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The problem of finite-time boundedness for a class of switched linear systems with time-varying delay and external disturbance is
investigated. First of all, themultiply Lyapunov function of the system is constructed.Then, based on the Jensen inequality approach
and the average dwell time method, the sufficient conditions which guarantee the system is finite-time bounded are given. Finally,
an example is employed to verify the validity of the proposed method.

1. Introduction

The switched system is a special kind of hybrid dynamic
system, composed of a family of subsystems and a switch-
ing law specifying the switches between subsystems [1, 2].
The fact that the structure and working mechanism of the
switched system aremore complex than general systems leads
to that the switched system possesses much richer dynamic
characteristics. The switched systems are widely applied in
engineering practice, such as power system control, robot
control, network control, and so forth [3–9].

In practice, switched systems are commonly subjected to
time-delay and external disturbance. Due to their significant
impact on the performances of switched systems, many
scholars have been attracted to investigate the problem.
Sun et al. analyzed the asymptotic stability of the switched
linear systemwith time-delay perturbation by using common
Lyapunov function and multiple Lyapunov function [3].
Lu and Zhao also investigated the asymptotic stability for
switched linear systems with time-delay and proposed an
effective method which can direct researchers to choose
an appropriate switching law to make sure the system is
asymptotic stable [10]. Zhao and Zhang studied the stability
of the switched system with time-varying delays based on the
average dwell time and time-delay decomposition approaches
[11]. For switched systems with time-varying delay, Lian et al.

utilized the Lyapunov-Krasovskii function method to design
H infinity filter [12]. For switched systems affected by the
nonlinear impact and disturbance, Sun used transfer matrix
estimation and Gronwall inequality methods to design a
feedback law stabilizing system [13]. For the switched system
with fixed time-delay and norm bounded disturbance, Lin
et al. proposed the finite-time boundedness concept and a
method to judge whether the system is finite-time bounded
[14].

Up to now, to the best of the authors’ knowledge, there
are a few papers concerning the finite-time boundedness
problem of switched system. For switched systems with time-
varying delay and external disturbance, the problem has not
yet been discussed by any literature. However, in practical
engineering, the time-delays are generally changeable over
time, not fixed. In addition, many practical systems are just
required that their state trajectories are bounded over a fixed
interval. In other words, those systems may be unstable. On
the contrary, although some systems are asymptotically sta-
ble, they cannot meet the application requirements because
of their large transient state amplitudes. Considering thewide
application of switched systems with time-varying delay and
the requirements for transient behaviors in engineering fields,
it is a significant task to investigate finite-time boundedness
for switched linear systems with time-varying delay and
external disturbance.Themain contributions in this paper are
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listed as follows. (1) For the convenience of processing, a con-
cise definition on the finite-time boundedness is proposed for
the switched system. (2) Sufficient conditions of finite-time
boundedness for switched linear systems with time-varying
delay and external disturbance are given.

2. Preliminaries and Problem Formulation

Consider the following switched linear system with time-
varying delay and external disturbance:

�̇� (𝑡) = 𝐴

𝜎(𝑡)
𝑥 (𝑡) + 𝐵

𝜎(𝑡)
𝑥 (𝑡 − ℎ (𝑡))

+ 𝐺

𝜎(𝑡)
𝑤 (𝑡) , ℎ (t) ≥ 0, 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , max 


�̇� (𝑡)









≤ 𝜌, 𝜌 ≥ 0,

𝑡 ∈ [−𝑑, 0) , 𝑑 ≥ ℎ (0) ,

(1)

where 𝑥(𝑡) is state variable and 𝜎(𝑡) is the switching law
which is a piecewise continuous function with 𝜎(𝑡) ∈ 𝑀 =

[1, 2, . . . , 𝑚]which means the switched system is consisted of
𝑚 subsystems. The 𝑖th subsystem is activated when 𝜎(𝑡) =
𝑖 ⋅ 𝐴

𝜎(𝑡)
, 𝐵

𝜎(𝑡)
, and 𝐺

𝜎(𝑡)
are constant matrices. ℎ(𝑡) represents

time-varying delay. 𝑤(𝑡) stands for external disturbance.
𝜑(𝑡) is the continuous vector-valued initial function on
𝑡 ∈ [−𝑑, 0) ⋅ �̇�(𝑡) denotes the derivative of 𝜑(𝑡) ⋅ 𝜌 is a positive
constant.

For the convenience of subsequent processing, assume
that the system (1) satisfies the following assumptions.

Assumption 1 (see [14]). The value of external disturbance
changes over time, but it satisfies

∫

+∞

0

𝑤

𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡 ≤ 𝛾, 𝛾 ≥ 0, ∀𝑡 > 0. (2)

Assumption 2. For the time-varying delay, the following
inequalities hold:

ℎ (𝑡) ≥ 0,

̇

ℎ (𝑡) ≤ 𝑘, 𝑘 < 1, ℎ (𝑡) ≤ ℎmax, (3)

where 𝑘 and ℎmax are positive constants.

Assumption 3. The system state variable does not “jump”
at switching instant, that is to say the state trajectory is
continuous. In addition, the switching number of 𝜎(𝑡) is finite

in a limited time interval which implies that the frequency of
switching signal is not infinite.

