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We propose a new numerical meshfree scheme to solve time-dependent problems with variable coefficient governed by telegraph
and wave equations which are more suitable than ordinary diffusion equations in modelling reaction diffusion for such branches
of sciences. Finite difference method is adopted to deal with time variable and its derivative, and radial basis functions method is
developed for spatial discretization.The results of numerical experiments are presented and are compared with analytical solutions
to confirm the accuracy of our scheme.

1. Introduction

This paper is devoted to the numerical computation of the
nonhomogeneous time-dependent problem with the follow-
ing form:

𝑢
𝑡𝑡

+ 𝑎𝛼𝑢
𝑡

= 𝑏𝑓
1

(𝑥) 𝑢
𝑥𝑥

+ 𝑐𝛼𝑢 + 𝑓
2

(𝑥, 𝑡) , (1)

where 𝑎, 𝑏, 𝑐 are constants, 𝑓
1
(𝑥) and 𝑓

2
(𝑥, 𝑡) are given

analytic functions, and 𝛼 ∈ {0, 1}. The cases 𝛼 = 0 and 𝛼 =

1 correspond to the telegraph problem and wave problem,
respectively.

Telegraph equations describe various phenomena in
many applied fields, such as a planar random motion of
a particle in fluid flow, transmission of electrical impulses
in the axons of nerve and muscle cells, propagation of
electromagnetic waves in superconducting media, and prop-
agation of pressure waves occurring in pulsatile blood flow
in arteries. The wave equation is also an important second-
order linear partial differential equation for the description
of waves, such as sound waves, light waves, and water waves.
It arises in fields like acoustics, electromagnetics, and fluid
dynamics.

Over the past several decades, many numerical methods
have been developed to solve boundary-value problems
involving ordinary and partial differential equations, such as

the finite difference, finite elements, and multigrid methods.
As one kind of mesh method, finite difference methods are
adopted to solve this partial differential equations [1, 2].
Although these methods are effective for solving various
kinds of partial differential equations, conditional stability
of explicit finite difference procedures and the need to
use large amount of CPU time in implicit finite difference
schemes limit the applicability of these methods. Further-
more, numerical solution can be provided only on mesh
points from thesemethods [3], and the accuracy of thesewell-
known techniques is reduced in nonsmooth and nonregular
domains. Some authors used Legendre-Gauss-Lobatto collo-
cationmethod andChebyshev-taumethod to solve the space-
fractional advection diffusion equation and got high accuracy
results [4, 5].

Recently, meshfree techniques have attracted attention
of researchers in order to avoid the mesh generation. Some
meshfree schemes are the element free Galerkin method,
the reproducing kernel particle, the point interpolation, and
so forth. For more description see [6] and the references
therein.Dehghan and Shokri [7] have solved the second order
telegraph equations with constant coefficients usingmeshfree
method. In this paper, we extend this problem considered in
[7] to one kind of partial differential equations with variable
coefficients.
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Radical basis functions (RBFs) method is known as a
powerful approximating tool for scattered data interpolation
problem. As a meshfree method, the usage of RBFs to solve
numerical solution of partial differential equations is based
on the collocation scheme.Themajor advantage of numerical
procedures by using RBFs is meshfree compared with the
traditional techniques. RBFs are used actively for solving
PDEs, and the examples can be found in [10–14].

In the last decade, the development of theRBFsmethod as
a truly meshfree approach for approximating the solutions of
partial derivative equations has drawn the attention of many
researchers in science and engineering.Meshfreemethod has
become an important numerical computation method, and
there are many academic monographs published [15–21].

In this paper, we present an effective numerical scheme
to solve time-dependent problems governed by telegraph
and wave equations using the meshfree method with RBFs.
The results of numerical experiments are presented and are
compared with analytical solutions to confirm the good
accuracy of the presented scheme.

The layout of the paper is as follows. In Section 2, the
overview about RBFs and the numerical scheme of our
method on the time-dependent problems are introduced.The
results of numerical experiments are presented in Section 3.
Section 4 is dedicated to a brief conclusion.

