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Limited number of berths can result in a subsequent bus stopping at the upstream of a bus stop when all berths are occupied.When
this traffic phenomenon occurs, passengers waiting on the platform usually prefer walking to the stopped bus, which leads to
additional walking time before boarding the bus. Therefore, passengers’ travel time consumed at a bus stop is divided into waiting
time, additional walking time, and boarding time. This paper proposed a mathematical model for analyzing passengers’ travel
time at conventional bus stop based on theory of stochastic service system. Field-measured and simulated data were designated to
demonstrate the effectiveness of the proposed model. By analyzing the results, conclusion was conducted that short headway can
reduce passengers’ waiting time at bus stop. Meanwhile, the theoretical analysis explained the inefficiency of bus stops with more
than three berths from the perspective of passengers’ additional walking time. Additional walking time will increase in a large scale
when the number of berths at a bus stop exceedsthe threshold of three.

1. Introduction

Bus stop is the connection between transit passenger and
bus service system. Both the transit system and passenger
satisfaction are under the influence of bus stop [1]. Travel
time, as one of the most crucial factors determining the
perception of transit service of quality, has been researched
from various perspectives. Yetiskul and Senbil quantified the
underlying determinants of public bus transit travel-time
variability using data collected in Turkey’s capital of Ankara
[2]. Yu et al. adopted methods of support vector machine,
artificial neural network, 𝑘nearest neighbours algorithm, and
linear regression to predict the travel time of multiple routes
based on the real-world data inHongKong [3]. Abkowitz and
Engelstein conducted analysis on the factors that influence
the travel time of transit routes [4]. Strategies to decrease
the travel time between bus stops were also studied by a
number of researchers. Existing researches suggest that bus
stop-skipping service can reduce vehicles’ running time in
a large scale for both the new stop-skipping service and the
regular service running in parallel [5–7].

Besides the research on travel time on route level, a
number of researchers have concentrated on the stop-level

travel time. Guenthner and Hamat studied the effect of com-
plicated fare structure on dwell time [8]. Levine and Torng
made detailed regression analysis to identify the low floor’s
influence on dwell time [9]. In recent years, a number of stop-
level researches involved passengers’ behavior in transport
hubs, of which the waiting time at bus stops is one of themost
widespread concerns. For example, Marguier and Ceder for-
mulated the waiting time at bus stops of overlapping routes,
where some routes are sharing common stops [10]. Chang
and Hsu analyzed the passenger waiting time of an intercity
transit station with feeder bus services and quantified the
relations between passenger waiting time of intercity transit
system and the reliability of feeder bus services [11]. Ohmori
et al. examined passengers’ waiting behaviour at bus stops
and relationships betweenwaiting behaviour, environment of
bus stops, and passengers’ attitudes and preferences towards
bus stops [12]. The review of past researches on waiting
time at bus stops can be classified into three categories. The
first category studied the waiting time using microscopic
simulation models [13, 14]. The second involved studies that
compared the actual waiting time with the time perceived by
passengers [15, 16]. In the third category, waiting time at bus
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stops was estimated based on the vehicles’ arrival information
[17, 18].

Using theory of classical queueing, the waiting time can
be deduced based on the distribution of arrival headway
and service time, as well as the number of service counter
[19]. However, in some practical queueing systems, the
service process can be discontinuous such as buses loading
passengers. The boarding activity starts only when buses
dwell in the scheduled berth and ends during the headway
between two adjacent buses. Instead of classical queueing
models, vacation queueing models can be applied to estimate
the average waiting time at bus stops [20]. Limited number
of berths can result in a subsequent bus vehicle stopping at
the upstream of a bus stop when all berths are unavailable.
Thus passengers waiting on the platform have to walk to
the stopped bus. Additional walking time deduced from
theory of probability and queueing was proposed for the
first time in this paper to consider this situation. Therefore,
passengers’ travel time consumed at a bus stop is divided into
waiting time, additional walking time, and boarding time.
This paper firstly analyzes the traffic characteristics of bus
and pedestrian at bus stops. Then a mathematical model for
analyzing passengers’ travel time at bus stops based on theory
of stochastic service system was proposed. Next, field data
was collected and simulationmodel was developed to identify
the effectiveness of the proposed model. Finally, sensitivity
analysis and conclusion were conducted.

2. Traffic Characteristics at Bus Stop

Wemake the assumption that passengers of bus route 𝑖 arrive
at the scheduled bus stop at random. Passengers subsequently
join the queueing team on the specified platform waiting
for the bus’s arrival. Figure 1 illustrates passengers’ waiting
process on platform at bus stop.

