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Optimistic multiparty contract signing (OMPCS) protocols are proposed for exchangingmultiparty digital signatures in a contract.
Compared with general two-party exchanging protocols, such protocols are more complicated, because the number of protocol
messages and states increases considerably when signatories increase. Moreover, fairness property in such protocols requires
protection from each signatory rather than from an external hostile agent. It thus presents a challenge for formal verification. In
our analysis, we employ and combine the strength of extended modeling language CSP# and linear temporal logic (LTL) to verify
the fairness of OMPCS protocols. Furthermore, for solving or mitigating the state space explosion problem, we set a state reduction
algorithm which can decrease the redundant states properly and reduce the time and space complexity greatly. Finally, this paper
illustrates the feasibility of our approach by analyzing the GM and CKS protocols, and several fairness flaws have been found in
certain computation times.

1. Introduction

The first optimistic multiparty contract signing protocol
(OMPCS) was designed by Asokan et al. in 1997 [1]. The
goal of this protocol is for all signatories to send signatures
on a preagreed-upon contract text to all others and for
every signatory to obtain all other signatories’ signatures on
this contract. With the asymmetric structure, one partner
must first send out his signature to the others; thus the
fairness of such protocols is hard to guarantee. One method
to solve the problem is to use a Trust Third Party (TTP)
as an intermediary [2], but this method is not efficient and
the TTP becomes a bottleneck as all signatories have to
communicate with it. The other method is to design the so-
called optimistic multiparty contract signing protocol which
has the idea that only when an unfairness problem arises
the TTP intervenes [1]. In 2009, Mauw et al. proposed
the notion abort-chaining attacks and analyzed the message
complexity of OMPCS protocols [3]. Resolve-impossibility
which means that it is impossible to define a trusted
party protocol for a special OMPCS protocol was presented
[4].

Some specific properties such as fairness, timeliness,
and abuse-freeness should be satisfied in OMPCS protocols.
Asokan defines a fairness system as that if a player behaves
correctly, the other players will not gain any advantage over
the correctly behaving player, and he divides fairness into
strong fairness and weak fairness. Strong fairness means that,
when the protocol has completed, 𝐴 has 𝐵’s item, or 𝐵 has
gained no additional information about 𝐴’s item, and vice
versa. Here, the assumed “item” means the signed contract,
and “additional information” means information which can
be obtained from the signed contract. However, weak fairness
means that either strong fairness is achieved or a correctly
behaving node can prove to an arbiter that an unfair situation
has occurred [5].

Although not so much attention has been paid to opti-
mistic multiparty contract signing protocols, there have been
several researchers who did certain remarkable work in the
weak fairness verification field and got some achievements.
The pioneer work can be traced to Chadha et al. [6]. Based
on the alternation transition system (ATS) and symbolic tool
Mocha, GM protocol was verified to be unfair when the
number of signatories is four. Those authors also presented a
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CKS protocol and verified that the fairness can be guaranteed
in the case of four. Then such method was used in [7] to
analyze the fairness of MRT [8] and MR [9] protocols. The
MRT protocol failed to satisfy fairness when the number of
participators is three, and no flaw has been revealed in the
MR protocol.

As an analyzing method, the strand space model has lots
of magnificent qualities such as intuitiveness and strictness.
In [10], Mukhamedov et al. used a strand space model to
describe the GM protocol and found a flaw.Theorem proving
method uses formulae to verify the correctness of protocols.
TheCKS protocol was shown to have flaws in [11] by using the
Isabelle/HOL theorem proving machine.

This paper describes a precise and nature formulation
of the desired weak fairness and universal OMPCS protocol
models that includes multisignatories and contract texts
promises simultaneously, formalizes protocol arithmetic, and
considers composite attackers of the dishonest signatory.
Besides, to mitigate the state explosion problem, a state
reduction algorithm is proposed, and conversions between
processes are supported, all of such actions can help our
analysis to reach cases of more signatories. Furthermore, a
visual attacking trace will be given when there exist error
traces.

The paper is structured as follows. Section 2 defines the
notion of OMPCS protocols and weak fairness. The CSP#
language and the LTL logic are briefly introduced in Section 3.
This section also explains how to build models for OMPCS
protocols and how to express the weak fairness property. In
the next section, we apply our novel method to the analysis
of two typical OMPCS protocols GM and CKS. Finally,
conclusions and future work are summarized.

2. Definitions

Definition 1 (optimistic multiparty contract signing). A pro-
tocol for at least 𝑛 (𝑛 ≥ 2) signatories 𝑃

1
, . . . , 𝑃

𝑖
, . . . 𝑃
𝑗
, . . . 𝑃
𝑛

to sign a contract𝑚 over a TrustThird Party is called a multi-
party contract signing (MPCS) protocol. If all signatories are
honest, the protocol terminates without 𝑇 ever sending or
receiving any messages; it is called an optimistic multiparty
contract signing (OMPCS) protocol. An OMPCS protocol
consists of three subprotocols: main subprotocol, recovery
subprotocol, and abort subprotocol. The main subprotocol
for n signers is divided into 𝑛-levels, which can be described
recursively. The recovery and abort subprotocols are used to
contact 𝑇 when something goes wrong.