2. The Meshfree Method

2.1. Radial Basis Function Approximation. The approxima-
tion of a distribution 𝑢(x), using RBFs, may be written as a
linear combination of 𝑁 radial basis functions, and usually it
takes the following form:

𝑢 (x) ≃

𝑁

∑

𝑗=1

𝜆
𝑗
𝜑 (x, x

𝑗
) + 𝜓 (x) , for x ∈ Ω ⊂ 𝑅

𝑑
, (2)

where 𝑁 is the number of data points, x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑑
),

𝑑 is the dimension of the problem, the 𝜆’s are coefficients to
be determined, and 𝜑 is the radial basis function. Equation
(2) can be written without the additional polynomial 𝜓. In
that case, 𝜑 must be a positive definite function to guarantee
the solvability of the resulting system. However, 𝜓 is usually
required when 𝜑 is conditionally positive definite, that is,
when 𝜑 has a polynomial growth towards infinity.Wewill use
RBFs, which defined as

Inverse multiquadric (IMQ):𝜑 (x, x
𝑗
) =

1

√𝑟
2

𝑗
+ 𝑐
2

,

𝑐 > 0,

Thin plate splines (TPS):𝜑 (x, x
𝑗
) = 𝑟
2𝑚

𝑗
log (𝑟
𝑗
) ,

𝑚 = 1, 2, 3, . . . ,

(3)

where 𝑟
𝑗

= ‖x − x
𝑗
‖ is the Euclidean norm. Since 𝜑 given by

(3) is 𝐶
∞ continuous, we can use it directly.

The IMQ radial basis function takes the form 1/√𝑟
2

+ 𝑐
2,

𝑐 > 0. The accuracy of the numerical solution is severely

influenced by the choice of parameter 𝑐, since unsuitable
parameter 𝑐 will produce the singular interpolation matrix.
Moreover, the number of the chosen nodes can also affect
the accuracy. Further learning about RBFsmethod can be got
from [22, 23].

IfP𝑑
𝑞
denotes the space of 𝑑-variate polynomial of order

not exceeding more than 𝑞 and letting the polynomials
𝑃
1
, 𝑃
2
, . . . , 𝑃

𝑚
be the basis of 𝑃

𝑑

𝑞
in 𝑅
𝑑, then the polynomial

𝜓(x) in (2) is usually written in the following form:

𝜓 (x) =

𝑚

∑

𝑖=1

𝜁
𝑖
𝑃
𝑖
(x
𝑗
) , (4)

where 𝑚 = (𝑞 − 1 + 𝑑)!/(𝑑!(𝑞 − 1)!).
To get the coefficients (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑁
) and (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑚
),

the collocationmethod is used. However, in addition to the𝑁

equations resulting from collocating (2) at the𝑁 points, extra
𝑚 equations are required.This is ensured by the𝑚 conditions

𝑁

∑

𝑗=1

𝜆
𝑗
𝑃
𝑖
(x
𝑗
) = 0, 𝑖 = 1, 2, . . . , 𝑚. (5)

Supposed thatL, is a linear partial differential operator, then
L𝑢 can be approximated by

L𝑢 (x) ≃

𝑁

∑

𝑗=1

𝜆
𝑗
L𝜑 (x, x

𝑗
) + L𝜓 (x) . (6)

2.2. Nonhomogeneous Time-Dependent Problems. Let ue
consider the following time-dependent problem:

𝑢
𝑡𝑡

+ 𝑎𝛼𝑢
𝑡

= 𝑏𝑓
1

(𝑥) 𝑢
𝑥𝑥

+ 𝑐𝛼𝑢 + 𝑓
2

(𝑥, 𝑡) ,

𝑥 ∈ Ω ∪ 𝜕Ω = [𝑎
1
, 𝑏
1
] ⊂ 𝑅, 0 < 𝑡 ≤ 𝑇,

(7)

with initial conditions

𝑢 (𝑥, 0) = 𝑔
1

(𝑥) , 𝑥 ∈ Ω,

𝑢
𝑡
(𝑥, 0) = 𝑔

2
(𝑥) , 𝑥 ∈ Ω,

(8)

and Dirichlet boundary conditions

𝑢 (𝑥, 𝑡) = ℎ (𝑥, 𝑡) , 𝑥 ∈ 𝜕Ω, 0 < 𝑡 ≤ 𝑇, (9)

where 𝑎, 𝑏, and 𝑐 are constant coefficients, 𝑓
1
(𝑥), 𝑓

2
(𝑥, 𝑡),

𝑔
1
(𝑥), 𝑔
2
(𝑥), and ℎ(𝑥, 𝑡) are given functions, and 𝑢(𝑥, 𝑡) is the

unknown function.
Equation (7) is discretized according to the following 𝜃-

weighted scheme:

