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This paper addresses a scheduling problem in an actual industrial environment of a baking industry where production rates
have been growing every year and the need for optimized planning becomes increasingly important in order to address all the
features presented by the problem. This problem contains relevant aspects of production, such as parallel production, setup time,
batch production, and delivery date. We will also consider several aspects pertaining to transportation, such as the transportation
capacity with different vehicles and sales production with several customers. This approach studies an atypical problem compared
to those that have already been studied in literature. In order to solve the problem, we suggest two approaches: using the greedy
heuristic and the genetic algorithm, which will be compared to small problems with the optimal solution solved as an integer linear
programming problem, and we will present results for a real example compared with its upper bounds. The work provides us with
a new mathematical formulation of scheduling problem that is not based on traveling salesman problem. It considers delivery date
and the profit maximization and not the makespan minimization. And it also provides an analysis of the algorithms runtime.

1. Introduction

Production planning problems have been studied extensively
since the early twentieth century, and they can be found
throughout literature. One of the pioneers in the work on
these problems was Henry Gantt in his book “Work, Wages
and Profit” [1] in which he demonstrates the need for a job
schedule in order to increase production efficiency.

Currently many industries are seeking solutions for the
job sequencing problem in order to increase productivity,
reduce costs and, consequently, increase profit. Due to the
burgeoning consumption of foodstuffs worldwide, optimized
planning is necessary. For decades in the industry, planning
rules were used in order to prioritize products by taking into
account only a few production stages, but, given the increase
of complexity and modernization of production, planning as
a whole has to be optimized; that is, the entire production
chain, from production and stock to shipping and sales, must
be taken into account.

The purpose of this paper is to study planning problems
applied to baking industry, where, in the current scenario,
companies have high product turnover; that is, the goods
are highly perishable and companies cannot meet all the
demands for their products made by customers; and these
decisions are highly correlated to production planning and
transportation.

The difficulty of the problem in question is to define
a production sequence in each line considering setup and
production times, together with jobs that have set dates to
be executed, in such a way as to maximize company profit.
Thus, the problem has particular production characteristics,
such as batch production and a scenario with several parallel
production lines. Another relevant point to be considered in
this study is that the solution should be found in a timely
computational manner for planning purposes, as it is to be
executed for the next 24 hours and cannot run for longer than
minutes, allowing the implementation of planning in hours
following the decision.
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There are many variations of scheduling problems, many
of them widely studied in literature, but the problem studied
here is not found in literature with all of the features proposed
herein; we can only findmethods to solve part of the problem.

Because of the diversity of production planning problems,
the problems can be divided into classes. The ratings found
for the more general problem of sequencing are flow-shop
and job-shop. For flow-shop each process is identified in
one job and job-shop is the problem where the order of
each process may not be the same in one job. This problem
presented here is a flow-shop problem.

In studies of flow-shop problems, the first theoretical
results were presented to minimize the makespan, that is,
total production time, with Johnson [2] and Bellman [3]
determining the optimal sequence for the cases with two
machines and special cases with three machines. More
general cases for sequencing with three machines came from
Lomnicki [4] and Ignall, and Schrage [5] by applying branch
and boundmethods introduced by Little [6]. For the problem
of flow-shop with more than two machines Garey et al.
[7] proved that it is NP-hard; thus we can only solve small
problems accurately with algorithms such as branch-bound.
Therefore, heuristic methods are proposed for the problem.

In order to study the flow-shop problem with a family
setup, Sridhar and Rajendran [8] propose a heuristic to
minimize the total timewith an algorithmbased on simulated
annealing. Ziegler [9] proposes a method to minimize the
total time weighted by weights in the process. Schaller
[10] presents a new approach to the problem of flow-shop
setup with families to minimize the makespan. Schaller [11]
proposes a new lower bound for the problem and implements
a two-stage heuristic algorithm based on branch and bound.

França et al. [12] works on the same problem, but with
the Schaller genetic algorithm with local search, “memetic
algorithms” (MA), and [13] achieves superior results by using
hybrid methods with tabu search and the genetic algorithm.

The problems with delivery dates were studied by Croce
et al. [14], who showed a genetic algorithm in which each
chromosome consists of m subchromosomes, one for each
machine, which identifies each transaction made by the
machine. According to the authors, the results were better
than those found by Adams et al. [15], but at greater com-
putational cost. Sittisathanchai and Dagli [16] also present
a genetic algorithm where the chromosome represents the
operational sequence.

Flexible scheduling involves problems where we have the
option of executing operations on different machines. This
kind of problem is more comprehensive than the problem
of traditional scheduling and production in parallel, which
ensures that a transaction is made only by a single machine.
Arthanari and Ramaswamy [17] were pioneers with exact
two-stage methods, using two identical parallel machines in
the first stage and one machine in the second stage. Later,
Brah andHunsucker [18]worked on the development ofmore
general branch and bound algorithms, but for problems with
more than 8 jobs, 5 stages and 2 or 3 machines, processing
time becomes impractical.

