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We introduce and study well-posedness in connection with the symmetric vector quasi-equilibrium problem, which unifies its
Hadamard and Levitin-Polyak well-posedness. Using the nonlinear scalarization function, we give some sufficient conditions to
guarantee the existence of well-posedness for the symmetric vector quasi-equilibrium problem.

1. Introduction

Vector equilibrium problem provides a very general model
for many problems like the vector variational inequality
problem, the vector complementarity problem, the vector
optimization problem, the multiobjective game problem, the
vector network equilibrium problem, and the vector saddle
point problem (see, e.g., [1–3] and the references therein).

Well-posedness plays an important role in the theory
and numerical methods for optimization. The first concept
of well-posedness was introduced by Tykhonov [4] for a
global minimization problem having a unique solution.
Lucchetti and Patrone [5] introduced the notion of well-
posedness for variational inequalities. Lignola and Morgan
[6] studied the well-posedness of optimization problemswith
variational inequality constraints. Fang et al. [7] investigated
well-posedness for equilibrium problems and optimization
problems with equilibrium constraints. Hu et al. [8] studied
well-posedness of systems of equilibrium problems.

The notions of well-posedness can bemainly divided into
three groups, namely, Hadamard type, Tykhonov type, and
Levitin-Polyak type. Researchers have studied the relations
between the Hadamard well-posedness and Tykhonov well-
posedness for different problems (see [9, 10]). Most of
the literature deals with directly specific notions of well-
posedness. Huang et al. [11] investigated the Levitin-Polyak

well-posedness of variational inequalities problems with
functional constraints. S. J. Li and M. H. Li [12] studied
the Levitin-Polyak well-posedness of vector equilibrium
problems. Li et al. [13] investigated Levitin-Polyak well-
posedness of generalized vector quasi-equilibrium problems.
Peng et al. [14] studied Levitin-Polyak well-posedness of
generalized vector equilibrium problems with both abstract
set constraints and functional constraints. Salamon [15]
considered the Hadamard well-posedness by using the vector
topological pseudomonotonicity. Peng et al. [16] investigated
the Hadamard well-posedness of vector equilibrium prob-
lems by considering the perturbations of both vector-valued
functions and feasible sets. Li and Zhang [17] studied the
Hadamard well-posedness for the vector-valued optimiza-
tion problems. Long and Huang [18] considered the 𝛼-well
posedness for the symmetric quasi-equilibrium problems.
Recently, Han and Gong [19] studied the generalized Levitin-
Polyak well-posedness of symmetric strong vector quasi-
equilibrium problems. Deng and Xiang [20] introduced and
studied the generalized well-posedness for the generalized
vector equilibrium, which unifies its Hadamard and Levitin-
Polyak well-posedness.

Motivated and inspired by the papers mentioned above,
in this paper, we introduce a well-posedness concept for
the symmetric vector quasi-equilibrium problem, which
unifies its Hadamard and Levitin-polyak well-posedness. By
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employing the scalarization function, we give some sufficient
conditions to guarantee the existence of the well-posedness
for the symmetric vector quasi-equilibrium problem in real
locally convex Hausdorff topological vector spaces. The
results presented in this paper generalize and extendTheorem
4.2 of [16] andTheorem 4.1 of [20].

2. Preliminaries

Let 𝑋 and 𝑌 be nonempty subsets of real locally convex
Hausdorff topological vector spaces 𝐹 and 𝑊, respectively.
Assume 𝑆 : 𝑋×𝑌 󴁂󴀱 𝑋 and𝐺 : 𝑋×𝑌 󴁂󴀱 𝑌 are two set-valued
mappings. Let𝑍 be a real topological vector space and𝐶 ⊂ 𝑍

be a closed convex pointed cone with int𝐶 ̸= 0, where int𝐶
denotes the topological interior of𝐶. It is well known that the
cone 𝐶 can induce the following orders:

𝑧
1
≤ 𝑧
2

iff 𝑧
2
− 𝑧
1
∈ 𝐶,

𝑧
1
< 𝑧
2

iff 𝑧
2
− 𝑧
1
∈ int𝐶.

(1)

Let 𝜑 : 𝑋 × 𝑋 × 𝑌 → 𝑍 and 𝜓 : 𝑋 × 𝑌 × 𝑌 → 𝑍 be two
vector valued functions. Let 𝐶

1
and 𝐶

2
be two closed convex

pointed cones of 𝑍 with int𝐶
1

̸= 0 and int𝐶
2

̸= 0. In this
paper, we consider the following the symmetric vector quasi-
equilibrium problem (in short SVQEP): find (𝑥

0
, 𝑦
0
) ∈ 𝑋×𝑌

such that 𝑥
0
∈ 𝑆(𝑥
0
, 𝑦
0
), 𝑦
0
∈ 𝐺(𝑥

0
, 𝑦
0
), and

𝜑 (𝑥
0
, 𝑢, 𝑦
0
) ∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥

0
, 𝑦
0
) ,

𝜓 (𝑥
0
, V, 𝑦
0
) ∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥

0
, 𝑦
0
) .

(2)

Some special cases of SVQEP are as follows.
(I) If 𝐶

1
= 𝐶
2
= 𝐶, 𝜑(𝑥, 𝑢, 𝑦) = 𝑓(𝑢, 𝑦) − 𝑓(𝑥, 𝑦), and

𝜓(𝑥, V, 𝑦) = 𝑔(𝑥, V) − 𝑔(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌, where
𝑓, 𝑔 : 𝑋 × 𝑌 → 𝑍 are two mappings, then (SVQEP) reduces
to the problem of finding (𝑥

0
, 𝑦
0
) ∈ 𝑋 × 𝑌 such that 𝑥

0
∈

𝑆(𝑥
0
, 𝑦
0
), 𝑦
0
∈ 𝐺(𝑥

0
, 𝑦
0
), and

𝑓 (𝑥, 𝑦
0
) − 𝑓 (𝑥

0
, 𝑦
0
) ∉ − int𝐶, ∀𝑥 ∈ 𝑆 (𝑥

0
, 𝑦
0
) ,

𝑔 (𝑥
0
, 𝑦) − 𝑔 (𝑥

0
, 𝑦
0
) ∉ − int𝐶, ∀𝑥 ∈ 𝐺 (𝑥

0
, 𝑦
0
) .

(3)

This problem was studied in Fu [21] and Han and Gong [19].
(II) If 𝑍 = (−∞, +∞) and 𝐶

1
= 𝐶
2
= [0, +∞), then

(SVQEP) reduces to the following problem: find (𝑥
0
, 𝑦
0
) ∈

𝑋 × 𝑌 such that 𝑥
0
∈ 𝑆(𝑥
0
, 𝑦
0
), 𝑦
0
∈ 𝐺(𝑥

0
, 𝑦
0
), and

𝜑 (𝑥
0
, 𝑢, 𝑦
0
) ≥ 0, ∀𝑢 ∈ 𝑆 (𝑥

0
, 𝑦
0
) ,

𝜓 (𝑥
0
, V, 𝑦
0
) ≥, ∀V ∈ 𝐺 (𝑥

0
, 𝑦
0
) .