Definition 4 (see [15]). For 𝑇 ≥ 𝑡 ≥ 0, let𝑁
𝜎
(𝑡, 𝑇) denote the

switching number of 𝜎(𝑡) over (𝑡, 𝑇]. If

𝑁

𝜎
(𝑡, 𝑇) ≤ 𝑁

0
+

𝑇 − 𝑡

𝜏

𝑎

(4)

holds for 𝜏
𝑎
≥ 0 and an integer 𝑁

0
≥ 0, then 𝜏

𝑎
is called

average dwell time.

Definition 5. For a given four positive constants 𝑐
1
, 𝑐

2
, 𝑇

𝑓
, 𝛾,

and a switching signal 𝜎(𝑡), if

𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
) ≤ 𝑐

1
⇒ 𝑥

𝑇

(𝑡) 𝑥 (𝑡) < 𝑐

2
,

𝑐

1
< 𝑐

2
, ∀𝑡 ∈ [0, 𝑇

𝑓
] ,

∀𝑤 (𝑡) : ∫

𝑇𝑓

0

𝑤

𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑡 ≤ 𝛾,

(5)

then the system (1) is said to be finite-time bounded. Where
𝑥

𝑇

(𝑡

0
)𝑥(𝑡

0
) = sup

−𝑑≤𝑡≤0
{𝑥

𝑇

(𝑡)𝑥(𝑡)}, without loss of generality,
specify 𝑐

1
= sup

−𝑑≤𝑡≤0
{𝑥

𝑇

(𝑡)𝑥(𝑡)}.

Remark 6. Definition 5 implies that if the system (1) is finite-
time bounded, the state remains within the prescribed bound
in the fixed interval. Notice that finite-time boundedness
is different from asymptotic stability. The system which is
finite-time bounded may not be asymptotically stable while
a system is asymptotically stable does not mean it is finite-
time bounded either. In a word, there is no necessary relation
between them.

Remark 7. The definition of finite-time boundedness in this
paper is much more concise than that in [14]. However, they
are consistent in essence. By using the definition in this paper,
some complex matrix transformations can be avoided in the
subsequent mathematical processing.

3. Main Result

Theorem 8. For system (1), for all 𝑖 ∈ 𝑀 and for all
𝑡 ∈ [0, 𝑇

𝑓
], assume there exists symmetric positive matrixes

𝑃

𝑖
, 𝑅

𝑖1
, 𝑅

𝑖2
, 𝑄

𝑖
, 𝑍

𝑖1
, 𝑍

𝑖2
, and𝐻 and positive constants 𝛼, 𝛽 ≥ 1

such that

[

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜉

11
𝑃

𝑖
𝐵

𝑖
+

𝑑

2

𝐴

𝑇

𝑖
𝑍

𝑖
𝐵

𝑖

2

𝑑

𝑒

𝛼𝑑/2

𝑍

𝑖,1
0 𝑃

𝑖
𝐺

𝑖
+

𝑑

2

𝐴

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖

∗

𝑑

2

𝐵

𝑇

𝑖
𝑍

𝑖
𝐵

𝑖
− (1 − 𝑘)𝑄 0 0

𝑑

2

𝐵

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖

∗ ∗ 𝑒

𝛼𝑑/2

𝑅

𝑖
−

2

𝑑

𝑒

𝛼𝑑/2

𝑍

𝑖

2

𝑑

𝑒

𝛼𝑑

𝑍

𝑖,2
0

∗ ∗ ∗ −𝑒

𝛼𝑑

𝑅

𝑖,2
−

2

𝑑

𝑒

𝛼𝑑

𝑍

𝑖,2
0

∗ ∗ ∗ ∗

𝑑

2

(𝐺

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖
− 𝐻)

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0. (6)
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If the average dwell time satisfies

𝜏

𝑎
<

𝑇

𝑓
ln𝛽

ln𝐶
1
+ ln 𝜆

8
− ln (𝜂

1
𝐶

1
+ 𝜂

2
) − 𝛼𝑇

𝑓

, (7)