When approaching a bus stop, the bus usually decelerates
to dwell in a berth at the bus stop. It takes approximately 9 s
for the bus to complete the whole deceleration process before
entering the scheduled bus stops [21]. The berth is designed
according to the length of bus. Meanwhile, the number of
berths at a bus stop should be limited becausemore than three
berths can result in inefficiency [22]. However, the limited
number of berths can lead to a subsequent bus vehicle that has
to stop at the upstream of bus stops if all berths are occupied.
When this traffic phenomenon occurs, passengers waiting
on the platform usually prefer walking to the stopped bus,
which leads to additional walking time before boarding the
vehicle. Therefore, additional walking time besides waiting
time and boarding time should be under consideration when
estimating the travel time consumed by passengers at a bus
stop.

3. Formulate Passengers’
Travel Time at Bus Stop

In this paper, passengers’ travel time at bus stops is divided
into three parts: waiting time on the platform, additional
walking time, and boarding time. Let 𝑇 denote the average
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Figure 1: Passengers’ waiting process at bus stop.

travel time consumed by passengers at a bus stop. The
relationship can be written as

𝑇 = 𝑡
𝑤
+ 𝑡
𝛼
+ 𝑡
𝑏
, (1)

where 𝑡
𝑤
, 𝑡
𝛼
, and 𝑡

𝑏
represent average waiting time, additional

average walking time, and average boarding time, respec-
tively.

3.1. Waiting Time. Theory of stochastic service system can be
applied to conduct quantitative analysis for acquiring deep
comprehension on the traffic mechanism introduced above.
There exist two service processes, namely, buses entering
berths and passengers boarding vehicles. In the former ser-
vice process, a bus stop is the service counter. Similarly, buses
are service counters when passengers are boarding vehicles.
Based onqueueing theory, the service timedwelling in a berth
is assumed to obey negative exponential distribution. Buses
and passengers arrive according to a Poisson process. It is
worth noting that the service processes of vehicles entering
berths and passengers boarding vehicles are different. When
buses enter berths, the bus stop is always available. That is
to say, the bus stop usually continues to be open to buses
without prohibiting dwelling, which can be assumed as a
classical queueing model. However, the practical process of
serving passengers always becomes unavailable until the next
vehicle comes. There exists absent service period due to
headways between two adjacent buses. Classical queueing
models cannot be applied to solve this problem. Instead, this
case can be modeled with vacation queueing models. In the
vacation queueing models, it allows servers to take vacations
due to reasons such as taking a break and being checked for
maintenance.

According to theory of vacation queueing, the waiting
time in equilibrium-state can be divided into several inde-
pendent random variables [20]. These variables are classified
into two kinds, one of which is the waiting time derived
from the corresponding classical queueing model without
consideration of vacations and the rest of the parts are
derivatives corresponding to vacation policies. Considering
a classical queueing model and the corresponding vacation
queueing model, let𝑊

𝑐
denote the waiting time of a classical

queueing model in equilibrium-state. Correspondingly, 𝑊V
represents the same performance in equilibrium-state of the
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corresponding vacation queueing model. The relationship
among these variables can be formulated as

𝑊V = 𝑊𝑐 +𝑊𝑑 +𝑊𝑟, (2)

where𝑊
𝑑
and𝑊

𝑟
represent the derivative waiting time due

to vacation policies.
In general, the concrete arithmetic expression cannot

be deduced easily from the complicated Markov process.
Probability generating function and Laplace transform are
introduced to simplify these processes. Thus,

𝑊
∗

V (𝑠) = 𝑊
∗

𝑐
(𝑠)𝑊
∗

𝑑
(𝑠)𝑊
∗

𝑟
(𝑠) , (3)

where 𝑊∗(𝑠) is the Laplace transform (LST) of the corre-
sponding variables in equilibrium-state.

We make the assumption that passengers of bus route 𝑖
arrive at the scheduled bus stop according to a Poisson pro-
cess with rate 𝜆𝑖

𝑝
. Passengers subsequently join the queueing

team on the specified platform waiting for the bus’s arrival.
That is to say, they complywith first-in-first-out (FIFO) queue
discipline. When vehicles of bus route 𝑖 arrive in the berth,
process of serving passengers for boarding occurs with a
maximum threshold of design capacity. Different from the
arrival process of passengers, boarding time in the service
process is assumed to obey a general distribution, denoted by
𝐵(𝑡). Let

1

𝜇𝑖
𝑝

= ∫

∞

0

𝑡𝑑𝐵 (𝑡) , 𝑏
(2)

= ∫

∞

0

𝑡
2

𝑑𝐵 (𝑡) ,

𝐵
∗

(𝑠) = ∫

∞

0

𝑒
−𝑠𝑡

𝑑𝐵 (𝑡) .