(4)

(III) If 𝑍 = (−∞, +∞), 𝐶
1
= 𝐶
2
= [0, +∞), 𝜑(𝑥, 𝑢, 𝑦) =

𝑓(𝑢, 𝑦) − 𝑓(𝑥, 𝑦), and 𝜓(𝑥, V, 𝑦) = 𝑔(𝑥, V) − 𝑔(𝑥, 𝑦) for all
(𝑥, 𝑦) ∈ 𝑋 × 𝑌, where 𝑓, 𝑔 : 𝑋 × 𝑌 → 𝑍 are two mappings,
then (SVQEP) reduces to the symmetric quasi-equilibrium
problem: find (𝑥

0
, 𝑦
0
) ∈ 𝑋 × 𝑌 such that 𝑥

0
∈ 𝑆(𝑥
0
, 𝑦
0
), 𝑦
0
∈

𝐺(𝑥
0
, 𝑦
0
), and

𝑓 (𝑥, 𝑦
0
) ≥ 𝑓 (𝑥

0
, 𝑦
0
) , ∀𝑥 ∈ 𝑆 (𝑥

0
, 𝑦
0
) ,

𝑔 (𝑥
0
, 𝑦) ≥ 𝑔 (𝑥

0
, 𝑦
0
) , ∀𝑥 ∈ 𝐺 (𝑥

0
, 𝑦
0
) .

(5)

This problem was considered in Long and Huang [18].

It is well known that SVQEP includes many important
problems as special cases, such as equilibrium problems,
Nash equilibrium problems, quasivariational inequalities,
variational inequalities, and fixed point problems.

Now we recall some useful definitions and lemmas.
Let (𝑋, 𝑑) be a metric space. Denote a family of all

nonempty compact subsets of 𝑋 by 𝐾(𝑋). For any 𝐴, 𝐵 ∈

𝐾(𝑋), let

𝐻(𝐴, 𝐵) = max{sup
𝑎∈𝐴

inf
𝑏∈𝐵

𝑑 (𝑎, 𝑏) , sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑 (𝑎, 𝑏)} (6)

denote the Hausdorff metric on 𝐾(𝑋). It is well known that
(𝐾(𝑋),𝐻) is complete if and only if (𝑋, 𝑑) is complete.

Definition 1. A sequence {(𝑥
𝑛
, 𝑦
𝑛
)} ⊂ 𝑋×𝑌 is called a Levitin-

Polyak (in short LP) approximating solution sequence con-
verging to (𝑥

0
, 𝑦
0
) for SVQEP, if there exists 𝜀

𝑛
> 0 with

𝜀
𝑛
→ 0 such that

𝑑 (𝑥
𝑛
, 𝑆 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
, 𝑑 (𝑦

𝑛
, 𝐺 (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
,

𝜑 (𝑥
0
, 𝑢, 𝑦
0
) + 𝜀
𝑛
𝑒
1
∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥

0
, 𝑦
0
) ,

𝜓 (𝑥
0
, V, 𝑦
0
) + 𝜀
𝑛
𝑒
2
∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥

0
, 𝑦
0
) ,

(7)

where 𝑒
1
∈ int𝐶

1
and 𝑒
2
∈ int𝐶

2
are given points.

Definition 2 (see [3]). Let 𝐸, 𝑍 be two real Hausdorff
topological spaces, 𝑋 ⊂ 𝐸 a nonempty subset, and 𝐶 ⊂ 𝑍

a closed convex pointed cone. A mapping 𝐹 : 𝑋 → 𝑍 is said
to be

(i) 𝐶-upper semicontinuous (𝐶-u.s.c.) (resp., 𝐶-lower
semicontinuous (𝐶-l.s.c.) at 𝑥

0
∈ 𝑋 if, for any neigh-

borhood 𝑉 of zero in 𝑍, there exists a neighborhood
𝑈 of zero in 𝐸 such that

𝐹 (𝑥) ∈ 𝐹 (𝑥
0
) + 𝑉 − 𝐶, ∀𝑥 ∈ 𝑈 ∩ 𝑋,

(resp., 𝐹 (𝑥) ∈ 𝐹 (𝑥
0
) + 𝑉 + 𝐶, ∀𝑥 ∈ 𝑈 ∩ 𝑋) .

(8)

(ii) 𝐶-u.s.c. (resp., 𝐶-l.s.c.) on 𝑋 if it is 𝐶-u.s.c. (resp., 𝐶-
l.s.c.) at every point 𝑥 ∈ 𝑋.

Definition 3 (see [22]). Let𝑋 and𝑌 be two topological spaces.
A set-valued mapping 𝐹 : 𝑋 󴁂󴀱 𝑌 is said to be

(i) upper semicontinuous (u.s.c.) at 𝑥
0
if, for any open set

𝑉 ⊃ 𝐹(𝑥
0
), there is an open neighborhood 𝑂

𝑥0
of 𝑥
0

such that 𝐹(𝑥󸀠) ⊂ 𝑉 for each 𝑥󸀠 ∈ 𝑂
𝑥0
,

(ii) lower semicontinuous (l.s.c.) at 𝑥
0
if, for any open set

𝑉 ∩ 𝐹(𝑥
0
) ̸= 0, there is an open neighborhood 𝑂

𝑥0
of

𝑥
0
such that 𝐹(𝑥󸀠) ∩ 𝑉 ̸= 0 for each 𝑥󸀠 ∈ 𝑂

𝑥0
,

(iii) continuous at 𝑥
0
if it is both upper and lower semi-

continuous at 𝑥
0
,

(iv) upper semicontinuous (lower semicontinuous or
continuous) on𝑋 if it is upper semicontinuous (lower
semicontinuous or continuous) at every 𝑥 ∈ 𝑋,
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(v) an usco mapping if 𝐹 is upper semicontinuous on 𝑋
and 𝐹(𝑥) is compact for each 𝑥 ∈ 𝑋,

(vi) closed if and only if its graph Graph(𝐹) := {(𝑥, 𝑦) ∈

𝑋 × 𝑌 : 𝑦 ∈ 𝐹(𝑥)} is closed.

Lemma 4 (see [23]). Let 𝑋 and 𝑌 be two topological spaces
and 𝐹 : 𝑋 󴁂󴀱 𝑌 a set-valued mapping. Suppose that
𝑌 is compact. Then 𝐹 is closed if and only if it is upper
semicontinuous.

Lemma 5 (see [24]). Let 𝐴 and 𝐴
𝑛
(𝑛 = 1, 2, . . .) all be

nonempty compact subsets of a metric space 𝑋 with 𝐴
𝑛
→ 𝐴

in theHausdorffmetric topology.Then the following statements
hold.

(i) ⋃+∞
𝑛=1

𝐴
𝑛
⋃𝐴 is also nonempty compact subset of𝑋.

(ii) If 𝑥
𝑛
∈ 𝐴
𝑛
, 𝑥
𝑛
→ 𝑥, then 𝑥 ∈ 𝐴.

(iii) For any 𝑥 ∈ 𝐴, there exists 𝑥
𝑛
∈ 𝐴
𝑛
such that 𝑥

𝑛
→ 𝑥.

Lemma 6 (see [25]). Let 𝑋 and 𝑌 be two topological spaces
and𝐹 : 𝑋 󴁂󴀱 𝑌 be an uscomapping.Then for any net {𝑥

𝛼
} ⊂ 𝑋

with 𝑥
𝛼
→ 𝑥 and 𝑦

𝛼
∈ 𝐹(𝑥

𝛼
), there exists a subnet {𝑦

𝛼
󸀠} ⊂ 𝑦

𝛼

such that 𝑦
𝛼
󸀠 → 𝑦 ∈ 𝐹(𝑥).

Lemma 7 (see [26]). For any fixed point 𝑒 ∈ int𝐶, the
nonlinear scalarization function 𝜉

𝑒
: 𝑌 → R is defined by

𝜉
𝑒
(𝑦) = inf {𝑟 ∈ R : 𝑦 ∈ 𝑟𝑒 − 𝐶} , ∀𝑦 ∈ 𝑌. (9)

The nonlinear scalarization function 𝜉
𝑒
has the following

properties:

(i) 𝜉
𝑒
(𝑦) < 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒 − int𝐶,

(ii) 𝜉
𝑒
(𝑦) ≤ 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒 − 𝐶,

(iii) 𝜉
𝑒
(𝑦) ≥ 𝑟 ⇔ 𝑦 ∉ 𝑟𝑒 − int𝐶,

(iv) 𝜉
𝑒
(𝑦) > 𝑟 ⇔ 𝑦 ∉ 𝑟𝑒 − 𝐶,

(v) 𝜉
𝑒
(𝑦) = 𝑟 ⇔ 𝑦 ∈ 𝑟𝑒 − 𝜕𝐶, where 𝜕𝐶 denotes the

topological boundary of 𝐶.