For multistage jobs, Sawik [19] proposed a constructive
heuristic in which the route of a job is determined at

each iteration. Kittichartphayak and Ding [20] developed a
heuristic similar to Sawik [19], but for larger orders of tasks
and stages, which was extended by Guinet and Solomon [21].
Smutnicki and Nowicki [22] propose the use of tabu search
in the work with satisfactory results.

The studied problem is a flow-shop problem with parallel
production, setup times, batch production, due date, and
transportation capacity, which in large scale justify the use of
metaheuristic to solve it.

2. Materials and Methods

2.1. Mathematical Modeling. The scheduling problem can be
modeled as a mixed integer linear programming problem.

The problem requires a short-term study in great detail;
that is, the study will be forecast to take place over two to
seven days from the current day. Given the high level of time
detail, it is necessary to deal with accuracies inminutes, as the
setup time and production time may occur within minutes.
Therefore, a discretization of time can result in inaccuracies
because a large number of periods can cause a problemwith a
large number of variables, thus making it unenforceable, and
a small number of time periods may not address the problem
with the required accuracy.

Traditional approaches of the scheduling problem are
based on the traveling salesman problem, where a variable
represents the precedence order of task. But in this case it is
necessary to know what time each product will be ready for
shipment. Accordingly, a newmodel is proposed to represent
the job sequencing where each variable represents which jobs
are executed in each time period (Figure 1).

This problem is defined in a set of period 𝐸, where 𝐸 =
{0, . . . , 𝑒max} and 𝑒max is the last period. Production is
defined in two stages: in the first one, a preproduct known
as mass is produced, and, in the second stage, a mass is
transformed into a final product. The set of mass will be
represented by𝑀 and the set of products determined by the
set 𝑃. Each product 𝑝 ∈ 𝑃 will be produced by a single
mass that can produce more than one product defined by
Prod(𝑚) ⊂ 𝑃. Each mass has its production cost defined by
cost
1
(𝑚), which defines the cost of producing each product.

The production time of eachmass is represented by 𝑡(𝑚), and
the setup time to prepare the mass of two products 1 and 2 is
𝑠(𝑚
1
, 𝑚
2
).

Production occurs through two processes. The first pro-
cess works in a mixer, which mixes all the ingredients of a
mass, and the cost of ingredients will determine the profits
from the products made with this mass. After the mixer,
there is a second process, where the mass will be roasted,
sliced, and packaged. In this second case the mass will be
transformed into the final product. Products can be grouped
into classes due to of the production characteristics, such as
cooking time, types of cuts, and packaging.Therefore, within
a production line different products with those that have the
same production characteristics can be produced.

The production lines will be represented according to the
set 𝐿, and mass produced on each line will be determined
by set Lin where for each 𝑙 we have Lin(𝑙) ⊂ 𝑀, where
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Figure 1: Job sequencing representation.

an input can be present in more than one production line.
We emphasize that the production of masses will occur in
production batches, and each mass has a certain number of
units produced per batch represented by batch(𝑚).

One of the objectives of the problem is to fulfill the
demand. Demand is divided by markets such that each
market requests a daily mix of products. These requests can
be fully addressed, or partially addressed, or not addressed at
all. If the market is not attained there is no penalty, only the
profit made by that market will not be obtained.

The amount of products to be manufactured is a function
of demand for each market. The customers will be repre-
sented by the set 𝐶, the demand in each customer for a
product in a period will be 𝑑(𝑐, 𝑝, 𝑒), and the profit for each
sale will be profit(𝑝, 𝑐).

In order to transport products to markets, there are
options of trucks with different capacities that can be used;
all types of trucks will be represented by 𝑇, with the cost of
each truck given by cost

2
(𝑐, 𝑡) and capacity by cap(𝑡). The

service to the customer should take place at a specific time
because the trucks have schedules for loading in factories and
unloading at customers’ premises; accordingly, the demands
of each market should be seen at a predefined period.

A summary of model features and variables is given in
Figure 2.

To describe the model, consider the following model
parameters.

2.1.1. Sets

𝐸: set of periods.
𝑀: set of mass.
𝑃: set of products.
Prod(𝑚): set of products produced by mass𝑚.
𝐿: set of production line.
Lin(𝑙): set of mass produced in production line 𝑙.

𝐶: set of customer.

𝑇: set of trucks.

2.1.2. Data

cost
1
(𝑚): production cost of mass𝑚.

𝑡(𝑚): production time of mass𝑚.

𝑠(𝑚
1
, 𝑚
2
): setup time from mass𝑚

1
to mass𝑚

2
.

batch(𝑚): production batch of mass𝑚.

𝑑(𝑐, 𝑝, 𝑒): demand of customer 𝑐, product 𝑝 in period
𝑒.

profit(𝑐, 𝑝): sales profit of product 𝑝 in customer 𝑐.

cost
2
(𝑐, 𝑡): transportation cost by truck 𝑡 to customer

𝑐.

cap(𝑡): transportation capacity of truck 𝑡.

Define the following set of variables.

2.1.3. Variables

𝑧(𝑙, 𝑚, 𝑒) = {1, if mass 𝑚 is produced by production
line 𝑙 in period 𝑒; 0, otherwise}.

𝑦(𝑐, 𝑡, 𝑒): integer amount of truck 𝑡 sender off to
customer 𝑐 in period 𝑒.

stk(𝑝, 𝑒): stock quantity of product 𝑝 in period 𝑒.

