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We study the existence and nonexistence of positive solutions for the following fourth-order two-point boundary value problem
subject to nonlinear boundary conditions 𝑢(𝑡) = 𝜆𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ (0, 1), 𝑢(0) = 0, 𝑢


(0) = 𝜇ℎ(𝑢(0)), 𝑢


(1) = 0, 𝑢


(1) =

𝜇𝑔(𝑢(1)), where 𝜆 > 0, 𝜇 ≥ 0 are parameters, and 𝑓 : [0, 1] × [0, +∞) → (0, +∞), ℎ : [0, +∞) → [0, +∞), and 𝑔 : [0, +∞) →

(−∞, 0] are continuous. By using the fixed-point index theory, we prove that the problem has at least one positive solution for 𝜆, 𝜇
sufficiently small and has no positive solution for 𝜆 large enough.

1. Introduction

In this paper, we study the existence and nonexistence of pos-
itive solutions for the following fourth-order boundary value
problem with nonlinear boundary conditions

𝑢


(𝑡) = 𝜆𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢


(0) = 𝜇ℎ (𝑢 (0)) ,

𝑢


(1) = 0, 𝑢


(1) = 𝜇𝑔 (𝑢 (1)) ,

(1)

where 𝜆 > 0, 𝜇 ≥ 0 are parameters and 𝑓 ∈ 𝐶([0, 1] × R,R)

and ℎ, 𝑔 ∈ 𝐶(R,R) are real functions. If 𝜆 = 1, 𝜇 = 0, in
mechanics, problem (1) is called cantilever beam equation
[1, 2]. The equation describes the deflection of an elastic
beam fixed at the left and freed at the right. There are some
papers discussing the existence of solutions of the equation by
using various methods, such as the lower and upper solution
method, the Leray-Schauder continuation method, fixed-
point theory, and the monotone iterative method; see [3–11].
If 𝜇 ̸= 0, problem (1) has also been studied; see [12–17].

In the case 𝜇 = 1, ℎ(𝑢(0)) = 0, Yang et al. [12] obtained
sufficient conditions of the existence of two solutions of prob-
lem (1) by using variational technique and a three-critical-
point theorem. Recently, Li and Zhang [13] are concerned
with the existence and uniqueness of monotone positive

solution of problem (1) with 𝜆 = 𝜇 = 1, ℎ(𝑢(0)) = 0 by using
a new fixed-point theorem of generalized concave operators,
but some monotone assumptions on 𝑓 and 𝑔 are needed.

In 2013, by using a three-critical-point theorem, Cabada
and Tersian [14] studied the existence and multiplicity of
solutions of problem (1) with 𝜆 = 𝜇, ℎ(𝑢(0)) = 0.

A natural question is what would happen if 𝜆 ̸= 𝜇 and
ℎ(𝑢(0)) ̸= 0?

Motivated by the above papers, wewill prove the existence
and nonexistence of positive solution for problem (1) by
using the fixed-point index theory with the nonlinearity 𝑓
satisfying superlinear growth condition at infinity.

We make the following assumptions.

(A1) 𝑓 : [0, 1] × [0, +∞) → (0, +∞) is continuous.
(A2) ℎ : [0, +∞) → [0, +∞) is continuous and 𝑔 :

[0, +∞) → (−∞, 0] is continuous.
(A3) For any 𝑡 ∈ [0, 1], 𝑓

∞
= lim
𝑢→∞

(𝑓(𝑡, 𝑢)/𝑢) = +∞.

The main results of the present paper are summarized as
follows.

Theorem1. Assume that (A1)–(A3) hold.Then problem (1) has
at least one positive solution for 𝜆, 𝜇 sufficiently small.

Theorem 2. Assume that (A1)–(A3) hold. Then problem (1)
has no positive solution for 𝜆 large enough.
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Remark 3. The results obtained in this paper are not a con-
sequence of the previous theorem in the previous literature.
Clearly, the boundary condition of (1) is more general than
the above pieces of literature and problem (1) considers two
different parameters which is more extensive.