Lemma 8. If 𝜑 : 𝑋×𝑋×𝑌 → 𝑍 is 𝐶-upper semicontinuous,
then 𝜉

𝑒
𝜑 is upper semicontinuous.

Proof. For any fixed 𝑟 ∈ R = (−∞, +∞), let

𝐵 = {(𝑥, 𝑢, 𝑦) ∈ 𝑋 × 𝑋 × 𝑌 : 𝜉
𝑒
(𝜑 (𝑥, 𝑢, 𝑦)) ≥ 𝑟} . (10)

In order to show that 𝜉
𝑒
𝜑 is upper semicontinuous, we only

need to show that 𝐵 is closed. Letting (𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∈ 𝐵 with

(𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) → (𝑥, 𝑢, 𝑦), then

𝜉
𝑒
𝜑 (𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ≥ 𝑟 (11)

and Lemma 7 shows that

𝜑 (𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∉ 𝑟𝑒 − int𝐶. (12)

Suppose to the contrary that (𝑥, 𝑢, 𝑦) ∉ 𝐵. We have

𝜉
𝑒
(𝜑 (𝑥, 𝑢, 𝑦)) < 𝑟. (13)

It follows from Lemma 7 that

𝜑 (𝑥, 𝑢, 𝑦) − 𝑟𝑒 ∈ − int𝐶. (14)

This implies that there exists a neighborhood 𝑉 of zero
element in 𝑍 such that

𝜑 (𝑥, 𝑢, 𝑦) − 𝑟𝑒 + 𝑉 ∈ − int𝐶. (15)

Since 𝜑 is 𝐶-upper semicontinuous, for the above 𝑉, there
exists a positive integral number 𝑁 such that, when 𝑛 > 𝑁,
one has

𝜑 (𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∈ 𝜑 (𝑥, 𝑢, 𝑦) + 𝑉 − 𝐶. (16)

From (15) and (16), when 𝑛 > 𝑁, we have

𝜑 (𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∈ 𝜑 (𝑥, 𝑢, 𝑦) + 𝑉 − 𝐶

⊂ 𝑟𝑒 − int𝐶 − 𝐶

⊂ 𝑟𝑒 − int𝐶,

(17)

which is in contradiction with (12). Thus, (𝑥, 𝑢, 𝑦) ∈ 𝐵 and so
𝜉
𝑒
𝜑 is upper semicontinuous. This completes the proof.

Example 9. Let 𝑋 = 𝑌 = R = (−∞, +∞) and 𝐶 = [0, +∞).
Let

𝜑 (𝑥, 𝑦, 𝑧) = {

2, if 𝑥 = 𝑦 = 𝑧 = 1;
𝑥 + 𝑦 − 𝑧, otherwise.

(18)

Then it is easy to check that 𝜑 is𝐶-upper semicontinuous and
so Lemma 8 shows that 𝜉

𝑒
𝜑 is upper semicontinuous for any

𝑒 ∈ int𝐶.

3. Bounded Rationality Model and Definition
of Well-Posedness for SVQEP

Let (𝑋, 𝑑
1
) and (𝑌, 𝑑

2
) be twometric spaces and𝑍 be a Banach

space with a norm ‖ ⋅ ‖. Let 𝐶
1
and 𝐶

2
be nonempty closed

convex pointed cones of 𝑍 with apex at the origin such that
int𝐶
1

̸= 0 and int𝐶
2

̸= 0.
In this section, we first define the problem space Λ of

SVQEP as follows: Λ = {(𝜑, 𝜓, 𝑆, 𝐺) : 𝜑 : 𝑋 × 𝑋 × 𝑌 →

𝑍 is 𝐶1-upper semicontinuous on 𝑋 × 𝑋 × 𝑌, 𝜓 :

𝑋 × 𝑌 × 𝑌 → 𝑍 is 𝐶
2
-upper semicontinuous on 𝑋 ×

𝑌 × 𝑌, 𝜑(𝑥, 𝑥, 𝑦) = 0 and 𝜓(𝑥, 𝑦, 𝑦) =

0 for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌, sup
(𝑥,𝑢,𝑦)∈𝑋×𝑋×𝑌

‖𝜑(𝑥, 𝑢, 𝑦)‖ <

+∞ sup
(𝑥,V,𝑦)∈𝑋×𝑌×𝑌‖𝜓(𝑥, V, 𝑦)‖ < +∞, 𝑆 : 𝑋 × 𝑌 󴁂󴀱 𝑋 and

𝐺 : 𝑋×𝑌 󴁂󴀱 𝑌 are continuouswith compact values, and there
exists (𝑥, 𝑦) ∈ 𝑋 × 𝑌 such that 𝑥 ∈ 𝑆(𝑥, 𝑦), 𝑦 ∈ 𝐺(𝑥, 𝑦) and
𝜑(𝑥, 𝑢, 𝑦) ∉ − int𝐶

1
, 𝜓(𝑥, V, 𝑦) ∉ − int𝐶

2
for all 𝑢 ∈ 𝑆(𝑥, 𝑦)

and V ∈ 𝐺(𝑥, 𝑦)}.
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For any 𝜆
𝑖
= (𝜑
𝑖
, 𝜓
𝑖
, 𝑆
𝑖
, 𝐺
𝑖
) ∈ Λ with 𝑖 = 1, 2, define

𝜌 (𝜆
1
, 𝜆
2
) = sup
(𝑥,𝑢,𝑦)∈𝑋×𝑋×𝑌

󵄩
󵄩
󵄩
󵄩
𝜑
1
(𝑥, 𝑢, 𝑦) − 𝜑

2
(𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩

+ sup
(𝑥,V,𝑦)∈𝑋×𝑌×𝑌

󵄩
󵄩
󵄩
󵄩
𝜓
1
(𝑥, V, 𝑦) − 𝜓

2
(𝑥, V, 𝑦)󵄩󵄩󵄩

󵄩

+ sup
(𝑥,𝑦)∈𝑋×𝑌

𝐻
1
(𝑆
1
(𝑥, 𝑦) , 𝑆

2
(𝑥, 𝑦))

+ sup
(𝑥,𝑦)∈𝑋×𝑌

𝐻
2
(𝐺
1
(𝑥, 𝑦) , 𝐺

2
(𝑥, 𝑦)) ,

(19)

where𝐻
1
and𝐻

2
denote the Hausdorff metric on 𝐾(𝑋) and

𝐾(𝑌), respectively.Then it is easy to see that (Λ, 𝜌) is a metric
space.

Next we define the bounded rationality model 𝑀 =

{Λ,𝑋, 𝑌, 𝑓,Φ} for (SVQEP) as follows.

(i) (Λ, 𝜌), (𝑋, 𝑑
1
) and (𝑌, 𝑑

2
) are metric spaces.

(ii) The feasible set of the symmetric vector quasi-
equilibrium problems 𝜆 ∈ Λ is defined by

𝑓 (𝜆) := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑥 ∈ 𝑆 (𝑥, 𝑦) , 𝑦 ∈ 𝐺 (𝑥, 𝑦)} . (20)

(iii) The solution set of problem 𝜆 ∈ Λ is defined by

𝐸 (𝜆) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : (𝑥, 𝑦) ∈ 𝑓 (𝜆) such that

𝜑 (𝑥, 𝑢, 𝑦) ∉ − int𝐶
1
∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) ∉ − int𝐶
2
∀V ∈ 𝐺 (𝑥, 𝑦)} .