then system (1) is finite-time bounded, where

𝜉

11
= 𝐴

𝑇

𝑖
𝑃

𝑖
+ 𝑃

𝑖
𝐴

𝑖
+ 𝑅

𝑖,1
+ 𝑄

𝑖

+

𝑑

2

𝐴

𝑇

𝑖
(𝑍

𝑖,1
+ 𝑍

𝑖,2
) 𝐴

𝑖
−

2

𝑑

𝑒

𝛼𝑑/2

− 𝛼𝑃

𝑖
,

𝑍

𝑖
= 𝑍

𝑖,1
+ 𝑍

𝑖,2
, 𝑅

𝑖
= 𝑅

𝑖,1
+ 𝑅

𝑖,2
, 𝑃

𝑖
≤ 𝛽𝑃

𝑗
,

𝑅

𝑖,1
≤ 𝛽𝑅

𝑗,1
, 𝑅

𝑖,2
≤ 𝛽𝑅

𝑗,2
, 𝑄

𝑖
≤ 𝛽𝑄

𝑗

𝑍

𝑖,1
≤ 𝛽𝑍

𝑗,1
, 𝑍

𝑖,2
≤ 𝛽𝑍

𝑗,2
, 𝑖, 𝑗 ∈ [1, 2, . . . , 𝑚] ,

𝜆

1
= max
𝑖∈𝑀

{𝜆max (𝑃𝑖)} , 𝜆

2
= max
𝑖∈𝑀

{𝜆max (𝑅𝑖,1)} ,

𝜆

3
= max
𝑖∈𝑀

{𝜆max (𝑅𝑖,2)} , 𝜆

4
= max
𝑖∈𝑀

{𝜆max (𝑄𝑖)} ,

𝜆

5
= max
𝑖∈𝑀

{𝜆max (𝑍𝑖,1)} , 𝜆

6
= max
𝑖∈𝑀

{𝜆max (𝑍𝑖,2)} ,

𝜆

7
= 𝜆max (𝐻) , 𝜆

8
= min
𝑖∈𝑀

{𝜆min (𝑃𝑖)} ,

𝜂

1
= 𝜆

1
+

𝑑

2

𝑒

𝛼𝑑/2

𝜆

2
+

𝑑

2

𝑒

𝛼𝑑

𝜆

3
+ ℎmax𝑒

𝛼ℎmax
𝜆

4
,

𝜂

2
=

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝜆

7
𝛾,

𝐶

1
= sup
−𝑑≤𝑡0≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)} ,

𝐶

2
= (𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝜂

1
𝐶

1
+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝜆

7
𝛾)) (𝜆

8
)

−1

.

(8)

The left of inequality (6) is a symmetric matrix. Thus, the
symmetric terms are denoted by “∗”. 𝜆max(𝑃𝑖) represents the
maximum eigenvalue of 𝑃

𝑖
.

Proof. Construct the multiply Lyapunov function as follows:

𝑉 (𝑡) = 𝑉

𝑖
(𝑡) = 𝑉

𝑖,1
(𝑡) + 𝑉

𝑖,2
(𝑡) + 𝑉

𝑖,3
(𝑡) + 𝑉

𝑖,4
(𝑡) ,

𝑉

𝑖,1
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝑥 (𝑡) ,

𝑉

𝑖,2
(𝑡) =∫

𝑡

𝑡−(𝑑/2)

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑅

𝑖,1
𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡−(𝑑/2)

𝑡−𝑑

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑅

𝑖,2
𝑥 (𝑠) 𝑑𝑠,

𝑉

𝑖,3
(𝑡) = ∫

𝑡

𝑡−ℎ(𝑡)

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑄

𝑖
𝑥 (𝑠) 𝑑𝑠,

𝑉

𝑖,4
(𝑡) =∫

0

−𝑑/2

∫

𝑡

𝑡+𝜃

�̇�

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝑑/2

−𝑑

∫

𝑡

𝑡+𝜃

�̇�

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃.

(9)

Calculate the derivatives of 𝑉
𝑖,1
(𝑡), 𝑉

𝑖,2
(𝑡), 𝑉

𝑖,3
(𝑡), and

𝑉

𝑖,4
(𝑡) as

̇

𝑉

𝑖,1
(𝑡) = 𝑥

𝑇

(𝑡) [𝐴

𝑇

𝑖
𝑃

𝑖
+ 𝑃

𝑖
𝐴

𝑖
] 𝑥 (𝑡)

+ 𝑥

𝑇

(𝑡 − ℎ (𝑡)) 𝐵

𝑇

𝑖
𝑃

𝑖
𝑥 (𝑡) + 𝑤

𝑇

(𝑡) 𝐺

𝑇

𝑖
𝑃

𝑖
𝑥 (𝑡)

+ 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝐵

𝑖
𝑥 (𝑡 − ℎ (𝑡)) + 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝐺

𝑖
𝑤 (𝑡) .

(10)

Furthermore, it follows that

̇

𝑉

𝑖,1
(𝑡) − 𝛼𝑉

𝑖,1
= 𝑥

𝑇

(𝑡) [𝐴

𝑇

𝑖
𝑃

𝑖
+ 𝑃

𝑖
𝐴

𝑖
] 𝑥 (𝑡)

+ 𝑥

𝑇

(𝑡 − ℎ (𝑡)) 𝐵

𝑇

𝑖
𝑃

𝑖
𝑥 (𝑡) + 𝑤

𝑇

(𝑡) 𝐺

𝑇

𝑖
𝑃

𝑖
𝑥 (𝑡)

+ 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝐵

𝑖
𝑥 (𝑡 − ℎ (𝑡)) + 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝐺

𝑖
𝑤 (𝑡)

− 𝛼𝑥

𝑇

(𝑡) 𝑃

𝑖
𝑥 (𝑡) ,

(11)

̇

𝑉

𝑖,2
(𝑡) = 𝛼𝑉

𝑖,2
(𝑡) + 𝑥

𝑇

(𝑡) 𝑅

𝑖,1
𝑥 (𝑡)

+ 𝑥

𝑇

(𝑡 −

𝑑

2

) 𝑒

𝛼𝑑/2

[𝑅

𝑖,2
− 𝑅

𝑖,1
] 𝑥 (𝑡 −

𝑑

2

)

