𝑌 ×

L2(P, 𝐻),L2(P, 𝐻)) denote the collection of all such func-
tions𝑓 : 𝑌×L2(P, 𝐻) → L2(P, 𝐻) satisfying the condition
that 𝑓(𝑡, ⋅) is uniformly continuous on L2(P, 𝐻) uniformly
for 𝑡 ∈ 𝑌. The following properties concern the spaces
𝐴𝐴𝐴(R+,L2(P, 𝐻)) and 𝐴𝐴𝐴(R+ ×L2(P, 𝐻),L2(P, 𝐻)).

Lemma 9 (see [34]). 𝐴𝐴𝐴(R+,L2(P, 𝐻)) is a Banach space
with the norm

𝑓
∞ := sup

𝑡∈R+
(E

𝑓 (𝑡)

2

)
1/2

, (8)

for 𝑓 ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)).

Lemma 10 (see [34]). Let 𝑥 ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)) and
𝑓 ∈ 𝐴𝐴𝐴(R+ × L2(P, 𝐻),L2(P, 𝐻)) ∩ 𝐶

𝐾
(R+ × L2(P,

𝐻),L2(P, 𝐻)) with 𝐾 = {𝑥(𝑡) : 𝑡 ∈ R+}. Then 𝑓(⋅, 𝑥(⋅)) ∈

𝐴𝐴𝐴(R+,L2(P, 𝐻)).

Definition 11. Let𝑋 be a Banach space; 𝑘 ∈ 𝐶(R+), 𝑘 ̸= 0, and
let 𝑎 ∈ L1loc(R

+), 𝑎 ̸= 0. Assume that 𝐴 is a linear operator
with domain𝐷(𝐴). A strongly continuous family {𝑅(𝑡)}

𝑡≥0
⊂

B(𝑋) of bounded linear operators from 𝑋 into 𝑋 is called
an (𝑎, 𝑘)-regularized resolvent family on 𝑋 (or simply (𝑎, 𝑘)-
regularized family) having 𝐴 as a generator if the following
hold:

(1) 𝑅(0) = 𝑘(0)𝐼.

(2) 𝑅(𝑡)𝑥 ∈ 𝐷(𝐴) and 𝑅(𝑡)𝐴𝑥 = 𝐴𝑅(𝑡)𝑥 for all 𝑥 ∈ 𝐷(𝐴)
and 𝑡 ≥ 0.

(3) 𝑅(𝑡)𝑥 = 𝑘(𝑡)𝑥 +∫𝑡
0

𝑎(𝑡 − 𝑠)𝐴𝑅(𝑠)𝑥 d𝑠, 𝑡 ≥ 0, 𝑥 ∈ 𝐷(𝐴).

3. Main Results

In this section, based on the definitions and lemmas given
in the previous section, we derive conditions for existence

and uniqueness of square-mean asymptotically almost auto-
morphic mild solutions to fractional stochastic relaxation
equations (1) and (2).

3.1. Linear Fractional Stochastic Relaxation Equation. To
begin with, we consider linear fractional stochastic relaxation
equation (1) where 𝐴 is the generator of a (𝑎, 𝑘)-regularized
family 𝑅(𝑡) with 𝑘(𝑡) = exp(−𝑡) and 𝑎(𝑡) = 𝑡𝛼E

1,1−𝛼
(−𝑡). Here

E
𝛼,𝛽
(𝑧) is the Mittag-Leffler function.

Definition 12. An F
𝑡
-progressively measurable process

{𝑢(𝑡)}
𝑡∈R+ is called a mild solution to (1) if it satisfies the

following stochastic integral equation:

𝑢 (𝑡) = 𝑥 − ∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠 + ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠) d𝑊
𝑠
.

(9)

In order to get main result in this section, we need the
following lemmas.

Lemma 13. Let {𝑅(𝑡)}
𝑡≥0

be the (𝑎, 𝑘)-regularized family
generated by 𝐴 of (1) and 𝑥 ∈ Ker(𝐴), which is the kernel of
the operator 𝐴. Then the function 𝐼(𝑡) over 𝑡 > 0 defined by

𝐼 (𝑡) = 𝑥 − ∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠 (10)

is an element of 𝐶
0
(R+,L2(P, 𝐻)).