𝑢 (𝑥, 𝑡 + 𝑑𝑡) − 2𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡 − 𝑑𝑡)

(𝑑𝑡)
2

+ 𝑎𝛼

𝑢 (𝑥, 𝑡 + 𝑑𝑡) − 𝑢 (𝑥, 𝑡 − 𝑑𝑡)

2𝑑𝑡

= 𝜃 [𝑏𝑓
1

(𝑥) Δ𝑢 (𝑥, 𝑡 + 𝑑𝑡) + 𝑐𝛼𝑢 (𝑥, 𝑡 + 𝑑𝑡)]

+ (1 − 𝜃) [𝑏𝑓
1

(𝑥) Δ𝑢 (𝑥, 𝑡) + 𝑐𝛼𝑢 (𝑥, 𝑡)] + 𝑓
2

(𝑥, 𝑡 + 𝑑𝑡) ,

(10)
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where 0 ≤ 𝜃 ≤ 1, 𝑑𝑡 is the time step size, and Δ is the Laplace
operator. By using the notation 𝑢

𝑛
= 𝑢(𝑥, 𝑡

𝑛
) with 𝑡

𝑛
= 𝑡
𝑛−1

+

𝑑𝑡, we can get

(1 + 𝑎𝛼

𝑑𝑡

2

− 𝑐𝛼𝜃𝑑𝑡
2
) 𝑢
𝑛+1

− 𝑏𝜃𝑑𝑡
2
𝑓
1

(𝑥) Δ𝑢
𝑛+1

= (2 + 𝑐𝛼 (1 − 𝜃) 𝑑𝑡
2
) 𝑢
𝑛

+ 𝑏 (1 − 𝜃) 𝑑𝑡
2
𝑓
1

(𝑥) Δ𝑢
𝑛

+ (𝑎𝛼

𝑑𝑡

2

− 1) 𝑢
𝑛−1

+ 𝑑𝑡
2
𝑓
𝑛+1

2
.

(11)

Suppose that there are a total of𝑁−2 interpolation points,
and 𝑢

𝑛
(𝑥) can be approximated by

𝑢
𝑛

(𝑥) =

𝑁−2

∑

𝑗=1

𝜆
𝑛

𝑗
𝜑 (𝑟
𝑗
) + 𝜆
𝑛

𝑁−1
𝑥 + 𝜆
𝑛

𝑁
. (12)

In order to determine the coefficients (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁−1
, 𝜆
𝑁

),
the collocationmethod is used by applying (12) at every point
𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 2. Thus we obtain

𝑢
𝑛

(𝑥
𝑖
) =

𝑁−2

∑

𝑗=1

𝜆
𝑛

𝑗
𝜑 (𝑟
𝑖𝑗
) + 𝜆
𝑛

𝑁−1
𝑥
𝑖
+ 𝜆
𝑛

𝑁
, (13)

where 𝑟
𝑖𝑗

= √(𝑥
𝑖
− 𝑥
𝑗
)
2. The additional conditions due to (5)

can be written as
𝑁−2

∑

𝑗=1

𝜆
𝑛

𝑗
=

𝑁−2

∑

𝑗=1

𝜆
𝑛

𝑗
𝑥
𝑗

= 0. (14)

Writing (13) together with (14) in a matrix form

[𝑢]
𝑛

= A [𝜆]
𝑛
, (15)

where

[𝑢]
𝑛

= [𝑢
𝑛

1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑁−2
, 0, 0]
𝑇

,

[𝜆]
𝑛

= [𝜆
𝑛

1
, 𝜆
𝑛

2
, . . . , 𝜆

𝑛

𝑁
]
𝑇

,

(16)

and A = [𝑎
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁] is given as follows:

A = (

𝜑
11

⋅ ⋅ ⋅ 𝜑
1(𝑁−2)

𝑥
1

1

... d
...

...
...