In an OMPCS protocol, every signer has a public and
private key pair and can make a digital signature with the
private key. PCS

𝑃
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, 𝑇) into a

digital signature 𝑆
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(𝑚) which can be universally
verified.

Definition 2 (weak fairness). For a protocol Γ, a contract
𝑚, and signers 𝑃

𝑖
and 𝑃

𝑗
with each one’s signed contract

𝑆
𝑃
𝑖

(𝑚) and 𝑆
𝑃
𝑗

(𝑚), we call the protocol Γwhich satisfies weak
fairness if and only if we get one of the following conditions:

(a) when the protocol is terminated, both 𝑃
𝑖
and 𝑃

𝑗
have

not received 𝑆
𝑃
𝑗

(𝑚) and 𝑆
𝑃
𝑖

(𝑚) from each other

(b) or when the protocol is terminated, both 𝑃
𝑖
and 𝑃

𝑗

have received 𝑆
𝑃
𝑗

(𝑚) and 𝑆
𝑃
𝑖

(𝑚) from each other.

3. Formal Method

Unlike classical security protocols, besides the security prop-
erty, the OMPCS protocols also need to guarantee fairness
between participants. For verifying such property, this paper
described an innovative method and Figure 1 shows the
structure of it.

3.1. Assumption. Considering the general conditions of
OMPCS protocol, assumptions for our fairness analyzing
method are as follows.

(a) Channel assumption (lower-case): channels between
participants are not trusty; that is to say, the trans-
mitting messages may be delayed and lost. However,
channels between participants and the TTP are really
reliable; that is, although the transmitting messages
may be delayed, they will reach the destination in the
limited time.

(b) Participants of protocols: participants may not be
honest, but there is at least one honest among a
number of participants. The TTP is always honest,
and the honest one will follow protocols. A dishonest
one can be legal user, possessing his/her own public
and private keys.

(c) Attacker: the cryptography is assumed to be perfect,
and external hostile agent is assumed not existing
for fairness property in OMPCS protocols requires
protection from each signatory rather than from
external attackers. All of the assumption can let us
only concentrate on the structure of the protocols.

3.2. System Variables. CSP# was proposed as an extension of
CSP; it combines high-level modeling operators with shared
variables and low-level programming constructs. The idea
is to treat sequential terminating programs as atomic events
[12].

The CSP# model of an OMPCS protocol consists of
participants (honest or dishonest), TTP and the commu-
nication channel. CSP# mathematical signals were applied
to describe the protocols’ participants and the components
which combine participants together. The syntax of basic
operators is listed in Table 1. Where 𝑃, 𝑄 are processes, e
is a name representing an event with an optional sequential
program prog, cond is a boolean formula, X is a set of events
names, ch is a channel, exp is an expression, and 𝑥 is a
variable.
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Figure 1: Structure of the method.

Table 1: Syntax of the CSP#.

Stop Processes do nothing
Skip Successful termination
𝑃 [ ]𝑄 General choice
𝑃 [∗] External choice
𝑃 ⟨ ⟩𝑄 Internal choice
𝑃 ||| 𝑄 Interleaving
𝑃 || 𝑄 Parallel composition
If (cond){𝑃} else {𝑄} Conditional choice
𝑒{𝑝𝑟𝑜𝑔} → 𝑃 Event prefixing
𝑃 \ 𝑋 Hiding all occurrences of event in 𝑋

[𝑐𝑜𝑛𝑑]𝑃 Guarded process
𝑃;𝑄 Sequential composition
𝑐ℎ!𝑒𝑥𝑝 → 𝑃 Channel output
𝑐ℎ?𝑥 → 𝑃 Channel input

Under the modeling language CSP#, the system variables
of protocol model are defined in Table 2. Each sending mes-
sage between signers is modeled using a variable, initialized
to 0 and set as 𝑘when the successfully sent message level is 𝑘.
Each sending message between signers and TTP is modeled
using a boolean variable, initialized to false and set true when
message was sent.

3.3. Modeling Protocol. The semantic model is based on the
labeled transition system (LTS). An LTS is a three-tuple 𝐿 =

(𝑆, 𝑆
0
, 𝑅).

(i) 𝑆 is set of states. A state can be described by giving
value for all valuations in the CSP# model.

(ii) 𝑆
0
∈ 𝑆 is the set of initial states.

(iii) 𝑅 : 𝑆 × ∑𝜏 × 𝑆 is the transition relation, ∑𝜏 is a
set of all events, ∑∗ is a set of all traces, and a trace
is a sequence of events. For every state 𝑠 ∈ 𝑆, there
is a state 𝑠


∈ 𝑆 such that (𝑠, 𝑠


) ∈ 𝑅. 𝑅 is process

expressions in our CSP# protocol model.
A CSP# model configuration is composited of two com-

ponents (𝑉, 𝑃), where 𝑉 is a function mapping a variable
name to its value and 𝑃 is a process expression. Then we can
get the LTS = (𝑆, init, → ), where 𝑆 is the set of reachable
system configurations, init is the initial configuration (𝑉, 𝑃),
and → is a transition relation.

For every signer in protocol, we use a process to describe
𝑃
𝑖
𝐻 process, which describes how honest signer 𝑃

𝑖
behaves

and the dishonest 𝑃
𝑗
has a corresponding process 𝑃

𝑗
process.