Proof. Since 𝑥 ∈ Ker(𝐴), by Definition 11, we have

E ‖𝐼 (𝑡)‖
2

= E

𝑥 − ∫

𝑡

0

exp (−𝑠) 𝑥 d𝑠


2

≤

1 − ∫
𝑡

0

exp (−𝑠) d𝑠


2

E ‖𝑥‖
2

= exp (−𝑡)E ‖𝑥‖2 ,

(11)

which shows that lim
𝑡→∞

E‖𝐼(𝑡)‖2 = 0 and this completes the
proof.

Lemma 14. Let {𝑅(𝑡)}
𝑡≥0

be the (𝑎, 𝑘)-regularized family
generated by 𝐴 of (1) and let 𝑓(𝑡), 𝑔(𝑡) be Ker(𝐴)-valued
square-mean asymptotically almost automorphic functions;
then functions 𝐹(𝑡) and 𝐺(𝑡) defined by

𝐹 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠) d𝑠,

𝐺 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠) d𝑊
𝑠

(12)

are square-mean asymptotically almost automorphic; that is,
𝐹(𝑡), 𝐺(𝑡) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)).

Proof. First, we claim that 𝐹(𝑡) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)).
Obviously, 𝐹(𝑡) is continuous by definition. Since 𝑓(𝑠) is



4 International Journal of Differential Equations

a Ker(𝐴)-valued function, we have 𝑅(𝑠)𝑓(𝑠) = exp(−𝑠)𝑓(𝑠)
for all 𝑠 > 0. Moreover, 𝑓(𝑠) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)),
and thus there exist 𝑓

1
(𝑠) ∈ 𝐴𝐴(R,L2(P, 𝐻)) and 𝑓

2
∈

𝐶
0
(R+,L2(P, 𝐻)) such that 𝑓(𝑠) = 𝑓

1
(𝑠) + 𝑓

2
(𝑠). Thus, we

note that

𝐹 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠 + ∫

𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠

= ∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠 − ∫

0

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠.

(13)

Let

𝐹
1
(𝑡) = ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠, 𝑡 ∈ R,

𝐹
2
(𝑡) = −∫

0

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠, 𝑡 ≥ 0.

(14)

We now show that 𝐹
1
(𝑡) ∈ 𝐴𝐴(R,L2(P, 𝐻)). Since 𝑓

1
(𝑠) ∈

𝐴𝐴(R,L2(P, 𝐻)), for every real sequence {𝑠
𝑛
}
𝑛∈N, there exist

a subsequence {𝑠
𝑛
}
𝑛∈N and a function𝑓

1
(𝑠) : R → L2(P, 𝐻)

such that, for all 𝑡 ∈ R,

lim
𝑛→∞

E

𝑓
1
(𝑠 + 𝑠
𝑛
) − 𝑓
1
(𝑠)


2

= 0,

lim
𝑛→∞

E

𝑓
1
(𝑠 − 𝑠
𝑛
) − 𝑓
1
(𝑠)


2

= 0.

(15)

On the other hand, let

𝐹
1
(𝑡) = ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠. (16)

Then, it holds

E

𝐹
1
(𝑡 + 𝑠
𝑛
) − 𝐹
1
(𝑡)


2

= E

∫
𝑡+𝑠
𝑛

−∞

𝑅 (𝑡 + 𝑠
𝑛
− 𝑠)

⋅ 𝑓
1
(𝑠) d𝑠 − ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠



2

= E

∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠 + 𝑠
𝑛
) d𝑠 − ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠)

⋅ 𝑓
1
(𝑠) d𝑠



2

= E

∫
𝑡

−∞

exp (− (𝑡 − 𝑠))

⋅ 𝑓
1
(𝑠 + 𝑠
𝑛
) d𝑠 − ∫

𝑡

−∞

exp (− (𝑡 − 𝑠)) 𝑓
1
(𝑠) d𝑠



2

≤ E(∫
𝑡

−∞

exp (− (𝑡 − 𝑠))

⋅

𝑓
1
(𝑠 + 𝑠
𝑛
) − 𝑓
1
(𝑠)

d𝑠)
2

≤ ∫
𝑡

−∞

exp (− (𝑡 − 𝑠))

⋅ E

𝑓
1
(𝑠 + 𝑠
𝑛
) − 𝑓
1
(𝑠)


2

d𝑠
(17)

which shows that lim
𝑛→∞

E‖𝐹
1
(𝑡 + 𝑠
𝑛
) − 𝐹
1
(𝑡)‖2 = 0.