(21)

(iv) For any (𝑥, 𝑦) ∈ 𝑋 × 𝑌, define

𝑑 ((𝑥, 𝑦) , 𝑓 (𝜆)) = 𝑑
1
(𝑥, 𝑆 (𝑥, 𝑦)) + 𝑑

2
(𝑦, 𝐺 (𝑥, 𝑦)) . (22)

(v) The rationality function of the problem 𝜆 ∈ Λ is
defined by

Φ(𝜆, (𝑥, 𝑦))

= max{ sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) , sup

V∈𝐺(𝑥,𝑦)
− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦)} ,

(23)

where 𝑒
1
∈ int𝐶

1
and 𝑒
2
∈ int𝐶

2
.

Lemma 10. (i) For any 𝜆 ∈ Λ and (𝑥, 𝑦) ∈ 𝑓(𝜆),
Φ(𝜆, (𝑥, 𝑦)) ≥ 0.

(ii) For any 𝜆 ∈ Λ, 𝐸 (𝜆) ̸= 0.
(iii) For 𝜆 ∈ Λ and 𝜖 ≥ 0with (𝑥, 𝑦) ∈ 𝑓(𝜆),Φ(𝜆, (𝑥, 𝑦)) ≤

𝜖 if and only if

𝜑 (𝑥, 𝑢, 𝑦) + 𝜖𝑒
1
∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) + 𝜖𝑒
2
∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(24)

In particular, (𝑥, 𝑦) ∈ 𝐸(𝜆) if and only if (𝑥, 𝑦) ∈ 𝑓(𝜆) and
Φ(𝜆, (𝑥, 𝑦)) = 0.

Proof. (i) For any 𝜆 ∈ Λ and (𝑥, 𝑦) ∈ 𝑓(𝜆), we have 𝑥 ∈

𝑆(𝑥, 𝑦) and 𝑦 ∈ 𝐺(𝑥, 𝑦). From Lemma 7(v), we know that
𝜉
𝑒1
𝜑(𝑥, 𝑥, 𝑦) = 0 and 𝜉

𝑒2
𝜓(𝑥, 𝑦, 𝑦) = 0, since 𝜑(𝑥, 𝑥, 𝑦) = 0

and 𝜓(𝑥, 𝑦, 𝑦) = 0. Thus, one has

Φ(𝜆, (𝑥, 𝑦))

= max{ sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) , sup

V∈𝐺(𝑥,𝑦)
− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦)}

≥ max {−𝜉
𝑒1
𝜑 (𝑥, 𝑥, 𝑦) , −𝜉

𝑒2
𝜓 (𝑥, 𝑦, 𝑦)} = 0.

(25)

(ii) It is obvious that 𝐸(𝜆) ̸= 0 for all 𝜆 ∈ Λ.
(iii) Assume that 𝜆 ∈ Λ and 𝜖 ≥ 0 such thatΦ(𝜆, (𝑥, 𝑦)) ≤

𝜖. Then we have

max{ sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) , sup

V∈𝐺(𝑥,𝑦)
− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦)} ≤ 𝜖

(26)

and so

sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) ≤ 𝜖 (27)

with

sup
V∈𝐺(𝑥,𝑦)

− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦) ≤ 𝜖. (28)

It follows that

𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) ≥ −𝜖, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜉
𝑒2
𝜓 (𝑥, V, 𝑦) ≥ −𝜖, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(29)

By Lemma 7(iii), one has

𝜑 (𝑥, 𝑢, 𝑦) + 𝜖𝑒
1
∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) + 𝜖𝑒
2
∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(30)

Conversely, assume that 𝜆 ∈ Λ and 𝜖 ≥ 0 with (𝑥, 𝑦) ∈
𝑓(𝜆) such that

𝜑 (𝑥, 𝑢, 𝑦) + 𝜖𝑒
1
∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) + 𝜖𝑒
2
∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(31)

Then Lemma 7(iii) shows that

𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) ≥ −𝜖, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜉
𝑒2
𝜑 (𝑥, V, 𝑦) ≥ −𝜖, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(32)

These inequalities imply that

sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) ≤ 𝜖,

sup
V∈𝐺(𝑥,𝑦)

− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦) ≤ 𝜖.

(33)
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Therefore, we get

Φ(𝜆, (𝑥, 𝑦))

= max{ sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) , sup

V∈𝐺(𝑥,𝑦)
− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦)}

≤ 𝜖.

(34)

This completes the proof.

Remark 11. Lemma 10 is a generalization of Lemma 3.1 of
Deng and Xiang [20].

Example 12. Let 𝑋 = 𝑌 = (−∞, +∞), 𝐶
1
= 𝐶
2
= 𝐶 =

[0, +∞), and 𝑒
1
= 𝑒
2
= 1. Assume that

𝑆 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) = [0, 1] , ∀𝑥, 𝑦 ∈ 𝑋 × 𝑌,

𝜑 (𝑥, 𝑢, 𝑦) = 𝑥 − 𝑢, 𝜓 (𝑥, V, 𝑦) = 𝑦 − V,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌, 𝑢 ∈ 𝑆 (𝑥, 𝑦) , V ∈ 𝐺 (𝑥, 𝑦) .

(35)

Then it is easy to see that

𝑓 (𝜆) = {(𝑥, 𝑦) : 𝑥 ∈ [0, 1] , 𝑦 ∈ [0, 1]} ,

Φ (𝜆, (𝑥, 𝑦))

= max{ sup
𝑢∈[0,1]

− 𝜉
1
(𝑥 − 𝑢) , sup

V∈[0,1]
− 𝜉
1
(𝑦 − V)} .

(36)

(i) If (𝑥, 𝑦) ∈ 𝑓(𝜆), then 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 1]. It is
obvious that

Φ(𝜆, (𝑥, 𝑦)) ≥ 0. (37)

(ii) For any 𝜆 ∈ Λ, one has

𝐸 (𝜆) = {(𝑥, 𝑦) : 𝑥 = 1, 𝑦 = 1} ̸= 0. (38)

(iii) It is easy to check that (𝑥, 𝑦) ∈ 𝐸(𝜆) if and only if
Φ(𝜆, (𝑥, 𝑦)) = 0. Moreover, taking 𝑥 = 0, 𝑦 = 1/2,
then (𝑥, 𝑦) = (0, 1/2) ∉ 𝐸(𝜆) and Φ(𝜆, (𝑥, 𝑦)) = 1 ̸=

0.

ByDefinition 1 and Lemma 10, for all 𝜀
𝑛
> 0with 𝜀

𝑛
→ 0,

the LP approximating solution set for the problem𝜆 is defined
as
𝐸 (𝜆, 𝜀

𝑛
) = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑑 ((𝑥, 𝑦) , 𝑓 (𝜆)) ≤ 𝜀

𝑛
,

Φ (𝜆, (𝑥, 𝑦)) ≤ 𝜀
𝑛
} ,

(39)

and the set of solution for the problem 𝜆 is defined as

𝐸 (𝜆) = 𝐸 (𝜆, 0)

= {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : (𝑥, 𝑦) ∈ 𝑓 (𝜆) , Φ (𝜆, (𝑥, 𝑦)) = 0} .

(40)

Next we define the Levitin-Polyakwell-posedness and the
Hadamard well-posedness for (SVQEP) as follows.

Definition 13. (i) If, for any (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆, 𝜀

𝑛
), 𝜀
𝑛
> 0 with

𝜀
𝑛
→ 0, there exists a subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)}

such that (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦) ∈ 𝐸(𝜆), then the problem 𝜆 ∈ Λ

is said to be generalized LP well-posedness.
(ii) If 𝐸(𝜆) = {(𝑥, 𝑦)} (a singleton), for any (𝑥

𝑛
, 𝑦
𝑛
) ∈

𝐸(𝜆, 𝜀
𝑛
), 𝜀
𝑛
> 0 with 𝜀

𝑛
→ 0, there exists a subsequence

{(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦) ∈ 𝐸(𝜆),

then the problem 𝜆 ∈ Λ is said to be LP well-posedness.