− 𝑥

𝑇

(𝑡 − 𝑑) 𝑒

𝛼𝑑

𝑅

𝑖,2
𝑥 (𝑡 − 𝑑) ,

(12)

̇

𝑉

𝑖,3
(𝑡) = 𝛼𝑉

𝑖,3
(𝑡) + 𝑥

𝑇

(𝑡) 𝑄

𝑖
𝑥 (𝑡)

− 𝑥

𝑇

(𝑡 − ℎ (𝑡)) (1 −

̇

ℎ (𝑡))

× 𝑒

𝛼ℎ(𝑡)

𝑄

𝑖
𝑥 (𝑡 − ℎ (𝑡))

≤ 𝛼𝑉

𝑖,3
(𝑡) + 𝑥

𝑇

(𝑡) 𝑄

𝑖
𝑥 (𝑡)

− 𝑥

𝑇

(𝑡 − ℎ (𝑡)) (1 − 𝑘) 𝑒

𝛼ℎ(𝑡)

𝑄

𝑖
𝑥 (𝑡 − ℎ (𝑡))

≤ 𝛼𝑉

𝑖,3
(𝑡) + 𝑥

𝑇

(𝑡) 𝑄

𝑖
𝑥 (𝑡)

− 𝑥

𝑇

(𝑡 − ℎ (𝑡)) (1 − 𝑘)𝑄

𝑖
𝑥 (𝑡 − ℎ (𝑡)) ,

(13)

̇

𝑉

𝑖,4
(𝑡) = 𝛼𝑉

𝑖,4
(𝑡) +

𝑑

2

�̇�

𝑇

(𝑡) [𝑍

𝑖,1
+ 𝑍

𝑖,2
] �̇� (𝑡)

− ∫

𝑡

𝑡−(𝑑/2)

�̇�

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,1
�̇� (𝑠) 𝑑𝑠
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− ∫

𝑡−(𝑑/2)

𝑡−𝑑

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,2
𝑥 (𝑠) 𝑑𝑠

= 𝛼𝑉

𝑖,4
(𝑡) +

𝑑

2

[𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥

× (𝑡 − ℎ (𝑡)) + 𝐺

𝑖
𝑤 (𝑡)]

𝑇

× [𝑍

𝑖,1
+ 𝑍

𝑖,2
]

× [𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − ℎ (𝑡)) + 𝐺

𝑖
𝑤 (𝑡)]

− ∫

𝑡

𝑡−(𝑑/2)

�̇�

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,1
�̇� (𝑠) 𝑑𝑠

− ∫

𝑡−(𝑑/2)

𝑡−𝑑

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,2
𝑥 (𝑠) 𝑑𝑠.

(14)

Due to the Jensen inequality, inequality (15) holds

∫

𝑡

𝑡−(𝑑/2)

�̇�

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,1
�̇� (𝑠) 𝑑𝑠

≥

2

𝑑

[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)]

𝑇

× 𝑒

𝛼𝑑/2

𝑍

𝑖,1
[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)] ,

∫

𝑡−(𝑑/2)

𝑡−𝑑

𝑥

𝑇

(𝑠) 𝑒

−𝛼(𝑠−𝑡)

𝑍

𝑖,2
𝑥 (𝑠) 𝑑𝑠

≥

2

𝑑

[𝑥(𝑡 −

𝑑

2

) − 𝑥 (𝑡 − 𝑑)]

𝑇

× 𝑒

𝛼𝑑

𝑍

𝑖,2
[𝑥(𝑡 −

𝑑

2

) − 𝑥 (𝑡 − 𝑑)] .

(15)

By (14) and (15), we obtain

̇

𝑉

𝑖,4
(𝑡) ≤ 𝛼𝑉

𝑖,4
(𝑡) +

𝑑

2

[𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − ℎ (𝑡)) + 𝐺

𝑖
𝑤 (𝑡)]

𝑇

× [𝑍

𝑖,1
+ 𝑍

𝑖,2
] [𝐴

𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑥 (𝑡 − ℎ (𝑡)) + 𝐺

𝑖
𝑤 (𝑡)]

−

2

𝑑

[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)]

𝑇

× 𝑒

𝛼𝑑/2

𝑍

𝑖,1
[𝑥 (𝑡) − 𝑥(𝑡 −

𝑑

2

)]

−

2

𝑑

[𝑥(𝑡 −

𝑑

2

) − 𝑥 (𝑡 − 𝑑)]

𝑇

× 𝑒

𝛼𝑑

𝑍

𝑖,2
[𝑥(𝑡 −

𝑑

2

) − 𝑥 (𝑡 − 𝑑)] .