Similarly, lim
𝑛→∞

E‖𝐹
1
(𝑡 − 𝑠
𝑛
) − 𝐹
1
(𝑡)‖2 = 0 is obtained.

Thus, 𝐹
1
(𝑡) ∈ 𝐴𝐴(R,L2(P, 𝐻)) is proved.

Next, we prove that 𝐹
2
(𝑡) ∈ 𝐶

0
(R+,L2(P, 𝐻)). Since

𝑓
2
(𝑠) ∈ 𝐶

0
(R+,L2(P, 𝐻)), for all 𝜖 > 0, there exists a

constant 𝑇 > 0 such that, for all 𝑠 > 2𝑇, E‖𝑓
2
(𝑠)‖2 < 𝜖. Thus,

for all 𝑡 ≥ 𝑇, we have

E
𝐹2 (𝑡)


2

= E


∫
𝑡/2

0

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠

+ ∫
𝑡

𝑡/2

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠 − ∫

0

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠



2

≤ 3E


∫
𝑡/2

0

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠



2

+ 3E

∫
𝑡

𝑡/2

𝑅 (𝑡 − 𝑠) 𝑓
2
(𝑠) d𝑠



2

+ 3E


∫
0

−∞

𝑅 (𝑡 − 𝑠) 𝑓
1
(𝑠) d𝑠



2

≤ 3∫
𝑡/2

0

exp (− (𝑡 − 𝑠)) d𝑠

⋅ ∫
𝑡/2

0

exp (− (𝑡 − 𝑠))E 𝑓2 (𝑠)

2 d𝑠

+ 3∫
𝑡

𝑡/2

exp (− (𝑡 − 𝑠)) d𝑠

⋅ ∫
𝑡

𝑡/2

exp (− (𝑡 − 𝑠))E 𝑓2 (𝑠)

2 d𝑠

+ 3∫
0

−∞

exp (− (𝑡 − 𝑠)) d𝑠

⋅ ∫
0

−∞

exp (− (𝑡 − 𝑠))E 𝑓1 (𝑠)

2 d𝑠 ≤ 3 𝑓2


2

∞

⋅ exp (−𝑡) + 3𝜖 + 3 𝑓1

2

∞
exp (−2𝑡) ,

(18)

which indicates that lim
𝑡→∞

E‖𝐹
2
(𝑡)‖2 = 0 and this means

that 𝐹
2
(𝑡) ∈ 𝐶

0
(R+,L2(P, 𝐻)). Recalling that 𝐹(𝑡) =

𝐹
1
(𝑡) + 𝐹

2
(𝑡) for all 𝑡 ≥ 0, we conclude that 𝐹(𝑡) ∈

𝐴𝐴𝐴(R+,L2(P, 𝐻)).
There remains claiming that 𝐺(𝑡) ∈ 𝐴𝐴𝐴(R+, 𝐿2(P, 𝐻)).

From its definition, we know that 𝐺(𝑡) is continuous.



International Journal of Differential Equations 5

Also since 𝑔(𝑠) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)), we have 𝑔
1
(𝑠) ∈

𝐴𝐴(R,L2(P, 𝐻)) and 𝑔
2
(𝑡) ∈ 𝐶

0
(R+,L2(P, 𝐻)) such that

𝑔(𝑠) = 𝑔
1
(𝑠) + 𝑔

2
(𝑠). We observe that

𝐺 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠

= ∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠

− ∫
0

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠
.

(19)

Let

𝐺
1
(𝑡) = ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠
, 𝑡 ∈ R,

𝐺
2
(𝑡) = −∫

0

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠
, 𝑡 ≥ 0.