𝑇 process is defined to model 𝑇 which represents the pro-
cesses of recovery and abort subprotocols. The protocol is
then described as formula (1); 𝑃 is the set of signatories:

sys = 𝑃
𝑖
𝐻 Process ||| 𝑃

𝑗
process (𝑖, 𝑗 ∈ 𝑃) . (1)

3.4. Modeling Weak Fairness. In order to reason protocol
model, fairness assertion is described by LTL (linear temporal
logic). LTL was proposed by Pnueli in 1977 [13] and is used to
verify computer program logic language.

LTL is defined by assuming that the atomic formulae
are state predicates. Formulae are built up in the usual way
according to the following grammar. AP is a collection of
atomic propositions of LTL:

(a) for all the atomic propositions 𝜌 ∈ AP, 𝜌 is a LTL
formula;

(b) the constants “true” and “false” are both LTL formu-
lae;

(c) if 𝜑, 𝜙 are two LTL formulae, then ¬𝜑, 𝜑 ∨ 𝜙, 𝜑 ∧ 𝜙,
𝐺𝜑, and 𝐹 𝜑 are all LTL formulae;
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Table 2: System variables.

𝑃
𝑟
𝑖 𝑗 𝑃

𝑟
𝑖 𝑗 = 𝑘, if 𝑃

𝑖
has successfully sent the 𝑘 level promise to 𝑃

𝑗

𝑃
𝑖
𝑅𝑒𝑐𝑜V𝑒𝑟𝑦 𝑗

𝑃
𝑖
𝑅𝑒𝑐𝑜V𝑒𝑟𝑦 𝑗 𝑡

𝑃
𝑖
𝑅𝑒𝑐𝑜V𝑒𝑟𝑦 𝑗 𝑡 𝑚

𝑃
𝑖
sends recovery requirement message to TTP, 𝑗 is the max level of message 𝑃

𝑗
has sent to 𝑃

𝑖
, 𝑡 is

the max level of message 𝑃
𝑡
has sent to 𝑃

𝑖
, and m is the max level of message 𝑃

𝑡
has sent to 𝑃

𝑖
, and

so on
𝑃
𝑖
𝑠𝑡𝑜𝑝 𝑃

𝑖
quits the protocol

𝑃
𝑖
𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑒𝑑 𝑇 𝑃

𝑖
has sent recovery or abort requirement messages to TTP

𝑃
𝑖
𝑆𝑗 𝑃

𝑖
has successfully received the 𝑃

𝑗
signed contract

𝑃
𝑖
𝐴𝑏𝑜𝑟𝑡𝑇𝑎𝑘𝑒𝑛 𝑃

𝑖
sends abort requirement message to TTP

𝑇 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖 TTP has responded to the requirement of 𝑃
𝑖

𝑇 𝑅𝑒𝑐𝑜V𝑒𝑟𝑦 𝑠𝑒𝑛𝑑 𝑃
𝑖

TTP sends recovery message to 𝑃
𝑖

𝑇 𝐴𝑏𝑜𝑟𝑡 𝑠𝑒𝑛𝑑 𝑃
𝑖

TTP sends abort message to 𝑃
𝑖

𝑇 𝐹𝑖 𝑃
𝑖
has not sent abort message and TTP will force him/her to abort in certain situation

𝑇 𝑆𝑖 𝑃
𝑖
has sent abort message

𝑇 ℎ𝑖 The highest level 𝑃
𝑖
has sent to higher signer before it contacts TTP

𝑇 𝑙𝑖 The lowest level 𝑃
𝑖
has sent to lower signer before it contacts TTP

𝑇 𝑘𝑖
The highest level 𝑃

𝑖
has received from 𝑃

𝑗
(𝑖 < 𝑗)

The highest level 𝑃
𝑖
has received from all signers 𝑚, (𝑚, 𝑗 < 𝑖)

(d) every LTL formula can be built up by using finite
times of the above formation rules.

Here 𝜑 and 𝜙 are two formulae, 𝐺 reads as “global” (also
can be written as []), and 𝐺𝜑 means that event 𝜑 has to hold
on the entire subsequent path.𝐹 reads as “finally” (also can be
written as <>), 𝐹𝜑 means that event 𝜑 eventually has to hold
(somewhere on the subsequent path).

According to the fairness definition and LTL logic, we
assume that only signer 𝑃

𝑖
is honest, and the description of

fairness of signer 𝑃
𝑖
is given in formula (2). It means that,

when the protocol is terminated, if there is a reachable trace 𝜏

in which a signer in 𝑃
1
, . . . , 𝑃

𝑖−1
, 𝑃
𝑖+1

, . . . , 𝑃
𝑛
can receive 𝑃

𝑖
’s

digital signature 𝑆
𝑃
𝑖

(𝑚), then there must exist 𝜏
 which is

reachable from 𝜏 and canmake𝑃
𝑖
receive the digital signature

of 𝑃
1
, . . . , 𝑃

𝑖−1
, 𝑃
𝑖+1

, . . . , 𝑃
𝑛
:

⟨⟩ [] ((𝑃1 ⋅ 𝑆𝑃
𝑖
(𝑚) ∨ ⋅ ⋅ ⋅ ∨ 𝑃

𝑖−1
⋅ 𝑆
𝑃
𝑖
(𝑚)