𝑥(𝑙, 𝑝, 𝑒): quantity of product 𝑝 produced in produc-
tion line 𝑙 and period 𝑒.

V(𝑐, 𝑝, 𝑒): quantity of product 𝑝 sold at customer 𝑐 and
period 𝑒.



4 Journal of Applied Mathematics

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24

Period (e) 24 hours

Line (l)

Line 1

Line 2

Line 3

Ba
tc

h 
pr

od
uc

tio
n

Product sales �(c, p, e) Product sales �(c, p, e) Product sales �(c, p, e)

Demand: d(c, p, e) Demand: d(c, p, e) Demand: d(c, p, e)
Sh

ip
m

en
t

C
os

t o
f s

hi
pm

en
t:

Sa
le

s
Sc

he
du

lin
g 

of
 p

ro
du

ct
io

n 
lin

e

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Pr
od

uc
t:
x
(l
,p

,e
)

Sh
ip

m
en

t

Sh
ip

m
en

t

Sh
ip

m
en

t

Sh
ip

m
en

t

Sh
ip

m
en

t

Sh
ip

m
en

t
y
(c
,t
,e
)

y
(c
,t
,e
)

y
(c
,t
,e
)

Products stocked: Products stocked: Products stocked:
Products

Production time: t(m)

Setup time:
s(m1, m2)

Mass production:
z(l, m, e)

Production mass m
y
(c
,t
,e
)

y
(c
,t
,e
)

y
(c
,t
,e
)

stoked: stk (p, e)

Ba
tc

h
(m

)

Ba
tc

h
(m

)

Ba
tc

h
(m

)

...

co
st 2

(c
,t
)

Pr
ofi

t: 
pr

ofi
t(
c,
p
)

C
os

t o
f p

ro
du

ct
io

n:
co

st 1
(m

)

stk (p, e) stk (p, e) stk (p, e)

Figure 2: Map of production, shipment, and sales.

2.1.4. Constraints

(1) Unique constraint on the use of the line at each
period: in each line, only one product can be pro-
duced per period because it is not possible for a
machine to run two products simultaneously

∀𝑒, 𝑙 ∑

𝑚∈𝑀

𝑧 (𝑙, 𝑚, 𝑒) ≤ 1, (1)

where 𝑧(𝑙, 𝑚, 𝑒) is a binary variable that represents the
production of mass𝑚 in period 𝑒 and line 𝑙.

(2) Constraints of stock training: at each period, the stock
is formed by the stock from the previous period plus
the sum of what was produced, minus the sale for a
given product

∀𝑒, 𝑝 stk (𝑝, 𝑒) = stk (𝑝, 𝑒 − 1)

+∑

𝑙∈𝐿

𝑥 (𝑙, 𝑝, 𝑒 − 𝑡 (𝑚)) − ∑

𝑐∈𝐶

V (c, 𝑝, 𝑒) ,

(2)

where stk(𝑝, 𝑒) is the stock of product 𝑝 in the period 𝑒, 𝑡(𝑚)
is time of production for mass𝑚 that produces 𝑝, 𝑥(𝑙, 𝑝, 𝑒) is
the amount of production of product 𝑝 in the period 𝑒 and
line 𝑙, and V(𝑐, 𝑝, 𝑒) is the sales of product 𝑝 in the customer 𝑐
and the period 𝑒.

(3) Demand constraints: at each customer, the sale of a
product cannot exceed the requested demand

∀𝑐, 𝑝, 𝑒 V (𝑐, 𝑝, 𝑒) ≤ 𝑑 (𝑐, 𝑝, 𝑒) . (3)
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Figure 3: Representation of the greedy heuristic.

ID Customer Product Profit Period Period 1 2 3 4 5
1 1 1 20 5 Line 1
2 1 3 19 5 Line 2
3 2 1 19 3 Line 3
4 1 4 18 5

5 1 5 17 5

6 2 3 10 3 Shipment Shipment
7 1 2 5 5 Customer 2 Customer 1
8 1 4 4 5 Product 1 Product 1
9 2 4 2 3 Product 3 Product 2

Product 4 Product 3
Product 4
Product 5

Priority list Scheduling of production line

· · ·

· · · · · ·

· · ·· · ·

...
...

...
...

...

(ID)-Product X

(9)-Product 4

(3)-Product 1
(7)-Product 2
(6)-Product 3

(1)-Product 1
(5)-Product 5 (2)-Product 6
(8)-Product 4 (4)-Product 4

Figure 4: Matrix representation of solution to the greedy heuristic.

(4) Constraints of setup time (cleaning and change of
mass in the production line): at each exchange of
mass the machine should be stopped by a number of
periods defined by 𝑠(𝑚,𝑚

1
).Therefore, if themachine

is used for amass𝑚, the othermass𝑚
1
cannot use the

machine for the next 𝑠(𝑚,𝑚
1
) periods

∀𝑒, 𝑙, 𝑚 𝑃 ∗ (1 − 𝑧 (𝑙, 𝑚, 𝑒)) ≥ ∑

𝑚
1
∈Lin(𝑙)

𝑠(𝑚,𝑚
1
)

∑

𝑖=1

𝑧 (𝑙, 𝑚
1
, 𝑒 + 𝑖) ,

(4)

where 𝑃 is a large enough number compared to the variables
and problem constants.