Definition 14. (i) If, for any 𝜆
𝑛
∈ Λ with 𝜆

𝑛
→ 𝜆 and any

(𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
), there exists a subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂

{(𝑥
𝑛
, 𝑥
𝑛
)}, such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦) ∈ 𝐸(𝜆), then the

problem 𝜆 ∈ Λ is said to be generalized Hadamard well-
posed.

(ii) If 𝐸(𝜆) = {(𝑥, 𝑦)} (a singleton), for any 𝜆
𝑛
∈ Λ with

𝜆
𝑛

→ 𝜆 and any (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
), we have (𝑥

𝑛
, 𝑦
𝑛
) →

(𝑥, 𝑦) ∈ 𝐸(𝜆), then the problem 𝜆 ∈ Λ is said to be Hadamard
well-posed.

By Definitions 13 and 14, we introduce the definition
of (generalized) well-posedness, which unifies its Levitin-
Polyak well-posedness and Hadamard well-posedness.

Definition 15. (i) If for any 𝜆
𝑛
∈ Λ with 𝜆

𝑛
→ 𝜆, (𝑥

𝑛
, 𝑦
𝑛
) ∈

𝐸(𝜆
𝑛
, 𝜀
𝑛
), 𝜀
𝑛
> 0 with 𝜀

𝑛
→ 0, there exists a subsequence

{(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦) ∈

𝐸(𝜆), then the problem 𝜆 ∈ Λ is said to be generalized
well-posed.

(ii) If 𝐸(𝜆) = {(𝑥, 𝑦)} (a singleton), for any 𝜆
𝑛
∈ Λ with

𝜆
𝑛
→ 𝜆, (𝑥

𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
, 𝜀
𝑛
), 𝜀
𝑛
> 0 with 𝜀

𝑛
→ 0, we have

(𝑥
𝑛
, 𝑦
𝑛
) → (𝑥, 𝑦) ∈ 𝐸(𝜆), then the problem 𝜆 ∈ Λ is said to

be well-posed.

Lemma 16. If the problem 𝜆 ∈ Λ is (generalized) well-posed,
then

(i) the problem𝜆 ∈ Λmust be (generalized) LPwell-posed;

(ii) the problem 𝜆 ∈ Λ must be (generalized) Hadamard
well-posed.

Proof. We only prove the statement of generalized well-
posedness. The proof of the well-posedness is similar to the
generalized well-posedness.

(i) For any (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆, 𝜀

𝑛
), letting 𝜆

𝑛
= 𝜆, we

know that 𝜆
𝑛

→ 𝜆 and (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
, 𝜀
𝑛
). Since the

problem 𝜆 ∈ Λ is generalized well-posed, there exists a
subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) →

(𝑥, 𝑦) ∈ 𝐸(𝜆). Thus, it follows that 𝜆 is generalized LP
well-posed.

(ii) For any 𝜆
𝑛
∈ Λ with 𝜆

𝑛
→ 𝜆 and (𝑥

𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
),

letting 𝜀
𝑛
= 0, it is easy to see that (𝑥

𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
, 𝜀
𝑛
). Since

the problem 𝜆 ∈ Λ is generalized well-posed, there exists a
subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} such that (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) →

(𝑥, 𝑦) ∈ 𝐸(𝜆). Therefore, we know that 𝜆 is generalized
Hadamard well-posed.

This completes the proof.
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4. Some Sufficient Conditions for
Well-Posedness of SVQEP

Assume (𝑋, 𝑑
1
) and (𝑌, 𝑑

2
) are compact metric spaces. In this

section, we give some sufficient conditions to guarantee the
existence of the well-posedness for SVQEP.

Lemma 17. (Λ, 𝜌) is a complete metric space.

Proof. Let {𝜆
𝑛
= (𝜑
𝑛
, 𝜓
𝑛
, 𝑆
𝑛
, 𝐺
𝑛
)} be a Cauchy sequence in Λ.

Then for any given 𝜀 > 0, when integral numbers𝑚 and 𝑛 are
large enough, we have

𝜌 (𝜆
𝑛
, 𝜆
𝑚
) = sup
(𝑥,𝑢,𝑦)∈𝑋×𝑋×𝑌

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛
(𝑥, 𝑢, 𝑦) − 𝜑

𝑚
(𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩

+ sup
(𝑥,V,𝑦)∈𝑋×𝑌×𝑌

󵄩
󵄩
󵄩
󵄩
𝜓
𝑛
(𝑥, V, 𝑦) − 𝜓

𝑚
(𝑥, V, 𝑦)󵄩󵄩󵄩

󵄩

+ sup
(𝑥,𝑦)∈𝑋×𝑌

𝐻
1
(𝑆
𝑛
(𝑥, 𝑦) , 𝑆

𝑚
(𝑥, 𝑦))

+ sup
(𝑥,𝑦)∈𝑋×𝑌

𝐻
2
(𝐺
𝑛
(𝑥, 𝑦) , 𝐺

𝑚
(𝑥, 𝑦)) ≤ 𝜀.

(41)

It follows that {𝜑
𝑛
(𝑥, 𝑢, 𝑦)} and {𝜓

𝑛
(𝑥, 𝑢, 𝑦)} are both Cauchy

sequences in 𝑍 for any fixed (𝑥, 𝑢, 𝑦) ∈ 𝑋 × 𝑋 × 𝑌 and
(𝑥, V, 𝑦) ∈ 𝑋 × 𝑌 × 𝑌, respectively. Moreover, we know that
{𝑆
𝑛
(𝑥, 𝑦)}, {𝐺

𝑛
(𝑥, 𝑦)} are both Cauchy sequences in𝐾(𝑋) and

𝐾(𝑌) for any fixed (𝑥, 𝑦) ∈ 𝑋 × 𝑌, respectively.
(I) Since 𝑍 is a complete space, there exists 𝑧 ∈ 𝑍 such

that lim
𝑛→∞

𝜑
𝑛
(𝑥, 𝑢, 𝑦) = 𝑧. Let 𝜑(𝑥, 𝑢, 𝑦) := 𝑧. We show

that 𝜑 is 𝐶
1
-upper semicontinuous and

sup
(𝑥,𝑢,𝑦)∈𝑋×𝑌×𝑌

󵄩
󵄩
󵄩
󵄩
𝜑 (𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩
< +∞. (42)

For any open neighborhood 𝑉 of zero in 𝑍, since 𝜑
𝑛
is 𝐶
1
-

upper semicontinuous, there exists an open neighborhood𝑈
of (𝑥, 𝑢, 𝑦) such that

𝜑
𝑛
(𝑥
󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) ∈ 𝜑
𝑛
(𝑥, 𝑢, 𝑦) +

𝑉

3

− 𝐶
1
,

∀ (𝑥
󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) ∈ 𝑈.

(43)

Since lim
𝑛→∞

𝜑
𝑛
(𝑥, 𝑢, 𝑦) = 𝜑(𝑥, 𝑢, 𝑦), for 𝑛 large enough, one

has

𝜑 (𝑥
󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) ∈ 𝜑
𝑛
(𝑥
󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) +

𝑉

3

,

𝜑
𝑛
(𝑥, 𝑢, 𝑦) ∈ 𝜑 (𝑥, 𝑢, 𝑦) +

𝑉

3

.

(44)

It follows from (43) and (44) that

𝜑 (𝑥
󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) ∈ 𝜑 (𝑥, 𝑢, 𝑦) + 𝑉 − 𝐶

1
, ∀ (𝑥

󸀠
, 𝑢
󸀠
, 𝑦
󸀠
) ∈ 𝑈

(45)

and so 𝜑 is 𝐶
1
-upper semicontinuous.