(16)

From (11), (12), (13), and (16), it is easy to get

̇

𝑉

𝑖
(𝑡) − 𝛼𝑉

𝑖
(𝑡) ≤

[

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ (𝑡))

𝑥 (𝑡 −

𝑑

2

)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

]

]

]

]

]

]

]

]

]

𝑇

×

[

[

[

[

[

[

[

[

[

[

[

[

[

𝜉

11
𝑃

𝑖
𝐵

𝑖
+

𝑑

2

𝐴

𝑇

𝑖
𝑍

𝑖
𝐵

𝑖

2

𝑑

𝑒

𝛼𝑑/2

𝑍

𝑖,1
0 𝑃

𝑖
𝐺

𝑖
+

𝑑

2

𝐴

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖

∗

𝑑

2

𝐵

𝑇

𝑖
𝑍

𝑖
𝐵

𝑖
− (1 − 𝑘)𝑄 0 0

𝑑

2

𝐵

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖

∗ ∗ 𝑒

𝛼𝑑/2

𝑅

𝑖
−

2

𝑑

𝑒

𝛼𝑑/2

𝑍

𝑖

2

𝑑

𝑒

𝛼𝑑

𝑍

𝑖,2
0

∗ ∗ ∗ −𝑒

𝛼𝑑

𝑅

𝑖,2
−

2

𝑑

𝑒

𝛼𝑑

𝑍

𝑖,2
0

∗ ∗ ∗ ∗

𝑑

2

𝐺

𝑇

𝑖
𝑍

𝑖
𝐺

𝑖

]

]

]

]

]

]

]

]

]

]

]

]

]

×

[

[

[

[

[

[

[

[

[

𝑥 (𝑡)

𝑥 (𝑡 − ℎ (𝑡))

𝑥 (𝑡 −

𝑑

2

)

𝑥 (𝑡 − 𝑑)

𝑤 (𝑡)

]

]

]

]

]

]

]

]

]

.

(17)
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According to the definition of finite-time boundedness, the
rest of the proof will be divided into two steps. Under the
given conditions, we need to prove that 𝑥𝑇(𝑡)𝑥(𝑡) < 𝑐

2
and

𝑐

1
< 𝑐

2
, respectively.

(i) We will prove that 𝑥𝑇(𝑡)𝑥(𝑡) < 𝐶

2
holds for all 𝑡 on

[0, 𝑇

𝑓
].

By (6) and (17), inequality (18) holds

̇

𝑉

𝑖
(𝑡) − 𝛼𝑉

𝑖
(𝑡) <

𝑑

2

𝑤

𝑇

(𝑡)𝐻𝑤 (𝑡) .
(18)

Since (𝑑/𝑑𝑡)(𝑒−𝛼𝑡𝑉
𝑖
(𝑡)) = 𝑒

−𝛼𝑡

[

̇

𝑉

𝑖
(𝑡) − 𝛼𝑉

𝑖
(𝑡)], inequality

(18) can be transformed into

𝑑

𝑑𝑡

(𝑒

−𝛼𝑡

𝑉

𝑖
(𝑡)) <

𝑑

2

𝑒

−𝛼𝑡

𝑤

𝑇

(𝑡)𝐻𝑤 (𝑡) .
(19)

Let 𝑡
𝑘
stand for the instant of the𝐾th switching.

Integrating from 𝑡

𝑘
to 𝑡 on both sides of (19), it follows

that

𝑉

𝑖
(𝑡) < 𝑒

𝛼(𝑡−𝑡𝑘)
𝑉

𝑖
(𝑡

𝑘
) +

𝑑

2

∫

𝑡

𝑡𝑘

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠.

(20)

Notice that 𝑃
𝑖
≤ 𝛽𝑃

𝑗
, 𝑅
𝑖,1
≤ 𝛽𝑅

𝑗,1
, 𝑅
𝑖,2
≤ 𝛽𝑅

𝑗,2
, 𝑄
𝑖
≤ 𝛽𝑄

𝑗
,

𝑍

𝑖,1
≤ 𝛽𝑍

𝑗,1
, 𝑍
𝑖,2
≤ 𝛽𝑍

𝑗,2
, 𝑖, and 𝑗 ∈ [1, 2, . . . , 𝑚] and the

continuity of 𝑥(𝑡), hence (21) holds

𝑉

𝑖
(𝑡) < 𝛽𝑒

𝛼(𝑡−𝑡𝑘)
𝑉

𝑖
(𝑡

𝑘
−) +

𝑑

2

∫

𝑡

𝑡𝑘

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠,

(21)

where 𝑡
𝑘
− denotes the instant just before 𝑡

𝑘
.

It is easy to see

𝑉

𝑖
(𝑡

𝑘
−) < 𝑒

𝛼(𝑡𝑘−𝑡𝑘−1)
𝑉

𝑖
(𝑡

𝑘−1
) +

𝑑

2

∫

𝑡𝑘

𝑡𝑘−1

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠.

(22)

Then (23) is obtained

𝑉

𝑖
(𝑡) < 𝛽

2

𝑒

𝛼(𝑡−𝑡𝑘−1)
𝑉

𝑖
(𝑡

(𝑘−1)
−
)

+

𝑑

2

𝛽𝑒

𝛼(𝑡−𝑡𝑘)
∫

𝑡𝑘

𝑡𝑘−1

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠

+

𝑑

2

∫

𝑡

𝑡𝑘

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠.

(23)

Assume the switching number of 𝜎(𝑡) over [0, 𝑇
𝑓
] is 𝑁.