(5) Production batch constraints: each mass production
creates several units of products; then if a mass is

produced, the amount of batch(𝑚) units of products
is produced

∀𝑙,𝑚, 𝑒 ∑

𝑖∈Prod(𝑚)
𝑥 (𝑙, 𝑖, 𝑒) = batch (𝑚) ∗ 𝑧 (𝑙, 𝑚, 𝑒) . (5)

(6) Constraints of transport capacity: there is a limit to
the amount of goods that each truck can transport;
therefore, if a truck is used, amaximumof cap(𝑡) units
of products will be sent by truck 𝑡, where the truck is
filled with baskets of the equal dimensions

∀𝑐, 𝑒 ∑

𝑝∈𝑃

V (𝑐, 𝑝, 𝑒) ≤ ∑
𝑡∈𝑇

cap (𝑡) ∗ 𝑦 (𝑐, 𝑡, 𝑒) , (6)

where 𝑦(𝑐, 𝑡, 𝑒) is the amount of trucks used for customer 𝑐
over period 𝑒 and type of trucks 𝑡.
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Figure 5: Production scheduling.
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Figure 6:Matrix representation of solution to the genetic algorithm.

2.1.5. Objective Function. The objective of the problem is to
maximize profit, that is, maximize the difference between the
sale price of each product in each market and production
costs of each product combined with transportation costs.
The problem presented is characterized as a mixed integer
linear programming problem

𝑓 (V, 𝑦) = ∑
𝑐∈𝐶

∑

𝑝∈𝑃

∑

𝑒∈𝐸

profit (𝑐, 𝑝) ∗ V (𝑐, 𝑝, 𝑒)

− ∑

𝑐∈𝐶

∑

𝑡∈𝑇

∑

𝑒∈𝐸

cost
2
(𝑐, 𝑡) ∗ 𝑦 (𝑐, 𝑡, 𝑒)

− ∑

𝑙∈𝐿

∑

𝑚∈𝑀

∑

𝑒∈𝐸

cost
1
(𝑚) ∗ 𝑧 (𝑙, 𝑚, 𝑒) .

(7)

The mixed integer linear programming problem consists
of

Max 𝑓 (V, 𝑦)

s.t. (1) , (2) , (3) , (4) , (5) , (6)

where 𝑥, V, stk ∈ 𝑅
+
,

𝑧, 𝑦 ∈ 𝑍
+
.

(8)

2.2. Solution Methods and Implementation Details. Several
methods are proposed to solve the problem. This problem
can be solved by an exact method for solving integer linear
programming problems, such as branch-bound.The solution
will be presented through the Xpress solver using the interior
point method and branch-bound in the default solver config-
uration. Other solution methods presented will be a method
based on a greedy heuristic (Figure 4) and alsometaheuristics
of the genetic algorithm type to solve the problem.

2.2.1. Greedy Heuristic. Thegreedy algorithm can be found in
Introduction to Algorithms by Cormen et al. [23] or Bendall

and Margot [24]. In the context of scheduling delivery date
problems, the problem is solved exactly for one machine in
([25], page 207).

The greedy heuristic can be divided into two phases:

(1) start-up and creation of the priority list ordered,
(2) production sequencing.

A list of priorities should be created to be used in the
algorithm; accordingly, the following criteria will be used:

Priority (𝑐, 𝑝)

= ((Sales Price (𝑐, 𝑝) − Production Cost (𝑚)

− Average Cost of Shipping (𝑝)))

× ((Production Time (𝑚) − Average Setup (𝑚)))−1,
(9)

where each product is 𝑝,𝑚 is mass that produces the product
𝑝, 𝑐 is a customer, and

Average Cost of Shipping (𝑝)

=

∑
𝑐∈𝐶|𝑑(𝑐,𝑒,𝑝) ̸= 0

∑
𝑡∈𝑇

cost
2
(𝑐, 𝑡)

∑
𝑡∈𝑇

cap (𝑡)
,

Average Setup (𝑚)

=

∑
𝑚
1
∈𝑀|𝑠(𝑚,𝑚

1
) ̸= 0
𝑠 (𝑚,𝑚

1
)

󵄨󵄨󵄨󵄨{𝑚1 ∈ 𝑀 | 𝑠 (𝑚,𝑚
1
) ̸= 0}

󵄨󵄨󵄨󵄨

.

(10)

For each product in eachmarket we can prioritize the one
with the biggest impact in the objective function and it will
have the highest execution priority.

In the production sequencing for each element of the
list Priority, we checked whether it would be possible to
run it on a production line so that the solution does not
become infeasible; that is, for each element determined by a
product, market, and delivery time, we have to run it before
the delivery time. Thus, if space is available (idle line space
before the delivery time longer than production and setup
time of the product in question) in a line that produces this
element, this product will run within this space. If space is
not available, the element is discarded. We note that the task
should be executed as late as possible, in order to ensure that
products with earlier delivery times and lower priorities can
occupy earlier positions in the sequence.