On the other hand, 𝜆
𝑛
∈ Λ shows that

sup
(𝑥,𝑢,𝑦)∈𝑋×𝑋×𝑌

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛
(𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩
< +∞. (46)

Since lim
𝑛→∞

𝜑
𝑛
(𝑥, 𝑢, 𝑦) = 𝜑(𝑥, 𝑢, 𝑦), it is easy to see that

sup
(𝑥,𝑢,𝑦)∈𝑋×𝑋×𝑌

󵄩
󵄩
󵄩
󵄩
𝜑 (𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩
< +∞. (47)

Moreover, from the fact that lim
𝑛→∞

𝜑
𝑛
(𝑥, 𝑢, 𝑦) =

𝜑(𝑥, 𝑢, 𝑦) and 𝜑
𝑛
(𝑥, 𝑥, 𝑦) = 0, we know that 𝜑(𝑥, 𝑥, 𝑦) = 0.

(II) Similar to the proof of (I), we know that there
exists a 𝐶

2
-upper semicontinuous mapping 𝜓 such that

lim
𝑛→∞

𝜓
𝑛
(𝑥, 𝑢, 𝑦) = 𝜓(𝑥, 𝑢, 𝑦) with 𝜓(𝑥, 𝑦, 𝑦) = 0 and

sup
(𝑥,𝑢,𝑦)∈𝑋×𝑌×𝑌

󵄩
󵄩
󵄩
󵄩
𝜓 (𝑥, 𝑢, 𝑦)

󵄩
󵄩
󵄩
󵄩
< +∞. (48)

(III) Since 𝑆
𝑛
(𝑥, 𝑦), 𝐺

𝑛
(𝑥, 𝑦) are both Cauchy sequences,

𝐾(𝑋) and 𝐾(𝑌) are complete, we know that there exist sets
𝑀 ∈ 𝐾(𝑋) and𝑁 ∈ 𝐾(𝑌) such that

lim
𝑛→∞

𝑆
𝑛
(𝑥, 𝑦) = 𝑀, lim

𝑛→∞
𝐺
𝑛
(𝑥, 𝑦) = 𝑁. (49)

Let 𝑆(𝑥, 𝑦) := 𝑀 and 𝐺(𝑥, 𝑦) := 𝑁. Then the fact that 𝑆
𝑛
and

𝐺
𝑛
are both continuous with compact set-values shows that 𝑆

and 𝐺 are both continuous with compact set-values.
(IV)We prove that there exist 𝑥 ∈ 𝑆(𝑥, 𝑦) and 𝑦 ∈ 𝐺(𝑥, 𝑦)

such that

𝜑 (𝑥, 𝑢, 𝑦) ∉ − int𝐶
1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) ∉ − int𝐶
2
, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(50)

In fact, since (𝜑
𝑛
, 𝜓
𝑛
, 𝑆
𝑛
, 𝐺
𝑛
) ∈ Λ, there exist sequences {𝑥

𝑛
}

and {𝑦
𝑛
} such that 𝑥

𝑛
∈ 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
), 𝑦
𝑛
∈ 𝐺
𝑛
(𝑥
𝑛
, 𝑦
𝑛
), and

𝜑
𝑛
(𝑥
𝑛
, 𝑢, 𝑦
𝑛
) ∉ − int𝐶

1
, ∀𝑢 ∈ 𝑆

𝑛
(𝑥
𝑛
, 𝑦
𝑛
) (51)

with

𝜓 (𝑥
𝑛
, V, 𝑦
𝑛
) ∉ − int𝐶

2
, ∀V ∈ 𝐺 (𝑥

𝑛
, 𝑦
𝑛
) . (52)

Since𝑋 and 𝑌 are compact, there exist subsequences {𝑥
𝑛𝑘
} ⊂

{𝑥
𝑛
} and {𝑦

𝑛𝑘
} ⊂ {𝑦

𝑛
} such that 𝑥

𝑛𝑘
→ 𝑥 ∈ 𝑋 and 𝑦

𝑛𝑘
→ 𝑦 ∈

𝑌. From the continuities of 𝑆 and 𝐺, we have

𝐻
1
(𝑆 (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥, 𝑦)) 󳨀→ 0,

𝐻
2
(𝐺 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝐺 (𝑥, 𝑦)) 󳨀→ 0.

(53)

When 𝑛,𝑚 are large enough, one has

sup
(𝑥,𝑦)∈𝑋×𝑌

𝐻
1
(𝑆
𝑛
(𝑥, 𝑦) , 𝑆

𝑚
(𝑥, 𝑦)) ≤ 𝜀 (54)

and so

𝐻
1
(𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)) ≤ 𝜀 (55)
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holds for 𝑛
𝑘
large enough. By the definition of the Hausdorff

metric, we have

𝑑
1
(𝑥, 𝑆 (𝑥, 𝑦))

≤ 𝑑
1
(𝑥, 𝑥
𝑛𝑘
) + 𝑑
1
(𝑥
𝑛𝑘
, 𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
))

+ 𝐻
1
(𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥, 𝑦))

= 𝑑
1
(𝑥, 𝑥
𝑛𝑘
)

+ 𝐻
1
(𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥, 𝑦))

≤ 𝑑
1
(𝑥, 𝑥
𝑛𝑘
)

+ 𝐻
1
(𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
))

+ 𝐻
1
(𝑆 (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , 𝑆 (𝑥, 𝑦)) .

(56)

This together with (55) shows that 𝑑
1
(𝑥, 𝑆(𝑥, 𝑦)) = 0 and so

𝑥 ∈ 𝑆(𝑥, 𝑦). Similarly, we can get 𝑦 ∈ 𝐺(𝑥, 𝑦).
Next we prove that

𝜑 (𝑥, 𝑢, 𝑦) ∉ − int𝐶
1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) . (57)

By contradiction, we assume that there exists 𝑢
0
∈ 𝑆(𝑥, 𝑦)

such that

𝜑 (𝑥, 𝑢
0
, 𝑦) ∈ − int𝐶

1
. (58)

Then there exists an open neighborhood 𝑉 of zero in 𝑍 such
that

𝜑 (𝑥, 𝑢
0
, 𝑦) + 𝑉 ∈ − int𝐶

1
. (59)

By Lemma 5, there is a sequence {𝑢
𝑛𝑘
}with 𝑢

𝑛𝑘
∈ 𝑆
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
)

such that 𝑢
𝑛𝑘

→ 𝑢
0
. Since 𝜑

𝑛𝑘
is 𝐶
1
-upper semicontinuous

and 𝜑
𝑛𝑘
(𝑥, 𝑢
0
, 𝑦) → 𝜑(𝑥, 𝑢

0
, 𝑦), we have

𝜑
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑢
𝑛𝑘
, 𝑦
𝑛𝑘
) ∈ 𝜑
𝑛𝑘
(𝑥, 𝑢
0
, 𝑦) +

𝑉

2

− 𝐶
1
,

𝜑
𝑛𝑘
(𝑥, 𝑢
0
, 𝑦) ∈ 𝜑 (𝑥, 𝑢

0
, 𝑦) +

𝑉

2

.

(60)

From (59) and (60), we get

𝜑
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑢
𝑛𝑘
, 𝑦
𝑛𝑘
) ∈ −𝐶

1
− int𝐶

1
⊂ − int𝐶

1
, (61)

which is in contradiction with the fact that 𝜑
𝑛𝑘
(𝑥
𝑛𝑘
, 𝑢, 𝑦
𝑛𝑘
) ∉

− int𝐶
1
for all 𝑢 ∈ 𝑆

𝑛𝑘
(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
).