(20)

We first show that 𝐺
1
(𝑡) ∈ 𝐴𝐴(R,L2(P, 𝐻)). Since 𝑔

1
(𝑡) ∈

𝐴𝐴(R,L2(P, 𝐻)), for every real sequence {𝑠
𝑛
}
𝑛∈N, there

exists subsequence {𝑠
𝑛
}
𝑛∈N and a function 𝑔

1
: R →

L2(P, 𝐻) such that, for all 𝑡 ∈ R,

lim
𝑛→∞

E
𝑔1 (𝑠 + 𝑠𝑛) − 𝑔1 (𝑠)


2

= 0,

lim
𝑛→∞

E
𝑔1 (𝑠 − 𝑠𝑛) − 𝑔1 (𝑠)


2

= 0.

(21)

Let

𝐺
1
(𝑡) = ∫

𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠
; (22)

we obtain

E

𝐺
1
(𝑡 + 𝑠
𝑛
) − 𝐺
1
(𝑡)


2

= E

∫
𝑡+𝑠
𝑛

−∞

𝑅 (𝑡 + 𝑠
𝑛
− 𝑠) 𝑔

1
(𝑠) d𝑊

𝑠

− ∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠



2

= E

∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠 + 𝑠
𝑛
) d�̃�
𝑠

− ∫
𝑡

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠



2

,

(23)

where �̃�
𝑠
= 𝑊(𝑠 + 𝑠

𝑛
) − 𝑊

𝑠
𝑛

for each 𝑠 ∈ R and 𝑛 ∈ N. We
know that �̃�

𝑠
is also a Brownian motion and has the same

distribution as𝑊
𝑠
. Thus, we get

E

𝐺
1
(𝑡 + 𝑠
𝑛
) − 𝐺
1
(𝑡)


2

= E

∫
𝑡

−∞

exp (− (𝑡 − 𝑠)) [𝑔
1
(𝑠 + 𝑠
𝑛
) − 𝑔
1
(𝑠)] d�̃�

𝑠



2

= ∫
𝑡

∞

exp (−2 (𝑡 − 𝑠))E 𝑔1 (𝑠 + 𝑠𝑛) − 𝑔1 (𝑠)

2 d𝑠,

(24)

which implies that lim
𝑛→∞

E‖𝐺
1
(𝑡 + 𝑠
𝑛
) − 𝐺
1
(𝑡)‖2 = 0.

Analogously, lim
𝑛→∞

E‖𝐺
1
(𝑡−𝑠
𝑛
)−𝐺
1
(𝑡)‖2 = 0. It means

𝐺(𝑡) ∈ 𝐴𝐴(R,L2(P, 𝐻)).
Next, we show that 𝐺

2
(𝑡) ∈ 𝐶

0
(R+,L2(P, 𝐻)). Since

𝑔
2
(𝑠) ∈ 𝐶

0
(R+,L2(P, 𝐻)), for all 𝜖 > 0, there exists a

constant 𝑇 > 0 such that, for all 𝑠 ≥ 𝑇, E‖𝑔
2
(𝑠)‖2 < 𝜖. Then,

for all 𝑡 ≥ 2𝑇, we compute

E
𝐺2 (𝑡)


2

= E


∫
𝑡/2

0

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠

+ ∫
𝑡

𝑡/2

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠

− ∫
0

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠



2

≤ 3E


∫
𝑡/2

0

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠



2

+ 3E

∫
𝑡

𝑡/2

𝑅 (𝑡 − 𝑠) 𝑔
2
(𝑠) d𝑊

𝑠



2

+ 3E


∫
0

−∞

𝑅 (𝑡 − 𝑠) 𝑔
1
(𝑠) d𝑊

𝑠



2

= 3∫
𝑡/2

0

exp (−2 (𝑡 − 𝑠))E 𝑔2 (𝑠)

2 d𝑠

+ 3∫
𝑡

𝑡/2

exp (−2 (𝑡 − 𝑠))E 𝑔2 (𝑠)

2 d𝑠

+ 3∫
0

−∞

exp (−2 (𝑡 − 𝑠))E 𝑔1 (𝑠)

2 d𝑠

≤
3

2

𝑔2

2

∞
exp (−𝑡) + 3

2
𝜖 +

3

2

𝑔1

2

∞
exp (−2𝑡) ,

(25)

which implies that lim
𝑡→∞

E‖𝐺
2
(𝑡)‖2 = 0 and then 𝐺

2
(𝑡) ∈

𝐶
0
(R+,L2(P, 𝐻)). Therefore, 𝐺(𝑡) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻))

since 𝐺(𝑡) = 𝐺
1
(𝑡) + 𝐺

2
(𝑡). Thus the proof is complete.