At the production adjustment stage, the algorithm will
only place idle time between the execution of two tasks at
the end of the stage, because idle time between two tasks is
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Figure 7: Creation of initial population to genetic algorithm.
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Figure 8: Crossover to genetic algorithm.

8 2 5 8 8 1 5 8

4 2 1 2 4 8 1 2

7 8 9 1 7 8 9 1

2 4 4 4 2 4 5 4

Solution
Solution with 

mutation

Figure 9: Mutation to genetic algorithm.

impractical; therefore it can be adjusted without any loss in
objective function.

We can represent the heuristic by means of Figure 3.
𝐸𝑙 is one element of priority list that represents a sale of

product 𝑝 in customer 𝑐.

2.2.2. Genetic Algorithm. The application of methods for
using genetic algorithm in scheduling problems can be found
at Allahverdi et al. [26], which shows several authors working
with genetic algorithms in different scheduling problems.

The genetic algorithm is based on building an initial
population where each individual represents a possible solu-
tion, and, through this population, building new populations
through an evolutionary process to find better solutions.

We can divide the algorithm into a few steps: initial
population, crossover, mutation, and selection.

To represent an element of the population on the genetic
algorithm will be used one matrix; this representation is
unusual to the genetic algorithm in implementations already
known. Each row represents a production line and each
column a product that has been produced. This matrix has
dimension Z𝑛×𝑚, with 𝑛 being quantity of lines and 𝑚
maximum quantity of products produced.

For each production line we will have a set of genes where
each gene represents the product to be produced. Therefore,
the solution is represented by a set of schedules of lines, which

are sets of chromosomes, where each chromosome is a set
of genes as shown in Figure 5, which represents in each line
what will be produced by the genetic algorithm represented
in Figure 6.

(1) Creation of Initial Population. The initial population is
created randomly by respecting the feasibility of the solution.
For each element of the population vectors are created, and
each vector represents a production line and each matrix ele-
ment represents the product that will be produced according
to Figure 7, in order that the sum of production time and
setup of a line does not exceed the maximum time that the
line can operate. Thus, we can create all the elements of the
population.

(2) Crossover. The crossover phase will start the process of
building the next population. At this stage, two elements are
chosen at a time, and these two elements exchange compo-
nents from their solutions with each other. This exchange of
components is known as crossover; it is executed by choosing
two random points of each parent chromosome, and these
components are inherited to the new solution that will be
created. After a certain number of children are formed, the
crossover phase is over (Figure 8).

(3) Mutation. In this phase, each child element created in
the crossover phase is mutated, in numbers determined by
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begin
/∗Upper Bound/;
𝑎𝑡 = 0;
V = 0;
foreach 𝑝 ∈ 𝑃 do

foreach 𝑖 ∈ {𝑛, . . . , 1}|𝑒
𝑖
∈ 𝐸 do

𝑄𝑡𝑝𝑟𝑜V(𝑝, 𝑒
𝑗
) = 𝑄𝑡(𝑝, 𝑒

𝑗
);

foreach 𝑗 ∈ 𝐷
𝑝,𝑖

do
V(𝑝, 𝑐
𝑗
) = min(𝑑(𝑝, 𝑐

𝑗
) − 𝑎𝑡(𝑝, 𝑐)𝑗, 𝑄𝑡𝑝𝑟𝑜V(𝑝, 𝑒

𝑗
));

𝑄𝑡𝑝𝑟𝑜V(𝑝, 𝑒
𝑗
) = 𝑄𝑡𝑝𝑟𝑜V(𝑝, 𝑒

𝑗
) − V(𝑝, 𝑐

𝑗
);

𝐿 = 𝐿 + V(𝑝, 𝑐
𝑗
) ∗ 𝑙(𝑝, 𝑐

𝑗
);

𝑎𝑡(𝑝, 𝑐
𝑗
) = 𝑎𝑡(𝑝, 𝑐

𝑗
) + V(𝑝, 𝑐

𝑗
);

end
end

end
end

Algorithm 1: Upper bound to genetic algorithm.

the mutation rate of their genes. This is done by randomly
choosing a gene and replacing it with another element so that
the solution remains feasible.This new element is also chosen
randomly (Figure 9).

(4) Selection. Selection can be executed in various manners.
Here, this will be done in two different ways: tournament
and selection of the best individual. After creating the child
elements of the population in the previous steps, a new pop-
ulation will be formed to run a new iteration. With the
option of choice of both parent and child components for
the next generation, the tournament will randomly select
a predetermined number of elements and among them the
ones with the best objective function; this process is repeated
until a new generation is built. Through the method of
selecting the best individual, the best individuals comprise
the new population.

Algorithm 1 is proposed to calculate the upper bound
of the elements of genetic algorithm. In this algorithm we
introduce 𝐿 as the desired upper bound; 𝑄𝑡(𝑝, 𝑒

𝑗
) is the

amount of product 𝑝 produced between the steps 𝑒
𝑗−1

and
𝑒
𝑗
, 𝑎𝑡(𝑝, 𝑐

𝑗
) is the amount of the product 𝑝 met in customer

𝑐
𝑗
, and 𝐷

(𝑝,𝑖)
is the vector of customer indices, sorted by the

profit of product 𝑝 from the period 𝑒
𝑖
to period 𝑒

𝑛
.