(24) is obtained via the iterative calculation

𝑉

𝑖
(𝑡) < 𝛽

𝑁

𝑒

𝛼𝑡

𝑉

𝑖
(0) +

𝑑

2

𝛽

𝑁

𝑒

𝛼(𝑡−𝑡1)

× ∫

𝑡1

𝑡0

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠 + ⋅ ⋅ ⋅

+

𝑑

2

𝛽𝑒

𝛼(𝑡−𝑡𝑘)
∫

𝑡𝑘

𝑡𝑘−1

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠

+

𝑑

2

∫

𝑇𝑓

𝑡𝑘

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠,

(24)

𝑒

𝛼𝑇𝑓
≥ 𝑒

𝛼𝑡

,

𝑒

𝛼𝑇𝑓
> 𝑒

𝛼(𝑇𝑓−𝑡1)
> 𝑒

𝛼(𝑇𝑓−𝑡2)
>⋅ ⋅ ⋅ > 𝑒

𝛼(𝑇𝑓−𝑡𝑘)
> 1

for 𝑡 ∈ [0, 𝑇
𝑓
] , 𝛽

𝑁

≥ 𝛽

𝑁−1

≥⋅ ⋅ ⋅ ≥ 𝛽 ≥ 1.

(25)

Thus, it follows that

𝑉

𝑖
(𝑡) < 𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝑉

𝑖
(0) +

𝑑

2

𝛽

𝑁

𝑒

𝛼𝑇𝑓

× ∫

𝑡1

𝑡0

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠 + ⋅ ⋅ ⋅

+

𝑑

2

𝛽

𝑁

𝑒

𝛼𝑇𝑓
∫

𝑡𝑘

𝑡𝑘−1

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝛽

𝑁

∫

𝑡

𝑡𝑘

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠,

(26)

𝑉

𝑖
(𝑡) < 𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝑉

𝑖
(0) +

𝑑

2

𝑒

𝛼𝑇𝑓
𝛽

𝑁

∫

𝑡

0

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠.

(27)

On the other hand, since 1 ≤ 𝑒

𝛼(𝑡−𝑠)

≤ 𝑒

𝛼𝑡

≤ 𝑒

𝛼𝑇𝑓 and
𝐻 ≤ 𝜆max(𝐻), we have

𝑑

2

𝑒

𝛼𝑇𝑓
𝛽

𝑁

∫

𝑡

0

𝑤

𝑇

(𝑠) 𝑒

𝛼(𝑡−𝑠)

𝐻𝑤(𝑠) 𝑑𝑠

≤

𝑑

2

𝑒

2𝛼𝑇𝑓
𝛽

𝑁

𝜆max (𝐻)∫
𝑡

0

𝑤

𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠

≤

𝑑

2

𝑒

2𝛼𝑡

𝛽

𝑁

𝜆max (𝐻) 𝛾.

(28)

Applying the above inequality to (27), we get

𝑉

𝑖
(𝑡) < 𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝑉

𝑖
(0) +

𝑑

2

𝑒

2𝛼𝑇𝑓
𝛽

𝑁

𝜆max (𝐻) 𝛾. (29)
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With respect to 𝑉
𝑖
(0) in (29), it is processed as follows:

𝑉

𝑖
(0) = 𝑥

𝑇

(0) 𝑃

𝑖
𝑥 (0) + ∫

0

−𝑑/2

𝑥

𝑇

(𝑠) 𝑒

−𝛼𝑠

𝑅

𝑖,1
𝑥 (𝑠) 𝑑𝑠

+ ∫

−𝑑/2

−𝑑

𝑥

𝑇

(𝑠) 𝑒

−𝛼𝑠

𝑅

𝑖,2
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−ℎ(0)

𝑥

𝑇

(𝑠) 𝑒

−𝛼𝑠

𝑄

𝑖
𝑥 (𝑠) 𝑑𝑠

+ ∫

0

−𝑑/2

∫

0

𝜃

�̇�

𝑇

(𝑠) 𝑒

−𝛼𝑠

𝑍

𝑖,1
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

+ ∫

−𝑑/2

−𝑑

∫

0

𝜃

�̇�

𝑇

(𝑠) 𝑒

−𝛼𝑠

𝑍

𝑖,2
�̇� (𝑠) 𝑑𝑠 𝑑𝜃

< 𝜆max (𝑃𝑖) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+

𝑑

2

𝑒

𝛼𝑑/2

𝜆max (𝑅𝑖,1) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+

𝑑

2

𝑒

𝛼𝑑

𝜆max (𝑅𝑖,2) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+ ℎmax𝑒
𝛼ℎmax

𝜆max (𝑄𝑖) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+ ∫

0

−𝑑/2

−𝜃𝜌

2

𝜆max (𝑍𝑖,1) 𝑒
−𝛼𝜃

𝑑𝜃

+ ∫

−𝑑/2

−𝑑

−𝜃𝜌

2

𝜆max (𝑍𝑖,2) 𝑒
−𝛼𝜃

𝑑𝜃

< 𝜆max (𝑃𝑖) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+

𝑑

2

𝑒

𝛼𝑑/2

𝜆max (𝑅𝑖,1) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+

𝑑

2

𝑒

𝛼𝑑

𝜆max (𝑅𝑖,2) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
) 𝑥 (𝑡

0
)}

+ ℎmax𝑒
𝛼ℎmax

𝜆max (𝑄𝑖) sup
−𝑑≤𝑡≤0

{𝑥

𝑇

(𝑡

0
𝑡) 𝑥 (𝑡

0
)}

+

𝑑

2

⋅

𝑑

2

𝜌

2

𝜆max (𝑍𝑖,1) 𝑒
𝛼𝑑/2

+

𝑑

2

⋅ 𝑑𝜌

2

𝜆max (𝑍𝑖,2) 𝑒
𝛼𝑑

.