The main result concerning linear fractional stochastic
relaxation equation (1) is the following theorem.

Theorem 15. If 𝑥 ∈ Ker(𝐴) and 𝑓(𝑡), 𝑔(𝑡) are Ker(𝐴)-
valued square-mean asymptotically almost automorphic func-
tions, then every mild solution of (1) is asymptotically almost
automorphic.
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Proof. From Definition 12, we have the following mild solu-
tion to linear fractional stochastic relaxation equation (1):

𝑢 (𝑡) = 𝑥 − ∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠 + ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠) d𝑊
𝑠

= 𝐼 (𝑡) + 𝐹
1
(𝑡) + 𝐺

1
(𝑡) + 𝐹

2
(𝑡) + 𝐺

2
(𝑡) ,

(26)

where 𝐼(𝑡), 𝐹
1
(𝑡), 𝐹
2
(𝑡), 𝐺
1
(𝑡), and 𝐺

2
(𝑡) are the expressions

given in Lemmas 13 and 14. Then 𝑢(𝑡) has decomposition
of 𝐹
1
(𝑡) + 𝐺

1
(𝑡) and 𝐼(𝑡) + 𝐹

2
(𝑡) + 𝐺

2
(𝑡) which are in

𝐴𝐴(R,L2(P, 𝐻)) and 𝐶
0
(R+,L2(P, 𝐻)), respectively. This

completes the proof.

3.2. Semilinear Fractional Stochastic Relaxation Equations.
In this section, we consider the existence and uniqueness
of a square-mean asymptotically almost automorphic mild
solution of (2) where𝐴 has the same meaning as in the linear
case.

Definition 16. An F
𝑡
-progressively measurable process

{𝑢(𝑡)}
𝑡∈R is called a mild solution to (2) if it satisfies the

following stochastic integral equation:

𝑢 (𝑡) = 𝑥 − ∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠 + ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) d𝑊
𝑠
.

(27)

Here when we consider that 𝑢(0) = 𝑥 ∈ Ker(𝐴) and
𝑓(⋅, 𝑢(⋅)),𝑔(⋅, 𝑢(⋅)) are Ker(𝐴)-valued square-mean asymptot-
ically almost automorphic functions; the results derived in
the last section can be generalized to semilinear case.

In order to establish the existence and uniqueness result
for the semilinear case with more flexible initial conditions
and coefficients, we need the following assumptions and
lemma:

(1) There exists an (𝑎, 𝑘)-regularized family such that
‖𝑅(𝑡)‖ ≤ 𝑀𝑘(𝑡) for all 𝑡 ≥ 0 and some constant
𝑀 > 0.

(2) The function 𝑓 ∈ 𝐴𝐴𝐴(R+ × L2(P, 𝐻),L2(P, 𝐻))
and there exists a function 𝐿

𝑓
: R+ → R+ such that,

for each 𝑟 ≥ 0 and E‖𝑢‖2, E‖V‖2 ≤ 𝑟,

E
𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)


2

≤ 𝐿
𝑓
(𝑟)E ‖𝑢 − V‖2 . (28)

(3) The function 𝑔 ∈ 𝐴𝐴𝐴(R+ × L2(P, 𝐻),L2(P, 𝐻))
and there exists a function 𝐿

𝑔
: R+ → R+ such that,

for each 𝑟 ≥ 0 and E‖𝑢‖2, E‖V‖2 ≤ 𝑟,

E
𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)


2

≤ 𝐿
𝑔
(𝑟)E ‖𝑢 − V‖2 . (29)

(4) Λ := sup
𝑟>0
[𝑟/4𝑀2 − 2𝑟𝐿

𝑓
(𝑟) − 𝑟𝐿

𝑔
(𝑟)] > (1 +

1/M)‖𝑢(0)‖2+2sup
𝑠∈RE‖𝑓(𝑠, 0)‖

2+sup
𝑠∈RE‖𝑔(𝑠, 0)‖

2.