∨𝑃
𝑖+1

⋅ 𝑆
𝑃
𝑖
(𝑚) ∨ ⋅ ⋅ ⋅ ∨ 𝑃

𝑛
⋅ 𝑆
𝑃
𝑖
(𝑚))

→ [] ⟨⟩ (𝑃
𝑖
⋅ 𝑆
𝑃
1
(𝑚) ∧ ⋅ ⋅ ⋅ ∧ 𝑃

𝑖
⋅ 𝑆
𝑃
𝑖−1

(𝑚)

∧𝑃
𝑖
⋅ 𝑆
𝑃
𝑖+1

(𝑚) ∧ ⋅ ⋅ ⋅ ∧ 𝑃
𝑖
⋅ 𝑆
𝑃
𝑛
(𝑚)) ) .

(2)

3.5. State Reduction Algorithm. Themodel checking method
has many advantages, such as, high level automation and
exact description ability. But the idea of this method is based
on exhausted state space searching. When we use it to verify
some concurrent systems, the state space may be increased
exponentially. That is the space explosion problem. Towards
the space explosion problem, a detailed state reduction
algorithm is demonstrated below and the algorithm is shown
in Algorithm 1.

(a) Deleting states that system cannot reach to decrease
the searching time.

(b) Deleting states that will absolutely lead to fairness
which can make the track of attack trace more
conveniently.

(c) Combing transition relations which reach the same
next states to compress the state space, that is, 𝐴{𝑅}𝑃

and 𝐵{𝑅}𝑃, we can combine the two transition rela-
tions into (𝐴 ∨ 𝐵){𝑅}𝑃. Here 𝐴, 𝐵, and 𝑃 are states
and 𝑅 is transition function. The proof can be found
in “Hoare Logic,” rules of consequence.

(d) Letting the dishonest signers send the highest
promises to each other, for the transaction between
dishonest signers will not influence the fairness of the
honest one. Such behaviors can cut down the number
of messages between the dishonest signers and then
can reduce the state space.

trans is an array which stores the transition relations in
the OMPCS model, and every transition relation in trans
contains two states as well as a variable; state 1 is the current
state, state 2 is the next state, and trans.mark is the weight
of states. If a state in a protocol model has been reached for
𝑚 times, the value of mark for such state is 𝑚. The variable
exishon(𝑖) is a function to judge whether, after 𝑃

𝑖
contacting

T, there also exists an honest signer who has no contract 𝑇.
validate(trans[𝑖]) = true means that the transition relation
trans[𝑖] contracted 𝑇, and 𝑇 sent a recovery message to reply
to it; otherwise, 𝑇 sent an abort message.

Line 1 to line 2 are corresponding to (a) and (b), according
to the recovery subprotocols in OMPCS; if validate = true
and the honest signer have not contracted TTP before, this
protocol will be fair. Lines 4 to 7 mean (c); if trans[𝑖] and
trans[𝑗] have the same next state (state2), trans[𝑖].state1 will
be combined with trans[𝑗].state1, and trans[𝑖]will be deleted.
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Procedure StateReduction(trans)
(1) for 𝑖 ← 1 to length(trans)
(2) do if (vaildate(trans[𝑖]) = 1 && exishon(𝑖)))||(trans[i].mark = 0)
(3) then delete(trans[𝑖])
(4) for 𝑗 ← 1 to length(trans)
(5) do if (trans[i].state2 = trans[j].state2) && (𝑖! = 𝑗)
(6) then 𝑡𝑟𝑎𝑛𝑠[𝑗].state1 ← trans[i]state1 + trans[j].state1
(7) delete(trans[𝑖])
(8) for 𝑖 ← 1 to 𝑛

(9) do for 𝑗 ← 1 to 𝑛

(10) do if (𝑝𝑖, 𝑝𝑗 ∈ 𝑑𝑖𝑠) && (𝑖! = 𝑗)
(11) then 𝑝 𝑖 𝑗 ← 𝑛,𝑝 𝑗 𝑖 ← 𝑛

(12) end

Algorithm 1: The state reduction algorithm.

Modeling the behaviors of honest P1 in the four-party GMmain subprotocol
P1H process()=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(1) honest P1 sends 1-level promises to P2
[][!P1 stop && !P1 contacted T && Pr 1 4 L==0 && Pr 1 3 L==0 && Pr 1 2 L==0 && Pr 2 1 L==1 && Pr 3 1 L==1 &&
Pr 4 1 L==1]P1sendsp21{Pr 1 2 L=1;}->P1H process()
//(2) honest P1 sends recovery requirement to T
[] [!P1 stop && !P1 contacted T && Pr 1 4 L==0 && Pr 1 3 L==0 && Pr 1 2 L==1 && Pr 2 1 L==1 && Pr 4 1 L==1 &&
Pr 3 1 L==1]p1recovery111{P1 contacted T=true; P1 Recovery 1 1 1=true;}->T process()
Modeling the behaviors of dishonest P2 in the four-party GMmain subprotocol
P2 process()=
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(3)dishonest P2 sends 1-level promise to P1
[] [!P2 stop && Pr 2 1 L<1] P2sendP32 {Pr 2 1 L=1;}->P2 process()
//(4)dishonest P2 sends recovery requirement to T
[] [!P2 stop && Pr 4 2 L==1 && Pr 3 2 L==1 && Pr 1 2 L==1]P2recovery111{P2 Recovery 1 1 1=true;}
->T process()
System definition
sys1H|=P1H process() ||| P2 process() ||| P3 process() |||P4 process();

Algorithm 2: Modeling of four-party GMmain subprotocol.