We can represent the metaheuristics with Figure 10.

2.2.3. Efficiency. To evaluate the efficiency of greedy and
genetic algorithm, a new ILP model is presented. It is neces-
sary because greedy algorithm is calculated through priority
list defined in (9) and genetic algorithm through of upper
bound calculation defined in Algorithm 1. This model is easy
to resolve due to little quantity of integer variables. To all tests
the runtime was less than 10 seconds.

For the model to follow, each method will supply a
resulting scheduling to themodel that evaluates the efficiency,
which will obtain the value of a function of an ILP problem
as efficiency of the method.

The index 𝑃, 𝐸, 𝐶, and 𝑇 and the parameters 𝑑(𝑐, 𝑝),
𝑙(𝑝, 𝑐), cost

2
(𝑐, 𝑡), and cap(𝑡) were defined in Section 2 and

given 𝑄𝑡(𝑝, 𝑒) as the amount of product 𝑝 available for
shipment during period 𝑒 calculated by scheduling informed
as a parameter. And we obtain the real variable V(𝑐, 𝑝) being
the amount of product𝑝 sold at the customer 𝑐 and the integer
variables 𝑒𝑛V(𝑐, 𝑡, 𝑝, 𝑒) are the quantity of product 𝑝 shipped
to customer 𝑐 by truck 𝑡 over period 𝑒 and 𝑧(𝑐, 𝑡, 𝑒) is the truck
release 𝑡 to customer 𝑡 in the period 𝑒.

Constraints

(1) Demand: inequality defined in (3).
(2) Total sales of each product to the market

∀𝑝, 𝑐 V (𝑐, 𝑝) = ∑
𝑡∈𝑇

∑

𝑒∈𝐸

𝑒𝑛 (𝑐, 𝑡, 𝑝, 𝑒) . (11)

(3) Shipment of products according to the period

∀𝑝, 𝑒 ∑

(𝑒
󸀠
∈𝐸𝑒
󸀠
≤𝑒)

∑

𝑡∈𝑇

∑

𝑐∈𝐶

𝑒𝑛 (𝑐, 𝑡, 𝑝, 𝑒
󸀠
) ≤ 𝑄𝑡 (𝑝, 𝑒) . (12)

(4) Truck capacity

∀𝑐, 𝑡, 𝑒 ∑

𝑝∈𝑃

𝑒𝑛 (𝑐, 𝑡, 𝑝, 𝑒) ≤ Cap (𝑡) ∗ 𝑧 (𝑐, 𝑡, 𝑒) . (13)

The objective function is defined by (7).
Thus, we have the integer linear programming problem

that will give us the result of each method for the presented
problem

Max (7)

s.t. (3) , (11) , (12) , (13)

where V ∈ 𝑅
+
,

𝑒𝑛, 𝑧 ∈ 𝑍
+
.

(14)
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Yes

No

(crossover)

(creating new population)
or tournament

End

Step 4: mutation in the new population

Step 3: generation of new elements

Step 5: select the best elements

Step 1: create initial population

Step 2: If (number of iterations ≤ maximum)

Figure 10: Representation of the genetic algorithm.

3. Results and Discussion

The following are the results of a presentation by a real exam-
ple of baking industry and the analysis of the complexity
of each method. The tests were carried out on a computer
equipped with Intel Core i7, 2.93GHz, 6GB of memory, and
the 64-bit Windows 7 operating system. The resolution of
integer linear programming models was calculated by the
solver XPress 7.1. The greedy heuristic and genetic algorithm
methods were implemented in C-language.

3.1. Algorithm Performance. In order to analyze the perfor-
mance of the greedy heuristic, wewill calculate the processing
time of the algorithm due to the growth of its dimensions.
First we will examine the additional time as a function of the
growing number of products and markets. Accordingly, we
fix the number of production lines at 40 and the number of
vehicles at 5.

GreedyHeuristic.The analysis will be executedwith randomly
generated data, calculating the average run time of the greedy
heuristic as shown in Figure 11.

The plotted points suggest the adjustment of a linear
curve, where we can calculate the parameters of the curve by
the method of least squares and get the value of 𝑅2 = 0.9966,
where 𝑅2 = ∑ (error

𝑖
)
2
/(𝑛 − 1) and error is the difference

between the value of the curve and points and 𝑛 the total
points used, which shows a linear correlation between the
data; therefore the complexity depending on the products and
markets is approximately (no. product) ∗ (no. markets) that
is, 𝑂(𝑝 ∗ 𝑐).

Now if we fix the number of products and markets we
can analyze the variation in the runtime depending on the
number of lines and production options for each product.We
will set this for 80 products, 20 destinations, and 5 vehicles.

Figure 12 presents the result of complexity in terms of
lines and options for each product line.

We can see by Figure 12 that the curve is a 2-degree
polynomial and, by applying least squares, we get𝑅2 = 0.9746
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Figure 11: Complexity analysis of the greedy heuristic to quantity of
product ×market.
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Figure 12: Complexity analysis of the greedy heuristic to number of
lines × products option in lines.

showing a correlation between the variables, and it can be said
that complexity in terms of production lines is 𝑂(𝑙2).