Lemma 17. Let {𝑅(𝑡)}
𝑡≥0

be the (𝑎, 𝑘)-regularized family
generated by 𝐴 of (2) and let assumption (1) hold. Then the
function 𝐼(𝑡) defined by

𝐼 (𝑡) = 𝑀𝑥 − ∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠 𝑡 > 0 (30)

is an element of 𝐶
0
(R+,L2(P, 𝐻)).

Proof. Similar to Lemma 13, we have

E ‖𝐼 (𝑡)‖
2

= E

𝑀𝑥 − ∫

𝑡

0

𝑅 (𝑠) 𝑥 d𝑠


2

≤ 𝑀

1 − ∫
𝑡

0

exp (−𝑠) d𝑠


2

E ‖𝑥‖
2

= 𝑀 exp (−𝑡)E ‖𝑥‖2 ,

(31)

which shows that lim
𝑡→∞

E‖𝐼(𝑡)‖2 = 0 and this completes the
proof.

Theorem 18. Assume that the assumptions (1)–(4) hold. Then
there exists a unique square-mean asymptotically almost auto-
morphic mild solution to (2).

Proof. Let𝐷 = {𝑢 ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)) : E‖𝑢‖2 ≤ 𝑟}. Then
𝐷 is a closed subspace of 𝐴𝐴𝐴(R+,L2(P, 𝐻)). We define an
operator Ψ on𝐷 by

(Ψ𝑢) (𝑡) = 𝑥 − ∫
𝑡

0

𝑅 (𝑠) d𝑠 + ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) d𝑊
𝑠
, 𝑡 ≥ 0.

(32)

First, let us check the fact thatΨ(𝐴𝐴𝐴(R+,L2(P, 𝐻))) ⊂
𝐴𝐴𝐴(R+,L2(P, 𝐻)). It is obvious that Ψ𝑢 is continuous for
𝑢 ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)). Define 𝐾 = {𝑢(𝑡) : 𝑡 ∈ R+}. It
follows from assumptions (2) and (3) that 𝑓, 𝑔 ∈ 𝐴𝐴𝐴(R+ ×

L2(P, 𝐻),L2(P, 𝐻))∩𝐶
𝐾
(R+,L2(P, 𝐻)). From Lemma 10,

we get 𝑓(⋅, 𝑢(⋅)) and 𝑔(⋅, 𝑢(⋅)) ∈ 𝐴𝐴𝐴(R+,L2(P, 𝐻)). Now,
by Lemma 14, we have

𝐹 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠) d𝑠 ∈ 𝐴𝐴𝐴(R
+

,L
2

(P, 𝐻)) ,

𝐺 (𝑡) = ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠) d𝑊
𝑠

∈ 𝐴𝐴𝐴(R
+

,L
2

(P, 𝐻)) .

(33)

Combining this with Lemma 17, we conclude that Ψ𝑢 ∈

𝐴𝐴𝐴(R+,L2(P, 𝐻)). Next we need to show that Ψ is
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a contraction map from 𝐷 into 𝐷. We can take 𝑢(𝑡) ∈ 𝐷 for
all 𝑡 ≥ 0 and get

E ‖(Ψ𝑢) (𝑡)‖
2

= E

𝑥 − ∫

𝑡

0

𝑅 (𝑠) 𝑥 d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) d𝑠

+ ∫
𝑡

0

𝑅 (𝑡 − 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) d𝑊
𝑠



2

≤ 4 ‖𝑥‖
2

+ 4

∫
𝑡

0

𝑅 (𝑠) 𝑥 d𝑠


2

+ 4E(∫
𝑡

0

𝑀 exp (− (𝑡 − 𝑠)) 𝑓 (𝑠, 𝑢 (𝑠))
 d𝑠)
2

+ 4E∫
𝑡

0

𝑀
2 exp (−2 (𝑡 − 𝑠)) 𝑔 (𝑠, 𝑢 (𝑠))


2 d𝑠

≤ 4 ‖𝑥‖
2

+ 4𝑀
2

‖𝑥‖
2

+ 8𝑀
2

∫
𝑡

0

exp (− (𝑡 − 𝑠))

⋅ (E
𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, 0)


2

+
𝑓 (𝑠, 0)