𝜑
(𝑁−2)1

⋅ ⋅ ⋅ 𝜑
(𝑁−2)(𝑁−2)

𝑥
𝑁−2

1

𝑥
1

⋅ ⋅ ⋅ 𝑥
𝑁−2

0 0

1 ⋅ ⋅ ⋅ 1 0 0

) . (17)

Assuming that there are 𝑝 < 𝑁 − 2 internal points and
𝑁 − 2 − 𝑝 boundary points, then the 𝑁 × 𝑁 matrix A can be
split into A = A

𝑑
+ A
𝑏

+ A
𝑒
, where

A
𝑑

= [𝑎
𝑖𝑗
for (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑁) , 0 elsewhere] ,

A
𝑏

= [𝑎
𝑖𝑗
for (𝑝 + 1 ≤ 𝑖 ≤ 𝑁 − 2, 1 ≤ 𝑗 ≤ 𝑁) ,

0 elsewhere] ,

A
𝑒

= [𝑎
𝑖𝑗
for (𝑁 − 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁) , 0 elsewhere] .

(18)

Using the notation LA to designate the matrix of the
same dimension as A and containing the elements 𝑎

𝑖𝑗
where

𝑎
𝑖𝑗

= L𝑎
𝑖𝑗
, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, then (11) together with the boundary

conditions (9) can be written in matrix form as

𝐵[𝜆]
𝑛+1

= 𝐶[𝜆]
𝑛

+ (

𝑎𝛼𝑑𝑡

2

− 1) [𝑢
𝑑
]
𝑛−1

+ 𝑑𝑡
2
[𝑓
2
]
𝑛+1

+ [𝐻]
𝑛+1

,

(19)

where

𝐶 = (2 + 𝑐𝛼 (1 − 𝜃) 𝑑𝑡
2
)A
𝑑

+ 𝑏 (1 − 𝜃) 𝑑𝑡
2

([𝑓
1
] ∗ ΔA

𝑑
) ,

𝐵 = (1 + 𝑎𝛼

𝑑𝑡

2

− 𝑐𝛼𝜃𝑑𝑡
2
)A
𝑑

− 𝑏𝜃𝑑𝑡
2

([𝑓
1
] ∗ ΔA

𝑑
) + A
𝑏

+ A
𝑒
,

[𝑢
𝑑
]
𝑛−1

= [𝑢
𝑛−1

1
, . . . , 𝑢

𝑛−1

𝑝
, 0, . . . , 0]

𝑇

,

[𝐻]
𝑛+1

= [0, . . . , 0, ℎ
𝑛+1

𝑝+1
, . . . , ℎ

𝑛+1

𝑁−2
, 0, 0]

𝑇

,

[𝑓
2
]
𝑛+1

= [𝑓
𝑛+1

2
(𝑥
1
) , . . . , 𝑓

𝑛+1

2
(𝑥
𝑝
) , 0, . . . , 0]

𝑇

,

[𝑓
1
] = [𝑓

1
(𝑥
1
) , . . . , 𝑓

1
(𝑥
𝑝
) , 0, . . . , 0]

𝑇

.

(20)

The operator “∗” means that the 𝑖th component of vector
[𝑓
1
] is multiplied to all components of 𝑖th row of matrix

Δ𝐴
𝑑
. Equation (19) is obtained by combining (11) applied to

the domain points, and (9) applied to the boundary points
meanwhile.

At 𝑛 = 0, (19) has the following form:

𝐵[𝜆]
1

= 𝐶[𝜆]
0

+ (

𝑎𝛼𝑑𝑡

2

− 1) [𝑢
𝑑
]
−1

+ 𝑑𝑡
2
[𝑓
2
]
1

+ [𝐻]
1
.

(21)

To approximate 𝑢
−1, the second initial condition can be used.

For this purpose, the second initial condition is discretized as

𝑢
1

(𝑥) − 𝑢
−1

(𝑥)

2𝑑𝑡

= 𝑔
2

(𝑥) , 𝑥 ∈ Ω. (22)

Writing (21) together with (22), we have

(𝐵 + (1 −

𝑎𝛼𝑑𝑡

2

) 𝐴
𝑑
) [𝜆]
1

= 𝐶[𝜆]
0

+ (2 − 𝑎𝛼𝑑𝑡) 𝑑𝑡 [𝐺] + (𝑑𝑡)
2
[𝑓]
1

+ [𝐻]
1
,

(23)

where [𝐺] = [(𝑔
2
)
1
, . . . , (𝑔

2
)
𝑝
, 0, . . . , 0]

𝑇. Together with the
initial condition (8) and (19), we can get all the 𝜆; thus we can
get the numerical solutions.