Remark 4. It is pointed out thatwe donot need anymonotone
assumption on 𝑓, 𝑔, and ℎ, which is weaker than the
corresponding assumptions on𝑓,𝑔 in [13]. References [12, 14]
are only consideredwith the existence of solution for problem
(1) with nonlinear boundary condition; however, we study the
existence and nonexistence of positive solution of (1).

The remainder of this paper is arranged as follows.
Section 2 presents some preliminaries. The proofs of Theo-
rems 1 and 2 are given in Section 3. Finally, we give a simple
example to illustrate our main results.

2. Preliminaries

In this section we collect some preliminary results that will
be used in subsequent sections. Let 𝑋 = 𝐶[0, 1]; then 𝑋 is a
Banach space under the norm ‖𝑢‖ = max

𝑡∈[0,1]
|𝑢(𝑡)|. Define

𝑃 = {𝑢 ∈ 𝑋 | 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}; then𝑃 ⊂ 𝑋 is a nonnegative
cone.

Lemma 5 (see [11, Lemma 2.2]). Let ℎ ∈ 𝐶[0, 1]; then the
solution 𝑢(𝑡) of the problem

𝑢


(𝑡) = ℎ (𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢


(0) = 𝑢


(1) = 𝑢


(1) = 0

(2)

is

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠, (3)

where

𝐺 (𝑡, 𝑠) =

{
{
{

{
{
{

{

1

6

𝑡
2
(3𝑠 − 𝑡) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

1

6

𝑠
2
(3𝑡 − 𝑠) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(4)

Now, let us set

𝜙 (𝑡) =

𝑡
2

2

−

𝑡
3

6

, Φ (𝑡) = ℎ (𝑢 (0)) 𝑡 − 𝑔 (𝑢 (1)) 𝜙 (𝑡) ,

∀𝑡 ∈ [0, 1] .

(5)

It follows from (3) and (5) with simple computation that
problem (1) is equivalent to integral equation

𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝜇Φ (𝑡) := 𝑇𝑢 (𝑡) . (6)

Note that for any 𝑢 ∈ 𝑋 the function (𝑇𝑢)(𝑡) satisfies
the boundary conditions in (1) by the definition of Green’s
function 𝐺(𝑡, 𝑠). In view of Lemma 5, it is easy to see that
𝑢 ∈ 𝑋 is a fixed point of the operator 𝑇 if and only if 𝑢 ∈ 𝑋 is
a solution of problem (1).

Lemma 6 (see [6, Lemma 2.2], [13, Lemma 2.1]). 𝐺(𝑡, 𝑠), 𝜙(𝑡)
have the following properties:

(i) 𝐺(𝑡, 𝑠) > 0, ∀0 < 𝑡, 𝑠 < 1;
(ii) max

𝑡∈[0,1]
𝐺(𝑡, 𝑠) ≤ 𝐺(1, 𝑠) = (1/6)𝑠

2
(3−𝑠), ∀0 ≤ 𝑠 ≤ 1;

(iii) 𝐺(𝑡, 𝑠) ≥ 𝑡
2
𝐺(1, 𝑠) ≥ (𝑡

2
/3)𝐺(1, 𝑠), ∀0 ≤ 𝑡, 𝑠 ≤ 1;

(iv) 𝑡2/3 ≤ 𝜙(𝑡) ≤ 𝑡
2
/2, ∀0 ≤ 𝑡 ≤ 1.

Lemma 7. Φ(𝑡) has the following properties:

(i) Φ(𝑡) ≤ Φ(1) ≤ ℎ(𝑢(0)) − 𝑔(𝑢(1)), ∀0 < 𝑡 < 1;
(ii) Φ(𝑡) ≥ Φ(𝑡

2
/3) ≥ 0, ∀0 < 𝑡 < 1.