T process()=
Modeling of the four-party GM abort subprotocol
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(1)T agrees with the abort requirement from P2
[][!T Respond2 && P2 Abort Send && !T Validated && ( T S4 || T S3)]TabortP21{T S2=true; T Abort Send P2=true;
T Respond2=true;}->P2H process()
//(2)T refuses the abort requirement from P2
[][!T Respond2 && P2 Abort Send && T Validated ]TabortP22{T S2=true; T Recovery Send P2=true; T Respond2=true;}-
>P2H process()
Modeling of the four-party GM recovery subprotocol
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(3)T agrees with the recovery requirement from P3
[] [P3 Recovery 1 3 3 && !T Respond4 && !T Respond3 && !T Respond2 && !T Respond1]TreocveryP31
{T Recovery Send P3=true; T Respond3=true; T Validated=true;}->P3 process()
//(4)T refuses the recovery requirement from P3
[] [P3 Recovery 1 3 3 && !T Respond3 && (!T Respond4 || !T Respond3 || !T Respond2 || !T Respond1)&&
!T Validated && T S4]TreocveryP312{T F1=true;T F2=true;T S3=true;T Abort Send P3=true;
T Respond3=true}->P3 process()

Algorithm 3: Modeling of four-party GM abort and recovery subprotocols.
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sys1H= P1H process() ||| P2 process() ||| P3 process() |||P4 process();
#define goals1 (P4 S1 || P3 S1 || P2 S1);
#define goals2 (P1 S2 && P1 S3 && P1 S4);
#assert sys1H |= G ((goals1) -> F(goals2));

Algorithm 4: Modeling fairness of 𝑃
1
.

T process()=
Modeling of the five-party CKS abort subprotocol
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(1)T agrees with the abort requirement from P2
[][!T Respond2 && P2 Abort Send && !T Validated ]TP2abort1{T S2=true; T Abort Send P2=true;
T Respond2=true; T h2=0; T l2=1}->P2H process()
//(2)T refuses the abort requirement from P2
[][!T Respond2 && P2 Abort Send && T Validated ]TP2abort2{T S2=true; T Recovery Send P2=true;
T Respond2=true}->P2H process()
Modeling of the five-party CKS recovery subprotocol
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

//(3)T agrees with the recovery requirement from P3
[][P3 recovery 1 1 3 3 && !T Respond5 && !T Respond4 && !T Respond3 && !T Respond2 && !
T Respond1] P3reco1{T Recovery Send P3=true;T Respond3=true; T Validated=true;}->P3 process()
//(4)T refuses the recovery requirement from P3
[][P3 recovery 1 1 3 3 && !T Respond3 && (T Respond5||T Respond4||T Respond3||T Respond2||
T Respond1)&& !T Validted && ((T S5 && T l5>0 ||T S4 && T l4>0 || T S2 && T h2>2||T S1 &&
T h1>2 ))]P3reco3{T Respond3=true;T S3=true;T Abort Send P3=true;T h3=3;T l3=3}->P3 process()

Algorithm 5: Modeling of five-party CKS abort and recovery subprotocols.

From lines 8 to 11, 𝑛 is the number of signers, 𝑖, 𝑗 here
are the unique ID for signatories, and 𝑑𝑖𝑠 are the sets for the
dishonest signatories. In line 10, if 𝑃

𝑖
and 𝑃

𝑗
are dishonest

signatories, then they will send the highest promise to each
other and it is the pseudocode of (d).

4. Case Study

As an OMPCS protocol, the GM protocol was proposed by
Garay and Mackenzie in [14]; then in [5] Asokan modified
it and proposed the CKS protocol. In this section, the two
protocols are modeled and analyzed on the platform PAT [15]
and fairness flaws have been discovered.

4.1. GM and CKS. Each of the GM and CKS protocols has
three subprotocols: main subprotocol, recovery subprotocol,
and abort subprotocol. Such protocols use zero-knowledge
primitives, private contract signatures [14].Themain subpro-
tocol of the two protocols is the same, and major changes are
in the recovery and abort subprotocols.

The main subprotocol for n signers is divided into 𝑛-level
recursions with 𝑛-level promises. 𝑃

1
sends 𝑖-level promise to

𝑃
2
which can be denoted as PCS

𝑃
1

((𝑚, 𝑖), 𝑃
2
, 𝑇). The third

party is 𝑇; if there is nothing wrong in the execution of main
subprotocol, 𝑇 will not be invoked. Conversely, requirement
messages will be sent by signers to 𝑇 to guarantee fairness.
For 𝑃
𝑖
to abort, it will send the abort message to 𝑇; for 𝑃

𝑖
to

recover, it will send the corresponding recovery message.The

messages are designed so that𝑇 can infer the promises that an
honest signer would have sent when it launched the recovery
subprotocol. For lack of space, we will not describe the two
protocols and the details can be found in [6, 14].