Since the coefficient matrix is unchanged in each tempo-
ral step, we use the LU factorization to the coefficient matrix
only once and use this factorization in our algorithm.

Remark. Although (19) is valid for any value of 𝜃 ∈ [0, 1], we
will use 𝜃 = 1/2 (the famous Crank-Nicolson scheme).
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Figure 1: Space-time graph of numerical and analytical solutions at time 𝑡 = 1, 2, 3, 4 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001 and using IMQ (with
𝑐 = 0.09) as the radial basis function for Example 1.

3. Numerical Example

In this section, we present some numerical results to test
the efficiency of the new scheme for solving time-dependent
problems governed by telegraph and wave equations.

3.1. Example 1. Let 𝑎 = 𝑏 = 1, 𝛼 = 1, 𝑐 = −1, and 𝑓
1
(𝑥) = 𝑒

𝑥;
(1) becomes the telegraph equation

𝑢
𝑡𝑡

+ 𝑢
𝑡

= 𝑒
𝑥
𝑢
𝑥𝑥

− 𝑢 + 𝑓
2

(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0, (24)

where 𝑓
2
(𝑥, 𝑡) = [𝑥(1 − 𝑥)(2 − 2𝑡 + 𝑡

2
) + 2𝑒

𝑥
𝑡
2
]𝑒
−𝑡, with the

boundary conditions

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (1, 𝑡) = 0, 𝑡 > 0,

(25)

and the initial conditions

𝑢 (𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1.

(26)

The analytical solution of the equation is

𝑢 (𝑥, 𝑡) = 𝑥 (1 − 𝑥) 𝑡
2
𝑒
−𝑡

. (27)
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Figure 2: The numerical and analytical solutions at time 𝑡 = 1, 1.5, 2, 3 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001 and using TPS (with 𝑚 = 2) as the radial
basis function for Example 2.

We solve this problem by using the IMQ and TPS radial
basis functions. These results are obtained for 𝑑𝑥 = 0.01 and
𝑑𝑡 = 0.001. The 𝐿

∞
, 𝐿
2
, and root-mean-square (RMS) errors

are obtained in Table 1 for 𝑡 = 1, 2, 3, and 4.
We also give the analysis of the parameter 𝑐 in IMQ for the

results. In Table 2, the 𝐿
∞
, 𝐿
2
, and RMS errors with different

𝑐 at time 𝑡 = 3 are presented.
The space-time graph of analytical and numerical results

for 𝑡 = 1, 2, 3, 4 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, 𝜃 = 1/2

by using IMQ (with 𝑐 = 0.09) as the RBF is given in
Figure 1. The results obtained show the very good accuracy
and efficiency of the new approximate scheme. Note that
we cannot distinguish the exact solution from the estimated
solution in Figure 1.

3.2. Example 2. In this example, 𝛼 = 0, 𝑏 = 1, and 𝑓
1
(𝑥) =

𝑥
2

+ 1 (1) become the wave equation

𝑢
𝑡𝑡

= (𝑥
2

+ 1) 𝑢
𝑥𝑥

+ 𝑓
2

(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0, (28)

where 𝑓
2
(𝑥, 𝑡) = [2(𝑥

2
+ 1)𝑡
3
+ (𝑥 − 𝑥

2
)(6𝑡 − 6𝑡

2
+ 𝑡
3
)]𝑒
−𝑡, with

the boundary conditions

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (1, 𝑡) = 0, 𝑡 > 0.

(29)
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Figure 3: Space-time graph of numerical and analytical solutions at time 𝑡 = 1, 2, 3, 4 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001 and using IMQ (with
𝑐 = 0.08) as the radial basis function for Example 3.

The initial conditions are given by

𝑢 (𝑥, 0) = 𝑔
1

(𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 𝑔

2
(𝑥) = 0, 0 ≤ 𝑥 ≤ 1,

(30)

and the analytical solution of the equation is given as

𝑢 (𝑥, 𝑡) = (𝑥 − 𝑥
2
) 𝑡
3
𝑒
−𝑡

. (31)

IMQ and TPS are used as the radial basis function in the
discussed scheme, and these results are obtained for 𝑑𝑥 =

0.01 and 𝑑𝑡 = 0.001.
Table 3 presents the 𝐿

∞
and 𝐿

2
and RMS errors for 𝑡 =

1, 1.5, 2, and 3.
Similar to Example 2, in Table 4, the 𝐿

∞
, 𝐿
2
, and RMS

errors with different 𝑐 at time 𝑡 = 2 are presented.