Proof. First, we will prove (i). For any 𝑡 ∈ [0, 1], it follows that

Φ


(𝑡) = ℎ (𝑢 (0)) − 𝑔 (𝑢 (1)) (𝑡 −

1

2

𝑡
2
) . (7)

From (A2),Φ(𝑡) ≥ 0. SoΦ(𝑡) is nondecreasing for 𝑡 ∈ [0, 1].
Moreover,

Φ (𝑡) ≤ Φ (1) = ℎ (𝑢 (0)) −

1

3

𝑔 (𝑢 (1)) ≤ ℎ (𝑢 (0)) − 𝑔 (𝑢 (1)) ,

(8)

so (i) holds.
Now,we prove (ii). For any 𝑡 ∈ [0, 1], obviously, 𝑡 ≥ 𝑡

2
/3 ≥

0.
From (i),Φ(𝑡) is nondecreasing for 𝑡 ∈ [0, 1]; thenΦ(𝑡) ≥

Φ(𝑡
2
/3) ≥ Φ(0) = 0.

For any fixed 𝜏 ∈ (0, 1), define the cone

𝐾 = {𝑢 ∈ 𝑃 | min
𝑡∈[𝜏,1]

𝑢 (𝑡) ≥

𝜏
2

3

‖𝑢‖} . (9)

Then𝐾 ⊂ 𝑋 is a positive cone; letting𝐾
𝑟
= {𝑢 ∈ 𝐾 | ‖𝑢‖ < 𝑟},

𝜕𝐾
𝑟
= {𝑢 ∈ 𝐾 | ‖𝑢‖ = 𝑟} with 𝑟 > 0 is a constant.

Lemma 8. Assume that (A1) and (A2) hold; then 𝑇 : 𝐾 → 𝐾

is completely continuous.

Proof. Obviously, for any 𝑡 ∈ [0, 1], 𝑢 ∈ 𝐾, it follows that
𝑇𝑢(𝑡) ≥ 0.

For any 𝑢 ∈ 𝐾, from (6) and Lemma 7(i), we have

max
𝑡∈[0,1]

𝑇 (𝑢 (𝑡)) = max
𝑡∈[0,1]

(𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝜇Φ (𝑡))

≤ 𝜆∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1))) .

(10)

Hence

‖𝑇𝑢‖ ≤ 𝜆∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝜇 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1))) .

(11)
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For any fixed 𝜏 ∈ (0, 1), (11) together with Lemma 7(ii),
we get

min
𝜏≤𝑡≤1

𝑇 (𝑢 (𝑡)) = min
𝜏≤𝑡≤1

(𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 (ℎ (𝑢 (0)) 𝑡 − 𝑔 (𝑢 (1)) 𝜙 (𝑡)) )

≥

𝜏
2

3

(𝜆∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝜇 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1))) )

≥

𝜏
2

3

‖𝑇𝑢‖ .

(12)

So, 𝑇(𝐾) ⊂ 𝐾.
According to (A1), (A2), and Arzela-Ascoli theorem, it is

not difficult to verify that 𝑇 : 𝐾 → 𝐾 is completely continu-
ous.

The following well-known fixed-point index theorem in
cones is crucial to our arguments.

Lemma 9 (see [18]). Let 𝐸 be a Banach space and let𝐾 ⊂ 𝐸 be
a cone. For 𝑟 > 0, define 𝐾

𝑟
= {𝑢 ∈ 𝐾 | ‖𝑢‖ < 𝑟}. Assume that

𝑇 : 𝐾
𝑟
→ 𝐾 is compact map such that 𝑇𝑢 ̸= 𝑢 for 𝑢 ∈ 𝜕𝐾

𝑟
=

{𝑢 ∈ 𝐾 | ‖𝑢‖ = 𝑟}.

(i) If ‖𝑇𝑢‖ ≥ ‖𝑢‖ for 𝑢 ∈ 𝜕𝐾
𝑟
, then 𝑖(𝑇, 𝐾

𝑟
, 𝐾) = 0.

(ii) If ‖𝑇𝑢‖ ≤ ‖𝑢‖ for 𝑢 ∈ 𝜕𝐾
𝑟
, then 𝑖(𝑇, 𝐾

𝑟
, 𝐾) = 1.