(4)

Obviously, passengers are not always being served by buses
unless vehicles have pulled into the scheduled berths. The
waiting time of passengers on the platform is different from
that in a classical queueing system. There exists absent
service period when process of serving passengers becomes
unavailable due to headway between two adjacent buses.
Classical queueing models cannot be applied to estimate the
average waiting time. Instead, this case can be modeled with
the vacation queueing models. Regarding headways between
two adjacent vehicles as vacations taken by servicers, the
vacation queueingmodel has vacation process besides arrival
process, service process, and queue process in the classical
queueing system. The vacation policy is determined by the
traffic characteristics of vehicles’ headways. To reflect the
actual vacation process accurately, the following assumptions
were made during the modeling process to estimate the
average waiting time of passengers on the platform: (i) the
moment when the door of a bus vehicle opens is the starting
time of service process; (ii) the achievement of serving the
last passenger is considered as the starting time of vacation
process; (iii) vacation duration follows negative exponential
distribution on the basis of Poisson process of vehicle’s arrival.

Limited dwell time and design capacity of vehicles result
in the fact that the number of passengers loaded during the
dwell time cannot exceed the maximum threshold 𝑀. The
stopped vehicle departures when either (i)𝑀 passengers have

been loaded or (ii) the queue becomes empty. Research by
Takagi [23] was used to model the average waiting time of
passengers on the platform. Choosing the moment when the
door of a bus opens and the achievement instants of serving
the last passenger as Markov embedded points, the Laplace
transform of𝑊

𝑑
and𝑊

𝑟
is deduced as

𝑊
∗

𝑑
(𝜆
𝑖

𝑝
(1 − 𝑧)) =
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∗

(𝜆
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,
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(𝑧) ,

(5)

where 𝑉(𝑥) denotes the headway duration, of which the
Laplace transform is 𝑉∗(𝑥). 𝐿

𝑟
(𝑧) represents the probability

generating function of additional queue length due to vaca-
tion effect. Let 𝑞

𝑘
be the joint probability that the embedded

point is starting serving passengers when 𝑘 passengers are
present on the platform at this instant, and let ℎ

𝑗0
denote the

joint probability that the embedded point is the𝑗th serving
passengers completion instant in a service period and that
no passengers are present on the platform at this instant. By
introducing 𝐻

0
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𝑀−1

𝑗=1
ℎ
𝑗0
𝑧
𝑀−𝑗, expression of 𝐿
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(6)

where 𝜌
𝑝
= 𝜆
𝑖

𝑝
/𝜇
𝑖

𝑝
is called traffic intensity and represents the

average number of passengers during the boarding time of a
passenger.

The average waiting time of passengers on the platform,
𝑡
𝑤
, can be obtained as

𝑡
𝑤
= 𝐸 (𝑊V) =

𝜆
𝑖
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(2)
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(7)
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where
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(8)

Consider that the bus vehicles arrive with rate 𝜆𝑖
𝑏
and the

dwell time in the berth is assumed as service time, which
obeys negative exponential distribution with mean 1/𝜇𝑖

𝑏
.

The average number of passengers loaded at the bus stop
is

𝑄 =
𝜆
𝑖

𝑝

𝜆𝑖
𝑏

=
𝜇
𝑖

𝑃

𝜇𝑖
𝑏

. (9)

In this paper, the distribution of ℎ
𝑗0
is estimated as

ℎ
𝑗0
=

{{

{{

{

1/𝑗

∑
𝑄

𝑗=1
1/𝑗

, 1 ≤ 𝑗 ≤ 𝑄,

0, 𝑄 ≤ 𝑗 ≤ 𝑀.

(10)

3.2. Additional Walking Time. Limited number of berths can
result in a subsequent bus vehicle stopping at the upstream
of a bus stop if all berths are occupied. When this traffic phe-
nomenon occurs, passengers waiting on the platform usually
prefer walking to the stopped bus, which leads to additional
walking time before boarding bus vehicle. Additional walking
time consumed by passengers can be derived by dividing
additional walking distance by passengers’ walking speed.
Thus, the average additional walking time can be calculated
as

𝑡
𝛼
=
𝑑
𝛼

V
𝑝

, (11)

where 𝑑
𝛼
and V
𝑝
denote average additional walking distance

and walking speed of passengers.
This paper deduces the average additional walking dis-

tance, 𝑑
𝛼
, based on theory of probability and queueing.