The analytical and numerical results for 𝑡 = 1, 1.5, 2, and
3 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, 𝜃 = 1/2 are given in Figure 2 by
using TPS (with 𝑚 = 2) as the RBF.

3.3. Example 3. In this example, we consider the following
wave equation:

𝑢
𝑡𝑡

= 𝑢
𝑥𝑥

+ 𝑓
2

(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0, (32)

where 𝑓
2
(𝑥, 𝑡) = ((1/4) + 𝜋

2
)𝑒
−𝑡/2 sin(𝜋𝑥), with the boundary

conditions

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (1, 𝑡) = 0, 𝑡 > 0,

(33)
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Table 1: Numerical errors using IMQ (𝑐 = 0.09) and TPS (𝑚 = 2) represented at different times, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑡

𝐿
∞
-error 𝐿

2
-error RMS

IMQ TPS IMQ TPS IMQ TPS
1 6.103 × 10

−5
6.576 × 10

−5
4.401 × 10

−5
4.849 × 10

−5
4.336 × 10

−5
4.778 × 10

−5

2 3.130 × 10
−5

2.403 × 10
−5

2.267 × 10
−5

1.604 × 10
−5

2.233 × 10
−5

1.580 × 10
−5

3 9.933 × 10
−6

4.192 × 10
−6

8.155 × 10
−6

2.195 × 10
−6

8.035 × 10
−6

2.163 × 10
−6

4 1.792 × 10
−5

1.393 × 10
−5

1.351 × 10
−5

9.809 × 10
−6

1.331 × 10
−5

9.665 × 10
−6

Table 2: Numerical errors using IMQ represented with different parameter 𝑐 at time 𝑡 = 3, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑐 𝐿
∞

𝐿
2

RMS
0.01 9.242 × 10

−2
6.522 × 10

−2
6.427 × 10

−2

0.03 5.959 × 10
−4

5.559 × 10
−4

5.478 × 10
−4

0.05 1.175 × 10
−4

1.139 × 10
−4

1.122 × 10
−4

0.07 2.850 × 10
−5

2.630 × 10
−5

2.591 × 10
−5

0.09 9.933 × 10
−6

8.155 × 10
−6

8.035 × 10
−6

Table 3: Numerical errors using IMQ (𝑐 = 0.08) and TPS (𝑚 = 2) represented at different times, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑡

𝐿
∞
-error 𝐿

2
-error RMS

IMQ TPS IMQ TPS IMQ TPS
1.0 7.456 × 10

−5
7.997 × 10

−5
5.319 × 10

−5
5.896 × 10

−5
5.292 × 10

−5
5.867 × 10

−5

1.5 1.711 × 10
−5

3.650 × 10
−5

1.019 × 10
−5

2.839 × 10
−5

1.014 × 10
−5

2.825 × 10
−5

2.0 5.011 × 10
−5

8.559 × 10
−5

3.346 × 10
−5

6.314 × 10
−5

3.329 × 10
−5

6.283 × 10
−5

3.0 5.832 × 10
−5

2.328 × 10
−5

4.935 × 10
−5

1.562 × 10
−5

4.910 × 10
−5

1.554 × 10
−5

Table 4: Numerical errors using IMQ represented with different parameter 𝑐 at time 𝑡 = 2, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑐 𝐿
∞

𝐿
2

RMS
0.01 2.260 × 10

−1
1.598 × 10

−1
1.590 × 10

−1

0.02 7.283 × 10
−3

5.736 × 10
−3

5.707 × 10
−3

0.04 6.325 × 10
−4

5.998 × 10
−4

5.969 × 10
−4

0.06 1.261 × 10
−4

8.307 × 10
−5

8.265 × 10
−5

0.08 5.011 × 10
−5

3.346 × 10
−5

3.329 × 10
−5

Table 5: Numerical errors using IMQ (𝑐 = 0.08) and TPS (𝑚 = 2) represented at different times, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑡

𝐿
∞
-error 𝐿

2
-error RMS

IMQ TPS IMQ TPS IMQ TPS
1 5.304 × 10

−4
3.784 × 10

−4
4.016 × 10

−4
2.614 × 10

−4
3.996 × 10

−4
2.601 × 10

−4

2 2.078 × 10
−4

1.479 × 10
−4

1.567 × 10
−4

1.022 × 10
−4

1.559 × 10
−4

1.017 × 10
−4

3 4.024 × 10
−4

2.867 × 10
−4

3.039 × 10
−4

1.980 × 10
−4

3.624 × 10
−4

1.917 × 10
−4

4 2.883 × 10
−4

2.015 × 10
−4

2.134 × 10
−4

1.392 × 10
−4

2.124 × 10
−4

1.385 × 10
−4

5 3.545 × 10
−4

2.522 × 10
−4

2.671 × 10
−4

1.742 × 10
−4

2.658 × 10
−4

1.734 × 10
−4

Table 6: Numerical errors using IMQ represented with different parameter 𝑐 at time 𝑡 = 1, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑐 𝐿
∞

𝐿
2

RMS
0.01 1.584 × 10

−1
1.056 × 10

−1
1.051 × 10

−1

0.02 3.556 × 10
−2

2.789 × 10
−2

2.775 × 10
−2

0.04 3.344 × 10
−3

3.173 × 10
−3

3.158 × 10
−3

0.06 9.963 × 10
−4

8.535 × 10
−4

8.493 × 10
−4

0.08 5.304 × 10
−4

4.016 × 10
−4

3.996 × 10
−4
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Figure 4: Space-time graph of numerical and analytical solutions at time 𝑡 = 1.5, 3.5 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001 and using TPS (𝑚 = 2) as
the radial basis function for Example 4.

and the initial conditions

𝑢 (𝑥, 0) = sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = −

1

2

sin (𝜋𝑥) , 0 ≤ 𝑥 ≤ 1.

(34)

The analytical solution of the equation is

𝑢 (𝑥, 𝑡) = 𝑒
−𝑡/2 sin (𝜋𝑥) . (35)

We also use IMQ and TPS as the radial basis functions
in the discussed scheme, and these results are obtained for
𝑑𝑥 = 0.01 and 𝑑𝑡 = 0.001. The 𝐿

∞
, 𝐿
2
, and RMS errors are

obtained in Table 5 for 𝑡 = 1, 2, 3, 4 and 5.

We also give the analysis of the parameter 𝑐 in IMQ for the
results. In Table 6, the 𝐿

∞
, 𝐿
2
, and RMS errors with different

𝑐 at time 𝑡 = 1 are presented.
The graph of analytical and numerical results for 𝑡 =

1, 2, 3, and 4 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2 and
using IMQ (with 𝑐 = 0.08) as the RBF are given in Figure 3.

3.4. Example 4. In this example, 𝑏 = 1, 𝛼 = 0, and 𝑓
1
(𝑥) = 1;

then (1) becomes the telegraph equation

𝑢
𝑡𝑡

= 𝑢
𝑥𝑥

+ 𝑓
2

(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0, (36)
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Figure 5: Space-time graph of numerical solutions at time 𝑡 = 1, 3 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001 by using IMQ (with 𝑐 = 0.09) in Example 5.

Table 7: Numerical errors using IMQ (𝑐 = 0.06) and TPS (𝑚 = 2) represented at different times, where 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2.

𝑡

𝐿
∞
-error 𝐿

2
-error RMS

IMQ TPS IMQ TPS IMQ TPS
0.5 5.588 × 10

−4
4.458 × 10

−4
4.219 × 10

−4
3.201 × 10

−4
4.198 × 10

−4
3.185 × 10

−4

1.5 3.248 × 10
−4

4.274 × 10
−4

2.189 × 10
−4

3.044 × 10
−4

2.178 × 10
−4

3.029 × 10
−4

2.5 5.514 × 10
−4

4.378 × 10
−4

4.159 × 10
−4

3.138 × 10
−4

4.139 × 10
−4

3.122 × 10
−4

3.5 3.167 × 10
−4

4.195 × 10
−4

2.129 × 10
−4

2.982 × 10
−4

2.118 × 10
−4

2.967 × 10
−4

where 𝑓
2
(𝑥, 𝑡) = 0, with the initial conditions

𝑢 (𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = 𝜋 cos (𝜋𝑥) , 0 ≤ 𝑥 ≤ 1.