4.2. Modeling GM Protocol. We have modeled and analyzed
the GM protocol for three cases, and here we take the case of
four parties for example. Figure 2 describes the communica-
tions between signers, third party, and channels. We assume
that the honest signer is 𝑃

1
, 𝑃
2
, 𝑃
3
, and 𝑃

4
are dishonest, and

𝑃
2
, 𝑃
3
, and 𝑃

4
can collude to cheat 𝑃

1
. 𝑃
1
H process() was

defined as the behavior of 𝑃
1
and 𝑃

2
process(), 𝑃

3
process(),

𝑃
4
process(), and 𝑇 process() as the behaviors of 𝑃

2
, 𝑃
3
, 𝑃
4
,

and 𝑇. After doing that, the GM protocol was modeled as a
parallel system called “sys1H.”

4.2.1. Modeling GM Main Subprotocol. Main subprotocol is
executed when signers exchange their promises.When 𝑛 = 4,
the main subprotocol has 4 levels (see the OMPCS definition
in Section 2) recursions. We use integer variables to describe
promises between signers, and boolean variables represent
messages between signers and 𝑇. The details of the main
subprotocol model are shown in Algorithm 2.

The honest 𝑃
1
mainly performs two kinds of actions

in the main subprotocol, which includes sending promises
to other signers and sending requirement to 𝑇. They are
described in step (1) and step (2). Step (1) models the action
of sending 1-level promise, in which we use boolean variables,
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Figure 2: Communications between signers, third party, and
channels.

such as Pr 1 3 𝐿, to represent the promises exchanging.
Setting Pr 1 2 𝐿 = 1 means 𝑃

1
has successfully sent 1-level

promise to 𝑃
2
. Step (2) says that if 𝑃

1
has not received the

correct promises, he can set 𝑃
2
Recovery 1 1 1 as true, which

represents the action of sending out recovery requirement.
Step (3) and Step (4) describe the malicious behaviors of
dishonest 𝑃

2
. Step (3)models that 𝑃

2
can send 1-level promise

to 𝑃
1
and Step (4) specifies that 𝑃

2
can send recovery

requirement to 𝑇 at a relatively relaxing condition.

4.2.2. Modeling GM Abort and Recovery Subprotocol.
Algorithm 3 models the actions of the 𝑇, that is, the abort
and recovery subprotocols. 𝑇 is a special player that has to be
modeled in a particular way.The definition and grammar are
the same as the main subprotocol. 𝑇 process() maintains two
sets, 𝑆(𝑚) and 𝐹(𝑚), which are initialized as empty. When 𝑃

𝑖

sends abort message to 𝑇, 𝑆(𝑚) is set to be 𝑆(𝑚) = 𝑆(𝑚) ∪ {𝑖}.
Elements inside 𝐹(𝑚) are those signers who have not sent
abort message to 𝑇. Based on the values of 𝑆(𝑚) and 𝐹(𝑚),
the recovery or abort decision will be made by 𝑇.

The actions of 𝑇 can be divided into two parts, the first
part describes how 𝑇 deals with abort request from 𝑃

2
. 𝑇

sends out abort token to 𝑃
2
if the status is that 𝑇 Validated

is false and (𝑇 𝑆4 || 𝑇 𝑆3) is true. However, if 𝑇 Validated
is true, this means the recovery message has already been
sent.Then the abort request is to be refused. Part two models
the behaviors of dealing with recovery requests from 𝑃

3
;

if 𝑇 Validated is true, the recovery message will be sent.
However, conversely, 𝑇 will make decisions based on the
current conditions.

4.3. Modeling GM Fairness. The fairness of 𝑃
1
can be divided

into two parts. The first is that when GM protocol is finished,
if 𝑃
1
has not received the contract signed by other signers,

then every other signer also will not receive the contract
signed by 𝑃

1
. The remainder is that if any other signers have

received the contract signed by𝑃
1
, then𝑃

1
must have received

the contract signed by other signers as well. So the LTL
modeling of 𝑃

1
’s fairness is illustrated in Algorithm 4.

Goal 1 means that at least one signer in 𝑃
2
, 𝑃
3
, and 𝑃

4

has received the contract signed by 𝑃
1
. Meanwhile, goal 2

means that 𝑃
1
has received the contract signed by 𝑃

2
, 𝑃
3
,

and 𝑃
4
. The fairness of 𝑃

1
can be described as sys1𝐻| =

𝐺((goals 1) → 𝐹(goals 2)), which means that, for all the
traces of GM modeling system, if there is one trace to make
one of𝑃

2
,𝑃
3
, and𝑃

4
receive the signed contract from𝑃

1
, there

must exist another trace that can guarantee that 𝑃
1
receives

the signed contract from 𝑃
2
, 𝑃
3
, and 𝑃

4
.

4.4. Modeling CKS Protocol. Themodel of CKSmain subpro-
tocol and the description of fairness remain the samewith the
GMprotocol, so this sectionwill concentrate on the abort and
recovery part. The main difference is that 𝑇, when presented
with a recovery request, overturns its abort decision if and
only if𝑇 can infer dishonesty on the part of each of the signers
that contracted 𝑇 in the past. Compared with GM, 𝑇 in CKS
also maintains two integer variables, but the difference is that
the variables have different meanings than that in GM.