Similarly, we can show that 𝑦 ∈ 𝐺(𝑥, 𝑦) satisfies

𝜓 (𝑥, V, 𝑦) ∉ − int𝐶
2
, ∀V ∈ 𝐺 (𝑥, 𝑦) . (62)

(V) Let 𝜆 = (𝜑, 𝜓, 𝑆, 𝐺). Then 𝜆 ∈ Λ and 𝜆
𝑛

→ 𝜆.
Therefore, (Λ, 𝜌) is a complete metric space. This completes
the proof.

Lemma 18. 𝑓 : Λ 󴁂󴀱 𝑋 × 𝑌 is an 𝑢𝑠𝑐𝑜mapping.

Proof. It is easy to see that 𝑓(𝜆) is closed for any given 𝜆 ∈ Λ.
In fact, for any

(𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝑓 (𝜆)

= {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑥 ∈ 𝑆 (𝑥, 𝑦) , 𝑦 ∈ 𝐺 (𝑥, 𝑦)}

(63)

with 𝑥
𝑛
→ 𝑥 and 𝑦

𝑛
→ 𝑦, we have 𝑥

𝑛
∈ 𝑆(𝑥

𝑛
, 𝑦
𝑛
) and

𝑦
𝑛
∈ 𝐺(𝑥

𝑛
, 𝑦
𝑛
) and so

𝑑
1
(𝑥, 𝑆 (𝑥, 𝑦)) ≤ 𝑑

1
(𝑥, 𝑥
𝑛
) + 𝑑
1
(𝑥
𝑛
, 𝑆 (𝑥, 𝑦))

≤ 𝑑
1
(𝑥, 𝑥
𝑛
) + 𝐻
1
(𝑆 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑆 (𝑥, 𝑦)) .

(64)

It follows from the continuity of 𝑆 that 𝑑
1
(𝑥, 𝑆(𝑥, 𝑦)) = 0

and so 𝑥 ∈ 𝑆(𝑥, 𝑦). Similarly, we can get 𝑦 ∈ 𝐺(𝑥, 𝑦). Thus,
(𝑥, 𝑦) ∈ 𝑓(𝜆) and so 𝑓(𝜆) is closed. Since 𝑋 × 𝑌 is compact,
we know that 𝑓(𝜆) is compact for any given 𝜆 ∈ Λ. In order
to show that 𝑓 is an u.s.c. mapping, from Lemma 4, it is
sufficient to show that Graph(𝑓) = {(𝜆, (𝑥, 𝑦)) : (𝑥, 𝑦) ∈

𝑓(𝜆)} is closed.
Let (𝜆

𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) ∈ Graph(𝑓) with (𝜆

𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) →

(𝜆, (𝑥, 𝑦)). Then the completeness of (Λ, 𝜌) shows that 𝜆 ∈ Λ.
Moreover, we have 𝑥

𝑛
∈ 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) and 𝑦

𝑛
∈ 𝐺
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) and

𝐻
1
(𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) , 𝑆 (𝑥

𝑛
, 𝑦
𝑛
)) 󳨀→ 0,

𝐻
2
(𝐺
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) , 𝐺 (𝑥

𝑛
, 𝑦
𝑛
)) 󳨀→ 0,

𝐻
1
(𝑆 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑆 (𝑥, 𝑦)) 󳨀→ 0,

𝐻
2
(𝐺 (𝑥
𝑛
, 𝑦
𝑛
) , 𝐺 (𝑥, 𝑦)) 󳨀→ 0.

(65)

By the definition of the Hausdorff metric, it follows that

𝑑
1
(𝑥, 𝑆 (𝑥, 𝑦)) ≤ 𝑑

1
(𝑥, 𝑥
𝑛
) + 𝑑
1
(𝑥
𝑛
, 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
))

+ 𝐻
1
(𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) , 𝑆 (𝑥

𝑛
, 𝑦
𝑛
))

+ 𝐻
1
(𝑆 (𝑥
𝑛
, 𝑦
𝑛
) , 𝑆 (𝑥, 𝑦)) 󳨀→ 0,

𝑑
2
(𝑦, 𝐺 (𝑥, 𝑦)) ≤ 𝑑

2
(𝑦, 𝑦
𝑛
) + 𝑑
2
(𝑦
𝑛
, 𝐺
𝑛
(𝑥
𝑛
, 𝑦
𝑛
))

+ 𝐻
2
(𝐺
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) , 𝐺 (𝑥

𝑛
, 𝑦
𝑛
))

+ 𝐻
2
(𝐺 (𝑥
𝑛
, 𝑦
𝑛
) , 𝐺 (𝑥, 𝑦)) 󳨀→ 0.

(66)

From (66), we have (𝜆, (𝑥, 𝑦)) ∈ Graph(𝑓). This completes
the proof.

Lemma 19. For any (𝜆, (𝑥, 𝑦)) ∈ Λ × 𝑋 × 𝑌, the rationality
function Φ is lower semicontinuous at (𝜆, (𝑥, 𝑦)).

Proof. For any given 𝑟 ∈ 𝑅 = (−∞, +∞), let

𝑀 = {(𝜆, (𝑥, 𝑦)) ∈ Λ × 𝑋 × 𝑌 : Φ (𝜆, (𝑥, 𝑦)) ≤ 𝑟} . (67)

In order to show Φ(𝜆, (𝑥, 𝑦)) is lower semicontinuous, we
only need to show that 𝑀 is closed. Let (𝜆

𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) ∈ 𝑀

with (𝜆
𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) → (𝜆, (𝑥, 𝑦)). We show that (𝜆, (𝑥, 𝑦)) ∈

𝑀, that is,Φ(𝜆, (𝑥, 𝑦)) ≤ 𝑟, which is equivalent to

max{ sup
𝑢∈𝑆(𝑥,𝑦)

− 𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) , sup

V∈𝐺(𝑥,𝑦)
− 𝜉
𝑒2
𝜓 (𝑥, V, 𝑦)} ≤ 𝑟,

(68)



8 Journal of Applied Mathematics

where 𝑒
1
∈ int𝐶

1
and 𝑒
2
∈ int𝐶

2
, that is,

𝜉
𝑒1
𝜑 (𝑥, 𝑢, 𝑦) ≥ −𝑟, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜉
𝑒2
𝜓 (𝑥, V, 𝑦) ≥ −𝑟, ∀V ∈ 𝐺 (𝑥, 𝑦) ,

(69)

which is equivalent to (by Lemma 7)

𝜑 (𝑥, 𝑢, 𝑦) ∉ −𝑟𝑒
1
− int𝐶

1
, ∀𝑢 ∈ 𝑆 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) ∉ −𝑟𝑒
2
− int𝐶

2
, ∀V ∈ 𝐺 (𝑥, 𝑦) .

(70)

By way of contradiction, assume there exists 𝑢
0
∈ 𝑆(𝑥, 𝑦) or

V
0
∈ 𝐺(𝑥, 𝑦) such that

𝜑 (𝑥, 𝑢
0
, 𝑦) ∈ −𝑟𝑒

1
− int𝐶

1 (71)

or

𝜓 (𝑥, V
0
, 𝑦) ∈ −𝑟𝑒

2
− int𝐶

2
. (72)

Without loss of generality, assume that (71) holds.Then there
exists a neighborhood 𝑉 of zero in 𝑍 such that

𝜑 (𝑥, 𝑢
0
, 𝑦) + 𝑉 ⊂ −𝑟𝑒

1
− int𝐶

1
. (73)

For 𝑢
0

∈ 𝑆(𝑥, 𝑦), since 𝑆(𝑥, 𝑦) and 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) are

compact with 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) → 𝑆(𝑥, 𝑦), by Lemma 5, there

exists 𝑢
𝑛
∈ 𝑆
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) with 𝑢

𝑛
→ 𝑢
0
. Since 𝜑

𝑛
is 𝐶
1
-upper

semicontinuous and 𝜑
𝑛
(𝑥, 𝑢
0
, 𝑦) → 𝜑(𝑥, 𝑢

0
, 𝑦), we have

𝜑
𝑛
(𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∈ 𝜑
𝑛
(𝑥, 𝑢
0
, 𝑦) +

𝑉

2

− 𝐶
1
,

𝜑
𝑛
(𝑥, 𝑢
0
, 𝑦) ∈ 𝜑 (𝑥, 𝑢

0
, 𝑦) +

𝑉

2

.