Genetic Algorithm.We can repeat the analysis for the genetic
algorithm.
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Figure 13: Complexity analysis of the genetic algorithm to quantity
product ×market.
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Figure 14: Complexity analysis of the genetic algorithm to number
of lines × products option in lines.

The set of points (product ∗ destination, time) in
Figure 13 suggests a logarithmic function as a setting curve.
By finding the parameters by the method of least squares, we
obtain the function shown in Figure 13 and we find 𝑅2 with
the value of 0.9851; then we can say that the complexity of the
algorithm regarding products and destinations is 𝑂(log(𝑝 ∗
𝑚)).

The set of points (line option ∗ product-line, time) in
Figure 14 suggests a setting curve logarithmic function. After
finding the parameters by least squares we can say that the
complexity is 𝑂(log(𝑙)).

3.2. Convergence of Genetic Algorithm. The parameters used
to genetic algorithm are in Table 1, and the best settings
towards accuracy (approximation of optimal solution) and
runtime were AG6, AG16, and AG17, which presented the
convergence in 15.

Several parameters were used for genetic algorithm as
shown in Table 1; the choice of the best parameters was done
by results of run time and accuracy. The genetic algorithm
proved little sensitiveness in relation to the variation of
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Figure 15: Convergence of genetic algorithm to the best parameters.

mutation rate, but high sensitiveness in relation to the
selection mode and population size.

Regarding selectionmode, the best selection mode found
quicker and better solutions if compared to the tournament
mode. The convergence of best selection is quicker than the
tournament one because it prioritizes the best solutions to
continue the methods while tournament tries to select the
best participants in a random subset of a given population.
This is done in an attempt to find better solutions in other
feasible regions.

Therefore, we conclude that the best solutions can be
found around a best solution elected by the mode; this is
noticed when greedy heuristic and genetic algorithm (when
using best select mode with high mutation rate (0.10) and
large population size (100 elements)) get good solutions; that
is, genetic algorithm gets the best solutions in finding good
points and exploring this region around the elected location,
and this is why we use the AG17 set.

Analyzing the set of parameters that use the best selection
mode, in Figure 15 we can observe the convergence of the
sets. AG17 presented the greatest benefit in general: runtime,
accuracy, and convergence, while AG16 set had a faster
convergence but it converged to a worse solution than AG17
and AG6. The AG6 set got the solution next to AG17, but its
convergence was slower if compared to AG17 because it did
not explore other feasible regions due to its small population
size, taking a bigger runtime.

3.3. Result of Solutions. In Table 3 the efficiency of algorithms
that represent the quality of solutions obtained and the
instances tested inTable 2 is presented.Thedata from the tests
executed can be found in [27].

In comparing greedy heuristic with genetic algorithm
results the first one had a quicker runtime but a worse
accuracy. The runtime difference can be explained due to
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Figure 16: Best production planning (genetic algorithm), Gantt Chart.

Table 1: Genetic algorithm—settings.

Settings Mutation Select Population size
AG1 0.01 Tournament 25
AG2 0.05 Tournament 25
AG3 0.10 Tournament 25
AG4 0.01 Best select 25
AG5 0.05 Best select 25
AG6 0.10 Best select 25
AG7 0.01 Tournament 50
AG8 0.05 Tournament 50
AG9 0.10 Tournament 50
AG10 0.01 Best select 50
AG11 0.05 Best select 50
AG12 0.10 Best select 50
AG13 0.01 Tournament 100
AG14 0.05 Tournament 100
AG15 0.10 Tournament 100
AG16 0.01 Best select 100
AG17 0.05 Best select 100
AG18 0.10 Best select 100

greedy heuristic which executed less and simpler iterations
than genetic algorithm. In the other hand it explores a smaller
space to find good solutions.

Genetic algorithmgot better accuracy than greedy heuris-
tic which can be seen in Table 3, which is expected because
metaheuristics does a search for best solution in a bigger

Table 2: Instances to evaluate efficiency.

Problem Product Market Line Trucks
AE1 11 11 1 5
AE2 25 10 5 5
AE3 50 10 10 5
AE4 60 13 10 5
AE5 70 14 10 5
AE6 80 16 17 5
AE7 90 18 17 5
AE8 115 21 17 5

region inside feasible region than greedy heuristic. Although
genetic algorithm had worse runtime, it is acceptable because
it is within expectation in practical (for the biggest instance
was 1.5 minutes) and the accuracy was very satisfactory (for
small instances less than 10% of upper bound obtained for
ILP).

The objective of the problem is to maximize the profit
through the best operation including production sequencing
and shipments. Figure 16 and Table 4 demonstrate the best
solution according to genetic algorithm to real data (AE8),
with the sequencing of each production line over a period of
24 hours.

We can ascertain that the genetic algorithm in its AG17
parameterization had the best performance; for instance AE1
approached the upper bound of the ILP and obtainedmost of
the best solutions.The greedy heuristic presented satisfactory
solutions for some instances, but for others it was well below
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Table 3: Comparison of results.