Consider a bus steam with arrival rate 𝜆
𝑏
. Buses pull into

the scheduled stop with 𝑚 berths. Overtaking is prohibited
when buses approach stops. Therefore, buses follow the first-
in-first-out (FIFO) queueing discipline. The dwell time in
the berth is assumed as service time, which obeys negative
exponential distribution with mean 1/𝜇

𝑏
. Let 𝑙(𝑡) denote the

number of buses dwelling at the stop at time 𝑡. If 𝑙(𝑡) ≤ 𝑚, the
subsequent coming vehicle can be served simultaneously by
dwelling in the unoccupied berth. However, the subsequent
coming vehicle will stop at the upstream of the scheduled bus
stop when no berth is available to dwell in. According to the
𝑀/𝑀/𝑚 queueing model, the equilibrium-state distribution
of 𝑙(𝑡) is

𝜋
0
= [

𝑚−1

∑

𝑟=0

𝑎
𝑟

𝑟!
+
𝑎
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𝑚!

1
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𝑏
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−1

,

𝜋
𝑟
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{{
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𝛼
𝑟

𝑟!
𝜋
0
, 𝑟 = 1, 2, . . . , 𝑚,

𝜌
𝑟−𝑚

𝑏
𝜋
𝑚
, 𝑟 = 𝑚 + 1, 𝑚 + 2, . . . ,

(12)

where 𝛼 = 𝜆
𝑏
/𝜇
𝑏
and 𝜌
𝑏
= 𝛼/𝑚.

The probability that a bus stops at the upstream of the
scheduled bus stop is

𝑃 (𝑙 (𝑡) ≥ 𝑚) =

∞

∑

𝑟=0

𝜋
𝑟+𝑚
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𝑚
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𝜋
0
, (13)

which means that the additional walking activity happens
with the probability of 𝜋

𝑚
/(1 − 𝜌

𝑏
). Further, let 𝐿 and ℎ

𝑠

denote length of a bus and space headway between stopped
vehicles.Then the average additional walking distance can be
calculated as

𝑑
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=

∞
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Then the average additional walking time can be calculated
as

𝑡
𝛼
=
(𝑚𝜌
𝑏
)
𝑚

(𝐿 + ℎ
𝑠
) 𝜋
0

V
𝑝
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𝑏
)
2

𝑚!

. (15)

3.3. Per Passenger Boarding Time. The boarding time per
passenger is under the influence of a number of factors
[24], of which vehicle types, in-vehicle congestion, and fare
payment procedures are the most prominent. Low-floor
vehicles which can decrease necessary steps to get on the
bus can reduce the time required to serve each passenger.
High in-vehicle congestion rate has a negative effect on the
boarding time per passenger as it takes additional time for the
passengers in vehicle to move to the back of the bus in order
to make room for the boarding passengers. The average time
to pay a fare also has significant impact on the boarding time
per passenger. For example, proof-of-payment fare collection
can shorten the boarding time per passenger. The practical
per passenger boarding time, 𝑡

𝑏
, can be given as

𝑡
𝑏
=
1

𝜇𝑖
𝑝

= ∫

∞

0

𝑡𝑑𝐵 (𝑡) . (16)



Journal of Applied Mathematics 5

Table 1: Selected bus stops to collect field data.

Type Site Stop Direction Na Lb

Online

1 Yuquan Station WE 2 4
2 Fuzhuo Station NS 2 5
3 Hunan Station WE 3 6
4 Daxinggong Station NS 3 7
5 Jimingsi Station EW 4 7
6 Taipingmen Station WE 4 8

Offline

7 Fuzimiao Station WE 2 7
8 Zongtongfu Station EW 2 7
9 Beijing Dong Station WE 3 7
10 Xuanwuhu station NS 3 8
11 Gulou Station SN 4 9
12 Xinjiwkou station NS 4 10

Note: NS and WE mean from north to south and from west to east,
respectively.
aN: number of design berths at the selected bus stop.
bL: number of scheduled bus lines dwelling at the selected bus stops.