(37)

The analytical solution of the equation is

𝑢 (𝑥, 𝑡) = cos (𝜋𝑥) sin (𝜋𝑡) . (38)

We extracted the boundary conditions from the exact solu-
tion.

The IMQ and TPS radial basis functions utilized in our
scheme and these results are obtained for 𝑑𝑥 = 0.01, and 𝑑𝑡 =

0.001.The 𝐿
∞
, 𝐿
2
, and RMS errors are obtained in Table 7 for

𝑡 = 0.5, 1.5, 2.5 and 3.5.
The space-time graph of analytical and numerical results

for 𝑡 = 1.5, 3.5 with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2 and
using TPS (with 𝑚 = 2) as the RBF are given in Figure 4.

3.5. Example 5. In this example, we consider the following
telegraph equation:

𝑢
𝑡𝑡

+ 12𝑢
𝑡

= 𝑢
𝑥𝑥

− 4𝑢 + 𝑓
2

(𝑥, 𝑡) , 0 < 𝑥 < 3, 𝑡 > 0, (39)

where 𝑓
2
(𝑥, 𝑡) = −12 sin𝑥 sin 𝑡 + 4 cos 𝑡 sin𝑥, with the

boundary conditions

𝑢 (0, 𝑡) = 0, 𝑡 > 0,

𝑢 (1, 𝑡) = sin 1 cos 𝑡, 𝑡 > 0,

(40)

and the initial conditions

𝑢 (𝑥, 0) = sin𝑥, 0 ≤ 𝑥 ≤ 1,

𝑢
𝑡
(𝑥, 0) = − sin𝑥 sin 𝑡, 0 ≤ 𝑥 ≤ 1.

(41)

We use the radial basis functions (IMQ, TPS) for the
discussed scheme. These results are obtained for 𝑑𝑥 = 0.01

and 𝑑𝑡 = 0.001.
The space-time graph of numerical results for 𝑡 = 1, 3

with 𝑑𝑥 = 0.01, 𝑑𝑡 = 0.001, and 𝜃 = 1/2 and using IMQ
(with 𝑐 = 0.09) as the RBF are given in Figure 5.

We also compared ourmethodswith quartic B-spline col-
location method [8] and cubic B-spline quasi-interpolation
method [9], and Tables 8 and 9 give the comparison, respec-
tively.

4. Conclusions

In this paper, we proposed a numerical scheme to solve
the nonhomogeneous time-dependent problems using the
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Table 8: The 𝐿
∞
errors compared with quartic B-spline collection method at different times with 𝑑𝑥 = 0.005, 𝑑𝑡 = 0.001 in [0, 1] and IMQ

RBF (𝑐 = 0.05).

Methods 𝑡 = 0.2 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8

Present Method 8.853 × 10
−5

1.896 × 10
−4

2.594 × 10
−4

3.028 × 10
−4

Quartic B-spline [8] 2.428 × 10
−5

7.932 × 10
−5

1.209 × 10
−4

1.488 × 10
−4

Table 9: The 𝐿
∞
errors compared with cubic B-spline quasi-interpolation method at different times with 𝑑𝑥 = 0.002, 𝑑𝑡 = 0.0005 in [0, 1]

and IMQ RBF (𝑐 = 0.02).

Methods 𝑡 = 0.4 𝑡 = 0.6 𝑡 = 0.8 𝑡 = 1

Present Method 9.505 × 10
−5

1.299 × 10
−4

1.515 × 10
−4

1.616 × 10
−4

Cubic B-spline [9] 5.576 × 10
−5

6.933 × 10
−4

7.686 × 10
−5

7.891 × 10
−5

meshfree method with inverse multiquadric and generalized
thin plate splines radial basis functions. The main advantage
of this method over finite difference techniques is that the
latter methods provide the solution of the problem on mesh
points only. Numerical examples are given to demonstrate
the validity and applicability of our method.The results show
that ourmethod ismeshless and accurate. Indeed by selecting
an optimal parameter 𝑐 in the inverse multiquadric function,
excellent numerical results are obtained.
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