(30)

Applying known mathematical relationships to (30), (31)
can be obtained as

𝑉

𝑖
(0) < 𝜆

1
𝐶

1
+

𝑑

2

𝑒

𝛼𝑑/2

𝜆

2
𝐶

1
+

𝑑

2

𝑒

𝛼𝑑

𝜆

3
𝐶

1

+ ℎmax𝑒
𝛼ℎmax

𝜆

4
𝐶

1
+

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

.

(31)

Inequality (32) is obtained via (29) and (31) as

𝑉

𝑖
(𝑡) < 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (𝜆

1
+

𝑑

2

𝑒

𝛼𝑑/2

𝜆

2
+

𝑑

2

𝑒

𝛼𝑑

𝜆

3
+ ℎmax𝑒

𝛼ℎmax
𝜆

4
)𝐶

1

+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓
(

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝜆

7
𝛾)

= 𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝜂

1
𝐶

1
+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝜆

7
𝛾) .

(32)

According to the definition of 𝑉
𝑖
(𝑡), inequality (33) holds

𝑉

𝑖
(𝑡) > 𝑥

𝑇

(𝑡) 𝑃

𝑖
𝑥 (𝑡) ≥ 𝜆min (𝑃𝑖) 𝑥

𝑇

(𝑡) 𝑥 (𝑡)

≥ min
𝑖∈𝑀

{𝜆min (𝑃𝑖)} 𝑥
𝑇

(𝑡) 𝑥 (𝑡) .

(33)

Then the following holds based on (32) and (33):

𝑥

𝑇

(𝑡) 𝑥 (𝑡) < (𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝜂

1
𝐶

1
+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝜆

7
𝛾)) (𝜆

8
)

−1

= 𝐶

2
.

(34)

(ii) Next, 𝐶
1
< 𝐶

2
will be demonstrated.

By (7), we have

𝑇

𝑓

𝜏

𝑎

>

ln𝐶
1
+ ln 𝜆

8
− ln (𝜂

1
𝐶

1
+ 𝜂

2
) − 𝛼𝑇

𝑓

ln𝛽
,

(35)

𝑁 >

𝑇

𝑓

𝜏

𝑎

>

ln𝐶
1
+ ln 𝜆

8
− ln (𝜂

1
𝐶

1
+ 𝜂

2
) − 𝛼𝑇

𝑓

ln𝛽
,

(36)

ln (𝜂
1
𝐶

1
+ 𝜂

2
) − ln 𝜆

8
> ln𝐶

1
− 𝑁 ln𝛽 − 𝛼𝑇

𝑓
, (37)

𝜂

1
𝐶

1
+ 𝜂

2

𝜆

8

𝑒

𝛼𝑇𝑓
𝛽

𝑁

> 𝐶

1
. (38)
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On the other hand, due to 𝑒

𝛼𝑇𝑓
≥ 1, there exist the

following mathematical relations:

𝐶

2
= (𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝜂

1
𝐶

1
+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝑒

𝛼𝑇𝑓
𝜆

7
𝛾)) (𝜆

8
)

−1

≥ (𝛽

𝑁

𝑒

𝛼𝑇𝑓
𝜂

1
𝐶

1
+ 𝛽

𝑁

𝑒

𝛼𝑇𝑓

× (

𝑑

2

4

𝜌

2

𝜆

5
𝑒

𝛼𝑑/2

+

𝑑

2

2

𝜌

2

𝜆

6
𝑒

𝛼𝑑

+

𝑑

2

𝜆

7
𝛾)) (𝜆

8
)

−1

=

𝜂

1
𝐶

1
+ 𝜂

2

𝜆

8

𝑒

𝛼𝑇𝑓
𝛽

𝑁

.

(39)

Combining (38) and (39), we get 𝑐
2
> 𝑐

1
.

By (i) and (ii), the system (1) satisfies the definition
of finite-time boundedness under given conditions. This
completes the proof of Theorem 8.

Remark 9. Notice that (6) is not a linear matrix inequality.
Thus, it cannot be directly solved via LMI toolbox. Before
solving (6), the inequality can be transformed to a linear
matrix inequality by specifying the value of 𝛼.