3. Proof of Main Results

In this section, we will prove our main results.

Proof of Theorem 1. Let

𝑀 = max
(𝑡,𝑠)∈[0,1]×[0,1]

𝐺 (𝑡, 𝑠) > 0. (13)

Let 𝑞 > 0; set

𝐼 (𝑞) = 𝑀 max
𝑢∈𝐾,‖𝑢‖=𝑞

(∫

1

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠) > 0. (14)

For any number 𝑟
1
> 0, let 𝐾

𝑟
1

= {𝑢 ∈ 𝐾 | ‖𝑢‖ ≤ 𝑟
1
}. Choose

𝜎 > 0 so that

𝜎 ≤

𝑟
1

2𝐼 (𝑟
1
)

, ∀𝑢 ∈ 𝜕𝐾
𝑟
1

,

𝜎 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1))) ≤

𝑟
1

2

, ∀𝑢 ∈ 𝜕𝐾
𝑟
1

.

(15)

Then, for 𝜆 ≤ 𝜎, 𝜇 ≤ 𝜎 and 𝑢 ∈ 𝜕𝐾
𝑟
1

, combining (6) with
Lemma 7, we have

𝑇𝑢 (𝑡) ≤ 𝜆𝑀∫

1

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝜇 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1)))

≤ 𝜎𝑀∫

1

0

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + 𝜎 (ℎ (𝑢 (0)) − 𝑔 (𝑢 (1)))

≤ 𝜎𝐼 (𝑟
1
) +

𝑟
1

2

≤ 𝑟
1
,

(16)

which implies that

‖𝑇𝑢‖ ≤ 𝑟
1
= ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾

𝑟
1

. (17)

Thus, Lemma 9 implies that

𝑖 (𝑇,𝐾
𝑟
1

, 𝐾) = 1. (18)

According to (A3), for any 𝑡 ∈ [0, 1], there exists a 𝑝 > 0

such that

𝑓 (𝑡, 𝑢) ≥ 𝜂𝑢, ∀𝑢 ≥ 𝑝, (19)

where 𝜂 is chosen so that

𝜆(

𝜏
2

3

)

2

𝜂∫

1

𝜏

𝐺 (1, 𝑠) 𝑑𝑠 ≥ 1, ∀𝜏 ∈ (0, 1) . (20)

For any 𝜏 ∈ (0, 1), choose 𝑟
2
> max{(3/𝜏2)𝑝, 2𝑟

1
}, and set

𝐾
𝑟
2

= {𝑢 ∈ 𝐾 | ‖𝑢‖ ≤ 𝑟
2
}. If 𝑢 ∈ 𝜕𝐾

𝑟
2

, then

min
𝜏≤𝑡≤1

𝑢 (𝑡) ≥

𝜏
2

3

𝑟
2
> 𝑝. (21)

It follows from (A2) and Lemma 6 that

min
𝑡∈[𝜏,1]

𝑇 (𝑢 (𝑡)) ≥ min
𝑡∈[𝜏,1]

(𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

≥ 𝜆

𝜏
2

3

∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ 𝜆

𝜏
2

3

∫

1

0

𝐺 (1, 𝑠) 𝜂𝑢 (𝑠) 𝑑𝑠

≥ 𝜆

𝜏
2

3

𝜂∫

1

𝜏

𝐺 (1, 𝑠) 𝑢 (𝑠) 𝑑𝑠

≥ 𝜆(

𝜏
2

3

)

2

𝜂∫

1

𝜏

𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖

≥ ‖𝑢‖ ,

(22)

which implies that

‖𝑇 (𝑢)‖ ≥ ‖𝑢‖ , 𝑢 ∈ 𝜕𝐾
𝑟
2

. (23)
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Hence, from Lemma 9, we get

𝑖 (𝑇,𝐾
𝑟
2

, 𝐾) = 0. (24)

From (18) and (24), it follows that

𝑖 (𝑇,𝐾
𝑟
2

\𝐾
𝑟
1

, 𝐾) = 𝑖 (𝑇,𝐾
𝑟
2

, 𝐾) − 𝑖 (𝑇,𝐾
𝑟
1

, 𝐾) = −1. (25)

Therefore, 𝑇 has a fixed point in𝐾
𝑟
2

\𝐾
𝑟
1

; that is, problem (1)
has at least one positive solution.