4. Model Validation

4.1. Data Collection. The proposed travel time model at bus
stop was validated against both field-measured and simulated
data.The field-measured data was collected from 12 bus stops
in Nanjing of China. Cross-sectional analysis was conducted
to compare the field data collected at bus stops with different
number of berths. To ensure that the traffic and geometric
characteristics at different types of bus stops were similar,
the following criteria were applied during bus stop selection:
(i) the selected bus stops are separated from bicycle lane to
avoid the influence of bicycle stream; (ii) no access is located
adjacent to the selected bus stops; (iii) distance from selected
bus stops to the adjacent intersections is larger than 150m;
(iv) the selected bus stops have a larger boarding demand than
alighting demand in the p.m. peak period; (v) exclude major
transfer stops with large interchanging passenger demand.

Geometric characteristics of selected bus stops are shown
in Table 1. Of the selected bus stations, six are online stops,
and the others are offline stops. Bus stops with only one
berth are usually located by occupying the bicycle lane, which
are under the influence of bicycle stream. Therefore, this
paper does not take into consideration the bus stops with
one berth to maintain consistency in the analyzed bus stops.
Video cameras were applied to record traffic data. A total
of 30 h of traffic data at the selected bus stops had been
collected in the weekday p.m. peak period, which is reviewed
in the laboratory by the survey team to obtain the following
information: (i) the time at which each bus vehicle pulled
in and out of stops; (ii) the time at which the boarding
activity began and ended; (iii) the number of passengers
each bus vehicle loaded; (iv) the time at which passengers
joined the queue waiting for buses; (v) the additional walking
time consumed by passengers in the queue when bus vehicle
stopped at the upstream of bus stops.

The simulated data was generated from the simulation
models developed for all the selected bus stops. A widely

usedmicroscopic simulation packageVISSIM 5.4was used in
this study to develop simulation models for the selected bus
stops. To more accurately reflect actual traffic characteristics
at the selected bus stops, several issues should be considered
seriously: (i) parameters of traffic facilities such as public
transit stops, platform, and vehicles in the simulation models
were defined according to the real condition; (ii) multiple
waiting area of platform was set to simulate the actual queue-
ing phenomenon, and routing decisions for passengers were
located in the area of the platform edge; (iii) pedestrian inputs
were added as an origin for boarding passengers according to
the statistical data; (iv) define start and destination areas for
passengers of each bus route to measure the travel time at bus
stops.

4.2. Calibration of Travel Time Model at Bus Stop. The travel
time at bus stop estimated with the proposed model in this
paper was compared with the data measured in the field and
simulationmodels.Themean absolute percent error (MAPE)
was applied to compare the differences among the estimated,
field-measured, and simulated travel time at selected bus
stops. The MAPE value can be obtained as

MAPE = 1
𝑛

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝑗

𝑒
− 𝑡
𝑗

𝑡𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (17)

where MAPE is the mean absolute percent error between
the estimated and field-measured or simulated average travel
time at selected bus stops; 𝑛 represents the number of selected
bus stops; 𝑡𝑗

𝑒
denotes the estimated average travel time for bus

stop 𝑗; and 𝑡𝑗 denotes the field-measured or simulated average
travel time for bus stop 𝑗.

The MAPE values between the estimated and field-
measured or simulated average travel time of 𝑖th passenger
in the queue are illustrated in Figure 2. The estimated MAPE
values vary from 1.86% to 85.39%. The average MAPE value
between the estimated and the measured travel time of the
third passenger in the queue is 3.39%. The average MAPE
value between the estimated and the simulated travel time
of the third passenger in the queue is 5.52%. The average
MAPE value between the estimated and the measured or
simulated travel time of the third passenger in the queue is
4.45%. Thus the travel time of third passenger in the queue
can demonstrate the effectiveness of the proposed model in
this paper.

5. Sensitivity Analysis

With the proposed model estimating passengers’ travel time
at bus stops, sensitivity analyses were conducted to identify
the effects of crucial parameters on the passengers’ travel time
at bus stops.

The effect of arrival rate on the average waiting time
is illustrated in Figure 3. The average waiting time (𝑊V)
decreases with an increase in the arrival rate of buses. Further,
this decrease mainly results from the large-scale decline in
the waiting time due to vacation policy (𝑊

𝑑
) considering the

visualized fact shown in the same figure that the classical
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Figure 2: The MAPE value between the estimated and field-measured or simulated average travel time of 𝑖th passenger in the queue.
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Figure 3: Average waiting time with different arrival rate of buses.

waiting time (𝑊
𝑐
) is insensitive to changes in the arrival

rate of buses. This suggests that increase in the departure
frequency of buses can result in the improvement of the
average waiting time.