4. A Numerical Example

An example is presented to illustrate Theorem 8. Consider

�̇� (𝑡) = 𝐴

𝜎(𝑡)
𝑥 (𝑡) + 𝐵

𝜎(𝑡)
𝑥 (𝑡 − ℎ (𝑡)) + 𝐺

𝜎(𝑡)
𝑤 (𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑑, 0) ,

𝐴

1
=

[

[

−1.7 1.7 0

1.3 −1 0.7

0.7 1 −0.6

]

]

, 𝐴

2
=

[

[

1 −1 0

0.7 0 −0.6

1.7 0 −1.7

]

]

,

𝐵

1
=

[

[

1.5 −1.7 0.1

−1.3 1 −0.3

−0.7 1 0.6

]

]

, 𝐵

2
=

[

[

−1 −0.3 0.1

1.3 −0.1 0.6

1.5 0.1 1.8

]

]

,

𝐺

1
= 𝐺

2
=

[

[

1 0 0

0 1 0

0 0 1

]

]

,

𝑤 (𝑡) =

[

[

0.03 sin (𝑡)
0.02 cos (2𝑡)

0.015 (sin (𝑡 + 1) + cos (𝑡 − 2))
]

]

,

ℎ (𝑡) = 0.5𝑡, 𝑑 = 0.2,

𝜑 (𝑡) ≡ [0.5 0.1 0]

𝑇

, ∀𝑡 ∈ [−0.2, 0] ,

max 


�̇� (𝑡)









≤ 𝜌 = 0,

̇

ℎ (𝑡) ≤ 𝑘 = 0.5, 𝐶

1
= 0.26.

(40)

Let 𝛼 = 0.02, 𝛽 = 1.1, and 𝑇
𝑓
= 10, then ℎ(𝑡) ≤ ℎmax =

0.5 ∗ 10 = 5 and ∫𝑇𝑓
0

𝑤

𝑇

(𝑠)𝑤(𝑠)𝑑𝑡 ≤ 𝛾 ≈ 0.022.
Solving (6) leads to feasible solutions that

𝑃

1
=

[

[

0.8983 −0.0167 0.1555

−0.0167 1.0898 −0.3930

0.1555 −0.3930 0.9754

]

]

,

𝑃

2
=

[

[

0.6101 0.1828 −0.1480

0.1828 0.8908 −0.3026

−0.1480 −0.3026 0.8153

]

]

,

𝑅

1,1
=

[

[

0.7188 −0.1052 0.0283

−0.1052 0.7458 −0.1300

0.0283 −0.1300 0.7114

]

]

,

𝑅

1,2
=

[

[

1.3854 −0.1336 0.0209

−0.1336 1.3613 −0.1532

0.0209 −0.1532 1.3368

]

]

,

𝑅

2,1
=

[

[

0.5289 0.0089 −0.0566

0.0089 0.6200 −0.0083

−0.0566 −0.0083 0.6743

]

]

,

𝑅

2,2
=

[

[

1.1615 0.0282 −0.0465

0.0282 1.2555 −0.0175

−0.0465 −0.0175 1.3518

]

]

,

𝑄

1
=

[

[

4.2184 −0.5908 −0.1106

−0.5908 4.4575 −0.3066

−0.1106 −0.3066 4.0548

]

]

,

𝑄

2
=

[

[

3.8150 0.0518 0.0675

0.0518 3.7399 0.0356

0.0675 0.0356 4.2709

]

]

,

𝑍

1,1
=

[

[

0.3150 −0.0492 −0.0003

−0.0492 0.2950 −0.0639

−0.0003 −0.0639 0.3082

]

]

,

𝑍

1,2
=

[

[

0.4060 0.0002 0.0006

0.0002 0.4036 0.0013

0.0006 0.0013 0.3934

]

]

,

𝑍

2,1
=

[

[

0.2124 0.0176 −0.0190

0.0176 0.2812 −0.0034

−0.0190 −0.0034 0.3118

]

]

,

𝑍

2,2
=

[

[

0.3934 0.0070 0.0039

0.0070 0.3920 −0.0131

0.0039 −0.0131 0.3961

]

]

,
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Figure 1: The diagram of switching law.

𝐻 =

[

[

12.5148 0.6115 0.1387

0.6115 13.0302 −0.5248

0.1387 −0.5248 12.4327

]

]

,

𝜆

1
= 1.4539, 𝜆

2
= 0.9114, 𝜆

3
= 1.5749,

𝜆

4
= 4.9735, 𝜆

5
= 0.2449, 𝜆

6
= 0.1192,

𝜆

7
= 13.5367, 𝜆

8
= 0.5200.

(41)

Further, we get that 𝐶
2

= 2000.6421 > 𝐶

1
and

𝜏

𝑎
< 1.8263. The simulation of the numerical example is

performed and its results are shown in Figures 1 and 2. From
Figure 1, one can get that 𝜏

𝑎
< 1.8263 holds. From Figure 2, it

is easily found that the value of 𝑥𝑇(𝑡)𝑥(𝑡) remains within 𝐶
2

for 𝑡 ∈ [0, 𝑇
𝑓
]. So, the system is indeed finite-time bounded

over [0, 𝑇
𝑓
].

5. Conclusion

(1) For the switched linear system, a new definition on
finite-time boundedness is proposed which can reduce some
complex matrix calculations.

(2) Under given conditions, the sufficient conditions
which guarantee the system is finite-time bounded are given
for the switched linear system with time-varying delay and
external disturbance.

(3) In the future study, a challenging research topic is
how to ensure the switched system with time-varying delay
remains finite-time bounded for any switching signal.
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Figure 2: The diagrams of 𝑥(𝑡) and 𝑥𝑇(𝑡)𝑥(𝑡).
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