We modeled cases of four and five signers of the CKS
protocol and a fairness flaw was found in the case of five. For
the sake of contrastive analysis, specifics of 𝑃

2
abort request

and 𝑃
3
Recovery 1 1 3 3 recovery requirements are shown in

Algorithm 5.

4.5. State Reduction. Whenmodeling GM and CKS protocol,
we mitigate the state space explosion problem based on the
algorithm proposed in Section 3.5. The detailed examples are
given as below.

(a) Deleting states which cannot be reached: for instance,
in the GM protocol, when 𝑇 is dealing with the
requirement 𝑃

2
Recovery 1 3 2 from 𝑃

2
, there is a

state which requires that!𝑇 𝑆3∧!𝑇 𝑆4 and two ele-
ments in set {𝑇 𝑆1, 𝑇 𝑆3, 𝑇 𝑆4} should be true. Then
a conclusion can be reached that this state is unreach-
able, for the state constraint must be (!𝑇 𝑆3∧!𝑇 𝑆4) ∧

(𝑇 𝑆3 ∨ 𝑇 𝑆4), which is contradictory. Therefore, we
can delete this state.

(b) Deleting states which will absolutely lead to fairness:
when modeling the GM protocol, if 𝑃

4
sends 𝑇

a recovery requirement 𝑃
4
Recovery 3 3 3 in the

condition that no one has contacted 𝑇 before, 𝑇

will absolutely agree with 𝑃
4
’s requirement, setting

𝑇 Validated = 1. It is obvious to ensure that
the fairness can be guaranteed for, in the recovery
subprotocol,𝑇 cannot overturn the recovery decision.
Therefore, this state can be ignored when we are
searching for attacking trace.

(c) Combining transition relations which have the same
next states: in the GM protocol, when 𝑇 deals with
the requirement 𝑃

3
Recovery 4 4 4 from 𝑃

3
there are

two transition relations: one of the current states is
𝑇 𝐹3∧!𝑇 𝐹2∧!𝑇 𝐹4 and the other is !𝑇 𝐹3. How-
ever, those two states can reach the same next
state; thus, they can be combined into one state
((𝑇 𝐹3∧!𝑇 𝐹2∧!𝑇 𝐹4)∨!𝑇 𝐹3).

(d) Letting the dishonest signers send the highest
promises to each other: when wemodel the dishonest
signers 𝑃

2
and 𝑃

3
in the CKS protocol, some of
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Table 3: The unfairness trace of the four-party GM protocol.

GM protocol State 0 State 1 State 2 State 3 State 4
P4 Recovery 3 3 3 False False False False True
P3 abort False True True True True
P2 Recovery 1 1 2 False False True True True
P1 Recovery 1 3 3 False False False True True
T Abort Send P4 False False False False False
T Recovery Send P4 False False False False True
T Abort Send P3 False True True True True
T Abort Send P2 False False True True True
T Abort Send P1 False False False True True
goals1 False False False False True
goals2 False False False False False
Fairness YES YES YES YES NO

Table 4: The unfairness trace of the five-party CKS protocol.

Revised GM protocol State 0 State 1 State 2 State 3 State 4 State 5
P5 abort False True True True True True
P4 Recovery 5 4 4 4 False False False True True True
P3 Recovery 6 6 5 5 False False False False False True
P2 Recovery 5 5 5 5 False False False False True True
P1 Recovery 1 4 4 4 False False True True True True
T Abort Send P5 False True True True True True
T Abort Send P4 False False False True True True
T Abort Send P3 False False False False False True
T Abort Send P2 False False False False True True
T Abort Send P1 False False True True True True
goals1 False False False False False True
goals2 False False False False False False
Fairness YES YES YES YES YES NO

the intermediate states such as Pr 2 3 𝐿 = 3 and
Pr 3 2 𝐿 = 2 can be deleted, letting𝑃

2
and𝑃
3
send the

highest promise to each other directly, Pr 2 3 𝐿 = 4

and Pr 3 2 𝐿 = 4.

4.6. Analysis. One feature of the OMPCS protocol is that the
number of participants can be varied and the structure is not
symmetric.That is why the specification of𝑃

𝑖
is different from

that of𝑃
𝑗
(𝑖 ̸= 𝑗). A number of CSP#models have been written

in PAT for different signers for the GM and CKS protocols.
We found that GM protocol cannot satisfy fairness for the
case of 𝑛 ≥ 4, because we can verify that the protocol is not
fair in case of four, and, in more signatories cases, if there is
only one honest, then the dishonest can collaborate to cheat
just as they do in the case of 4. The CKS protocol is not fair
for the number of signers 𝑛 ≥ 5, the reason is the same for
GM.

Table 3 shows one possible error trace for the GM
protocol (𝑃

1
is the honest one and 𝑛 = 4). State 0 is

the initialized state. In state 1, 𝑃
3
contacts T by sending

an abort requirement. According to [14], T agrees with
this requirement and sends abort message, setting 𝑇 𝑆3 =

true. But the dishonest 𝑃
3
continues to execute the main

subprotocol.Then𝑃
2
contractT with a recovery requirement.