(74)

It follows from (73) and (74) that

𝜑
𝑛
(𝑥
𝑛
, 𝑢
𝑛
, 𝑦
𝑛
) ∈ −𝑟𝑒

1
− int𝐶

1
. (75)

On the other hand, since (𝜆
𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) ∈ 𝑀, we know that

Φ(𝜆
𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝑟 and so

max{ sup
𝑢∈𝑆𝑛(𝑥𝑛,𝑦𝑛)

− 𝜉
𝑒1
𝜑
𝑛
(𝑥
𝑛
, 𝑢, 𝑦
𝑛
) ,

sup
V∈𝐺𝑛(𝑥𝑛,𝑦𝑛)

− 𝜉
𝑒2
𝜓
𝑛
(𝑥
𝑛
, V, 𝑦
𝑛
)} ≤ 𝑟.

(76)

It follows that

𝜉
𝑒1
𝜑
𝑛
(𝑥
𝑛
, 𝑢, 𝑦
𝑛
) ≥ −𝑟, ∀𝑢 ∈ 𝑆

𝑛
(𝑥
𝑛
, 𝑦
𝑛
) . (77)

Now Lemma 10 implies that

𝜑
𝑛
(𝑥
𝑛
, 𝑢, 𝑦
𝑛
) ∉ −𝑟𝑒

1
− int𝐶

1
, ∀𝑢 ∈ 𝑆

𝑛
(𝑥
𝑛
, 𝑦
𝑛
) , (78)

which is in contradiction with (75). Thus, we know that
Φ(𝜆, (𝑥, 𝑦)) is lower semicontinuous. This completes the
proof.

Theorem 20. For all 𝜆 ∈ Λ, the problem 𝜆 is generalized well-
posed. Moreover, for all 𝜆 ∈ Λ, if 𝐸(𝜆) = {(𝑥, 𝑦)} (a singleton),
then the problem 𝜆 is well-posed.

Proof. Let 𝜆
𝑛
∈ Λ with 𝜆

𝑛
→ 𝜆 and (𝑥

𝑛
, 𝑦
𝑛
) ∈ 𝐸(𝜆

𝑛
, 𝜀
𝑛
) with

𝜀
𝑛
→ 0. Then

𝑑 ((𝑥
𝑛
, 𝑦
𝑛
) , 𝑓 (𝜆

𝑛
)) ≤ 𝜀

𝑛
, (79)

Φ(𝜆
𝑛
, (𝑥
𝑛
, 𝑦
𝑛
)) ≤ 𝜀

𝑛
. (80)

By (79), there exists (𝑥
𝑛
, 𝑦
𝑛
) ∈ 𝑓(𝜆

𝑛
) such that 𝑑((𝑥

𝑛
, 𝑦
𝑛
),

(𝑥
𝑛
, 𝑦
𝑛
)) → 0. Since 𝑓 is an usco mapping, by Lemma 6,

there exists a subsequence {(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
)} ⊂ {(𝑥

𝑛
, 𝑦
𝑛
)} such that

(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦) ∈ 𝑓(𝜆). It follows that

𝑑 ((𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , (𝑥, 𝑦))

≤ 𝑑 ((𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
))

+ 𝑑 ((𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) , (𝑥, 𝑦)) 󳨀→ 0

(81)

and so

(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) 󳨀→ (𝑥, 𝑦) ∈ 𝑓 (𝜆) . (82)

On the other hand, the lower semicontinuity ofΦ shows that

0 ≤ Φ (𝜆, (𝑥, 𝑦)) ≤ lim inf Φ(𝜆
𝑛
, (𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
))

≤ lim inf 𝜀
𝑛
= 0,

(83)

which implies that Φ(𝜆, (𝑥, 𝑦)) = 0. It follows from (82) and
(83) that (𝑥, 𝑦) ∈ 𝐸(𝜆) and so the problem 𝜆 is generalized
well-posed.

Moreover, we show that, if 𝐸(𝜆) = {(𝑥, 𝑦)}, then the
problem 𝜆 is well-posed. If the sequence {(𝑥

𝑛
, 𝑦
𝑛
)} does not

converge to (𝑥, 𝑦), then there exist an open neighborhood 𝑂
of (𝑥, 𝑦) and a subsequence {(𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
)} of {(𝑥

𝑛
, 𝑦
𝑛
)} such that

(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) ∉ 𝑂. By the proof of the first part, we know that

(𝑥
𝑛𝑘
, 𝑦
𝑛𝑘
) → (𝑥, 𝑦). This is in contradiction with (𝑥

𝑛𝑘
, 𝑦
𝑛𝑘
) ∉

𝑂. This completes the proof.

Example 21. Let 𝑋 = 𝑌 = [0, 2] × [0, 2], 𝑍 = (−∞, +∞) ×

(−∞, +∞), 𝐶 = [0, +∞) × [0, +∞), and 𝑒 = (1, 1). Let

𝑆 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) = [0, 1] × [0, 1] , ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌,

𝜑 (𝑥, 𝑢, 𝑦) = 𝑥 − 𝑢, 𝜓 (𝑥, V, 𝑦) = 𝑦 − V,

∀𝑥, 𝑢 ∈ 𝑋, ∀𝑦, V ∈ 𝑌.
(84)

Then it is easy to see that 𝜆 = (𝜑, 𝜓, 𝑆, 𝐺) ∈ Λ and

𝑓 (𝜆) = {(𝑥, 𝑦) | 𝑥 ∈ [0, 1] × [0, 1] , 𝑦 ∈ [0, 1] × [0, 1]} (85)

with
𝐸 (𝜆) = {(𝑥, 𝑦) ∈ 𝑓 (𝜆) | 𝑥 = (𝑥

1
, 𝑥
2
) , 𝑦 = (𝑦

1
, 𝑦
2
) ,

max {𝑥
1
, 𝑥
2
} = 1,max {𝑦

1
, 𝑦
2
} = 1} .

(86)

Furthermore, by Theorem 20, the problem 𝜆 is generalized
well-posedness.
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Remark 22. When 𝜑 = 𝜓 and 𝑆 = 𝐺, the well-posedness for
the problem 𝜆 was studied by [20]. Theorem 20 presented in
this paper can be considered as a generalization and extension
of Theorem 4.1 in [20].

FromTheorem 20, we have the following corollaries.

Corollary 23. For all 𝜆 ∈ Λ, the problem 𝜆 is (generalized)
Hadamard well-posed.

Corollary 24. For all 𝜆 ∈ Λ, the problem 𝜆 is (generalized) LP
well-posed.

Remark 25. When 𝜑 = 𝜓, 𝑆 = 𝐺, the generalized
Hadamard well-posedness for the problem 𝜆 was studied
by [16]. Corollary 23 presented in this paper generalizes and
extends Theorem 4.2 in [16].

Remark 26. We note that, when

𝜑 (𝑥, 𝑢, 𝑦) = 𝑓 (𝑢, 𝑦) − 𝑓 (𝑥, 𝑦) ,

𝜓 (𝑥, V, 𝑦) = 𝑔 (𝑥, V) − 𝑔 (𝑥, 𝑦) ,
(87)

the generalized LP well-posedness for the symmetric vector
quasi-equilibrium problem was studied by [19].
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