In Figure 4, sensitivity analysis was conducted subse-
quently to identify the effects of dwell time and number of
berths on the additional walking time.The additional walking
time increases with the increase in the number of berths at
bus stops, whose increasing tendency is more obvious when
the number of berths is larger than three. This suggests that
it is preferable to design not more than three berths at bus
stops to decrease the additional walking time. The effect of
arrival rate on additional walking time is shown in Figure 5.
The additional walking time increases with the increase of
headway. When the headway is 100 s, the additional walking
time of a four-berth bus stop is approximately 94 s, nearly
five times as large as a two-berth bus stop. This once more
suggests thatmore than three berths at a bus stop can result in
the increase of additional walking time in a large scale, which
should be considered seriously in the process of designing a
bus stop.

6. Conclusion

Passengers’ travel time at bus stops is modeled based on
the theory of queueing and probability. The proposed model
divides the travel time at bus stops into three parts: waiting
time on the platform, additional walking time, and boarding
time. Field-measured and simulated data were obtained
to demonstrate the effectiveness of the proposed model.
Analysis was conducted to identify the effects of crucial
parameters such as arrival rate of buses, dwell time, and
number of berths at the selected bus stops on passengers’
travel time at bus stops. Based on the results of data analysis,
the following conclusion can be conducted.

The waiting time on the platform results mainly from
the unavailable service period during headways between two
adjacent buses. The service period does not significantly
affect the waiting time.Therefore, the emphasis of strategy to
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Figure 5: Additional walking time at different arrival rate of buses
for various berths, 𝜇

𝑏
= 0.04 veh/s.

decrease the waiting time should be placed on the headways,
not on the boarding time.

The additional walking activity occurs when no berth
at the scheduled bus stop is available for the approaching
bus. However, it does not mean that implementing more
berths can eliminate the additional walking time. On the
contrary, as analysis suggests, the average additional walking
time increases in a large scale when the number of berths at
a bus stop exceeds the threshold of three. Analysis also shows
that the additional walking time increases with an increase
in headways between two adjacent buses. Increase in dwell
time can, however, lead to a decline in the additional walking
time. The theoretical analysis explains the inefficiency of bus
stops with more than three berths from the perspective of
passengers’ additional walking time, which is significant in
the design of the bus stop.
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Bus stops are usually placed near signalized intersections.
Further research is needed to identify the effect of signalized
intersections on passengers’ travel time at the near-side bus
stops. Furth and SanClemente [21] and Guo et al. [25]
researched the effect of signalized intersections on vehicles
based on kinematic wave theory. With the effect of signalized
intersections on buses, passengers’ travel time at bus stops can
be affected.Therefore, a newmodel for estimating passengers’
travel time at near-side bus stops is needed in the future
research.

Notations

𝐵(𝑡): General distribution of boarding time
𝑑
𝛼
: Average additional walking distance

ℎ
𝑗0
: The joint probability that the embedded

point is the 𝑗th serving passengers
completion instant in a service period and
that no passengers are present on the
platform at this instant

ℎ
𝑠
: Space headway between stopped vehicles

𝐿: Length of a bus
𝑙(𝑡): Number of buses dwelling at the stop at

time 𝑡
𝐿
𝑟
(𝑧): The probability generating function of

additional queue length due to vacation
effect

𝑀: The maximum threshold number of
passengers loaded during the dwell time

𝑞
𝑘
: The joint probability that the embedded

point is the starting of serving passengers
and that 𝑘 passengers are present on the
platform at this instant

𝑇: Average travel time consumed by
passengers at a bus stop

𝑡
𝛼
: Additional average walking time

𝑡
𝑏
: Average boarding time

𝑡
𝑤
: Average waiting time

𝜇
𝑖

𝑝
: The average service time per passenger

V
𝑝
: Walking speed of passengers

𝑉(𝑥): The headway duration
𝑉
∗

(𝑥): The Laplace transform of headway
duration

𝑊
𝑐
: Waiting time of a classical queueing model

in equilibrium-state
𝑊V: Waiting time in equilibrium-state of the

corresponding vacation queueing model
𝑊
𝑑
: The derivative waiting time due to

vacation policies
𝑊
𝑟
: The derivative waiting time due to

vacation policies
𝑊
∗

(𝑠): The Laplace transform of the
corresponding variables in
equilibrium-state

𝜆
𝑖

𝑝
: The rate of Poisson process of passengers

of bus route 𝑖 arriving at the scheduled bus
stop

𝜆
𝑖

𝑏
: Arrival rate of bus.
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