Proof of Theorem 2. From (A1) and (A3), for any 𝑡 ∈ [0, 1],
there is a constant 𝑐 such that

𝑓 (𝑡, 𝑢) ≥ 𝑐𝑢, ∀𝑢 ≥ 0. (26)

Let 𝑢 ∈ 𝑋 be a positive solution of (1); then 𝑢 ∈ 𝐾 satisfies
(6). Choose 𝜆 large enough such that

𝜆(

𝜏
2

3

)

2

𝑐 ∫

1

𝜏

𝐺 (1, 𝑠) 𝑑𝑠 > 1, ∀𝜏 ∈ (0, 1) . (27)

For any 𝜏 ∈ (0, 1), we have

min
𝑡∈[𝜏,1]

𝑢 (𝑡) ≥ min
𝑡∈[𝜏,1]

(𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠)

≥ 𝜆

𝜏
2

3

∫

1

𝜏

𝐺 (1, 𝑠) 𝑐𝑢 (𝑠) 𝑑𝑠

≥ 𝜆(

𝜏
2

3

)

2

𝑐 ∫

1

𝜏

𝐺 (1, 𝑠) 𝑑𝑠 ‖𝑢‖

> ‖𝑢‖ ,

(28)

which is a contradiction. Therefore, problem (1) has no
positive solution for 𝜆 large enough.

Finally, we give an example to illustrate our main result.

Example 10. Consider the following fourth-order two-point
problem with nonlinear boundary conditions:

𝑢


(𝑡) = 𝜆 (𝑢
3

(𝑡) (3 + sin (𝑢 (𝑡))) + 𝑡2 + 1) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 0, 𝑢


(0) = 𝜇 (2[𝑢 (0)]
2
+ 1) ,

𝑢


(1) = 0, 𝑢


(1) = 𝜇 ([− (𝑢 (1))]
1/2

− 1) .

(29)

Clearly, the nonlinearity

𝑓 (𝑡, 𝑢) = 𝑢
3

(𝑡) (3 + sin (𝑢 (𝑡))) + 𝑡2 + 1,

(𝑡, 𝑢) ∈ [0, 1] × [0,∞) ,

ℎ (𝑠) = 2𝑠
2
+ 1, 𝑔 (𝑠) = −𝑠

1/2
− 1, ∀𝑠 ∈ [0, +∞) .

(30)

It is easy to check that (A1)–(A3) are satisfied. By simple
computation, we have𝑀 = 1/2. Set 𝑞 = 2; then 𝐼(𝑞) = 17.

If 𝑟
1
= 4 (where 𝑟

1
can be any real number greater than 0),

𝑢 ∈ 𝜕𝐾
𝑟
1

, then 𝑟
1
/2𝐼(𝑞) = 2/17,Φ(𝑡) ≤ 36, and take 𝜎 = 1/20;

then ‖𝑇(𝑢)‖ ≤ ‖𝑢‖ obviously holds for 𝜆, 𝜇 < 1/20.
Choosing 𝑟

2
= 9, it is easy to verify that

‖𝑇 (𝑢)‖ ≥ ‖𝑢‖ , ∀𝑢 ∈ 𝜕𝐾
𝑟
2

. (31)

From Theorem 1, 𝑇 has a fixed point in 𝐾
𝑟
2

\𝐾
𝑟
1

; that is,
problem (29) has at least one positive solution.

For any 𝑡 ∈ [0, 1], there is a constant 𝑐 = 3, so that

𝑓 (𝑡, 𝑢) ≥ 3𝑢, ∀𝑢 ≥ 0. (32)

If 𝜏 = 1/2, then problem (29) has no positive solution for
𝜆 > 450.
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