T refuses 𝑃
2
’s requirement based on the abort subprotocol

with 𝑇 𝐹1 = true, 𝑇 𝑆2 = true. However, the dishonest
𝑃
2
continues to execute the main subprotocol. In the next

state 𝑃
1
launches a resolve request to T, however 𝑇 𝐹1 is

true and it indicates that T will refuse 𝑃
1
’s requirement and

update 𝑇 𝑆1 = true.Then the honest signer 𝑃
1
quits the main

subprotocol. At last, 𝑃
4
sends a recovery requirement. For

𝑇 𝑆4 is false, 𝑇 overturns the previous decision and agrees
with 𝑃

4
’s requirement. Hence the fairness of 𝑃

1
are violated.

We also found unfairness trace when 𝑃
3
or 𝑃
2
is the dishonest

signer.
Table 4 shows one possible unfairness trace for the CKS

protocol (𝑃
3
is the honest one and 𝑛 = 5). State 0 is also

the initialized state. In step 1, 𝑃
5
sends an abort requirement

to T. T agrees with this requirement and sends back an
abort message with 𝑇 𝑙5 = 1, 𝑇 𝑆5 = true. But the
dishonest 𝑃

5
continues to execute the protocol. In state 2,

𝑃
1
contract T with a recovery requirement. 𝑇 refuses 𝑃

1
’s

requirement and sets 𝑇 ℎ1 = 4, 𝑇 𝑆1 = true, the dishonest 𝑃
1

continues to execute the main subprotocol. Then 𝑃
4
launches

a recovery request to 𝑇. 𝑇 refuses 𝑃
4
’s requirement with an
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Table 5: Experiment comparison.

This paper method Reference [5] method
Time used Memory used Time used Memory used

GM protocol
𝑛 = 2 0.01 41179 0.050 51228
𝑛 = 3 10.64 72056 38.72 92595
𝑛 = 4 505.21 2479154 — —

CKS protocol
𝑛 = 2 0.01 39187 0.047 4568
𝑛 = 3 8.29 60145 19.54 86347
𝑛 = 4 552.31 2787336 — —
𝑛 = 5 1674.05 3105836 — —

abort message, setting 𝑇 𝑙4 = 𝑇 ℎ4 = 5, 𝑇 𝑆4 = true. In
the following states, 𝑃

2
send recovery messages to T and T

will refuse it and update 𝑇 𝑙2 = 𝑇 ℎ2 = 5, 𝑇 𝑆2 = true. 𝑃
3

sends its signed contract to 𝑃
4
and 𝑃

5
, but the dishonest 𝑃

4

and 𝑃
5
quits the protocol and 𝑃

3
contracts T with recovery

requirement.
However, according to [5] and the recovery subprotocol,

T computes the value of 𝑇 ℎ𝑖 and 𝑇 𝑘𝑖 and finds (𝑇 𝑆2) ∧

(𝑇 𝑘2 ≤ 𝑇 ℎ2), and then it makes a decision that it will
not overturn the previous decision. Finally, T sends an abort
message to 𝑃

3
; thus, the fairness of 𝑃

3
is not guaranteed. The

similar error traces can also be found when 𝑃
4
, 𝑃
2
, or 𝑃
1
is the

dishonest one.

4.7. Experiment Comparison. In this paper, the fairness for
four-party GM protocol and five-party CKS protocol has
been verified. There are certain advantages of our method,
such as less time and space complexity, more precise seman-
tic, higher degree of automation, and more detailed results.
The time and space consuming comparison between our
method and the method in [5] is showed in Table 5; the unit
for time is second and for memory is KB.

We use a common environment for all the tests discussed
in this section; the hardware environment for the two
methods is the same. For [5], the model checking platform is
cmocha and the operating system isUbuntu. For ourmethod,
the model checking platform is PAT3, and the operating
system is Windows 7.

As Table 5 demonstrated, although the problem of pro-
tocol fairness verification is a NP problem and the states
and time are expected to increase exponentially in theory,
our method can get the verification result in certain times
in the three and four participants cases of the CKS proto-
col. Therefore, we can get a conclusion that the reduction
algorithm did a good performance as no error trace was
found in such cases, and every state in the state space was
visited. On the contrary, the method in [5] consumed more
time and memory. Specifically, in the four-party occasion,
in our experiment environment, this method cannot get
verification result in certain hours (we had waited for more
than 12 hours). Moreover, this method cannot give explicitly
a number of visited states and fairness counterexamples. The

main reason is that our method has less system states, higher
states compression ratio, and the trace back-track algorithm.

5. Conclusion and Future Work

Based onmodeling language CSP# and linear temporal logic,
an efficient method which aims to analyze the fairness of
optimistic multiparty contract signing protocols is presented
in this paper. In order to demonstrate the feasibility of our
method, two examples of the GM and CKS protocol have
been described and several fairness attacking traces have
been found. Comparisons also have been made in this paper
between our method and other traditional methods. And the
result shows that our method has certain strengths such as
higher automation, less time and space complexity, visualized
attacking trace, and better utility.

There is no explicit model for any cryptographic prim-
itives in this paper and the attack model is weaker than
the original paper. The main challenge is to verify the
OMPCS protocols fairness in amore general conditionwhich
accounts for cryptographic and a more relaxed communi-
cation model. In our next work, we plan to extend the
automatic cryptographic protocol verifier ProVerif [16] to suit
our fairness verification method.
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