2

) d𝑠

+ 8𝑀
2

∫
𝑡

0

exp (−2 (𝑡 − 𝑠))

⋅ (E
𝑔 (𝑠, 𝑢 (𝑠)) − 𝑔 (𝑠, 0)


2

+
𝑔 (𝑠, 0)


2

) d𝑠

≤ 4 ‖𝑥‖
2

+ 4𝑀
2

‖𝑥‖
2

+ 8𝑀
2

(𝐿
𝑓
(𝑟) 𝑟

+
𝑓 (𝑠, 0)


2

∞
) + 4𝑀

2

(𝐿
𝑔
(𝑟) 𝑟 +

𝑔 (𝑠, 𝑥)

2

∞
) < 𝑟,

(34)

where the last inequality is from assumption (4). This indi-
cates that Ψ𝑢 ∈ 𝐷 for any given 𝑢 ∈ 𝐷.

For 𝑢, V ∈ 𝐷 and 𝑡 ≥ 0, we have

E ‖(Ψ𝑢) (𝑡) − (ΨV) (𝑡)‖2

≤ 2E

∫
𝑡

0

𝑅 (𝑡 − 𝑠) (𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))) d𝑠


2

+ 2E

∫
𝑡

0

𝑅 (𝑡 − 𝑠) (𝑔 (𝑠, 𝑢 (𝑠)) − 𝑔 (𝑠, V (𝑠))) d𝑊
𝑠



2

≤ 2𝑀
2

𝐿
𝑓
(𝑟) ‖𝑢 − V‖2

∞
+𝑀
2

𝐿
𝑔
(𝑟) ‖𝑢 − V‖2

∞

≤ (2𝐿
𝑓
(𝑟) + 𝐿

𝑔
(𝑟))𝑀

2

‖𝑢 − V‖2
∞
.

(35)

Hence

‖(Ψ𝑢) (𝑡) − (ΨV) (𝑡)‖2
∞

≤ (2𝐿
𝑓
(𝑟) + 𝐿

𝑔
(𝑟))𝑀

2

‖𝑢 − V‖2
∞
.

(36)

From assumption (4), we know that there exists a 𝑟 such that

(2𝐿
𝑓
(𝑟) + 𝐿

𝑔
(𝑟))𝑀

2

< 1. (37)

This implies that Ψ is a contraction map from 𝐷 into 𝐷. So
by the Banach fixed point theorem, Ψ has a unique fixed
point in 𝐷, which indicates that there exists a square-mean
asymptotically almost automorphic mild solution to (2).

4. Conclusion

In this paper, the square-mean asymptotically almost auto-
morphic solutions to abstract fractional stochastic relaxation
equations have been investigated. Based on (𝑎, 𝑘)-regularized
family of bounded and linear operators, mild solutions to
fractional stochastic relaxation equations are derived by a
variation of constant formula. By using stochastic analysis
and the Banach fixed point theorem, a set of sufficient con-
ditions are obtained to prove the existence and uniqueness
of square-mean asymptotically almost automorphic solutions
to fractional stochastic relaxation equations. My related
investigation on the asymptotical behaviors of solutions to
a class of fractional stochastic differential equations with
nonlocal initial conditions is still in progress.
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Mathématiques du Québec, vol. 5, pp. 69–79, 1981.

[10] D. Bugajewski and G. M. N’Guérékata, “On the topological
structure of almost automorphic and asymptotically almost
automorphic solutions of differential and integral equations
in abstract spaces,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 59, no. 8, pp. 1333–1345, 2004.

[11] H.-S.Ding, T.-J. Xiao, and J. Liang, “Asymptotically almost auto-
morphic solutions for some integrodifferential equations with
nonlocal initial conditions,” Journal of Mathematical Analysis
and Applications, vol. 338, no. 1, pp. 141–151, 2008.

[12] T. Diagana, M. E. Hernández, and J. P. C. dos Santos, “Exis-
tence of asymptotically almost automorphic solutions to some
abstract partial neutral integro-differential equations,” Nonlin-
ear Analysis:Theory, Methods & Applications, vol. 71, no. 1-2, pp.
248–257, 2009.

[13] A. Caicedo, C. Cuevas, G. M. Mophou, and G. M. N’Guérékata,
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