Problem Greedy heuristic AG06 AG16 AG17 ILP
FO Time (s) FO Time (s) FO Time (s) FO Time (s) FO Best bound Time (s)

AE1 12,733 <0.001 19,259 1.22 19,227 2.76 20,354 10.25 6,904 22,750 723.8
AE2 56,077 <0.001 54,127 9.49 54,778 20.59 59,823 20.57 54,324 60,567 1134.5
AE3 120,162 0.004 115,224 9.59 108,431 46.94 117,770 41.50 — — —
AE4 234,464 0.005 379,281 10.93 376,080 51.07 394,101 55.73 — — —
AE5 417,773 0.005 494,619 11.32 491,676 51.31 22,750 57.56 — — —
AE6 1,044,610 0.006 1,042,940 14.85 1,151,700 55.98 1,151,920 59.75 — — —
AE7 1,141,410 0.006 1,237,610 18.45 1,177,440 58.86 1,235,990 62.41 — — —
AE8 1,174,730 0.007 1,247,800 18.74 1,180,000 67.64 1,250,010 92.64 — — —

Table 4: Best production planning (genetic algorithm)—real data.

Line00 Product2\22 Product47\2 Product45\6 Product113\4 Product47\4 Product113\41 Product47\2 Product113\10
Product2\2 Product45\1

Line01 Product70\1 Product11\4 Product37\34 Product71\1 Product48\3 Product59\29 Product15\1 Product48\1
Product10\2

Line02 Product32\1 Product109\9 Product58\12 Product109\19 Product14\1 Product32\4 Product109\1 Product14\11
Product32\1 Product109\3 Product58\1 Product14\3 Product109\9

Line03 Product7\49 Product44\2 Product7\6 Product44\1 Product7\1 Product44\1
Line04 Product7\8 Product3\44 Product4\1 Product32\2 Product3\1 Product3\10 Product4\2

Line05
Product42\1 Product51\1 Product52\1 Product87\2 Product90\2 Product12\3 Product88\1 Product24\1
Product111\14 Product110\1 Product24\39 Product111\1 Product91\2 Product104\1 Product24\12 Product111\2
Product88\1 Product75\1 Product89\1 Product72\1 Product87\1 Product54\2 Product111\8 Product74\1

Line06 Product45\20 Product2\2 Product45\7 Product2\33 Product47\1

Line07

Product56\1 Product29\19 Product36\8 Product98\1 Product24\4 Product27\1 Product13\1 Product92\1
Product29\1 Product41\1 Product12\1 Product101\1 Product55\1 Product13\1 Product36\3 Product24\4
Product92\1 Product40\1 Product93\8 Product24\40 Product38\1 Product56\1 Product30\4 Product40\1
Product13\2 Product92\1 Product36\8 Product56\4

Line08 Product46\2 Product3\47 Product109\1 Product46\2 Product58\1 Product4\1 Product46\1

Line09 Product69\14 Product66\9 Product69\10 Product68\1 Product4\7 Product32\1 Product69\15 Product67\1
Product66\6

Line10 Product50\77 Product20\2

Line11 Product85\1 Product86\2 Product112\2 Product85\1 Product82\1 Product78\1 Product85\2 Product86\2
Product83\1 Product84\1 Product81\1 Product79\1 Product86\1

Line12 Product26\9 Product25\65 Product26\1 Product25\1
Line13 Product34\34 Product60\28 Product21\1 Product23\4 Product60\28
Line14 Product31\2 Product76\1

Line15 Product35\19 Product11\2 Product114\2 Product35\26 Product114\2 Product39\1 Product80\2 Product59\10
Product114\1 Product80\1 Product48\1 Product35\1 Product39\1 Product10\1 Product114\3 Product80\1

Line16 Product63\7 Product62\2 Product63\3
Legend: product XX \N batches.

the best solution; however, the run time was low, unlike
the genetic algorithm, which has a greater runtime and ILP,
which has a nonviable runtime for executing a plan that needs
to be put in place within hours.

Among the parameterizations of the genetic algorithm,
AG17 was efficient and stable; although in two instances
AG6 was more efficient, in others it was well below the
objective function value of AG17, showing some instability
with changes in the dimensions of the problem. AG16 failed
the best objective function values compared to the others.

The genetic algorithm was efficient for solutions with
data from actual dimensions with an acceptable runtime
and better objective function value compared to the greedy
heuristic, showing whether it is applicable to the problem and
stable on the variation of the dimensions of the problem.

In the evaluation of all methods with all the parameteri-
zations presented, the one that performed best was the AG17
parameterization of the genetic algorithm, as it had the best
approach for small problems and the best objective function
value compared to other possibilities presented. AG17 also
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had low run-time, losing to the instances of the greedy
heuristic and for some tests below AG16 parameterization,
but the quality of the solution of the greedy heuristic is well
below the genetic algorithm and the AG16 instance in terms
of execution time was very close to the AG17 instance.

4. Conclusions

The aim of this study was to represent a widely regarded sche-
duling problem in the baking industry, which has conflicting
variables, and to propose a mathematical solution to solve
it through methods such as genetic algorithm and greedy
heuristic.

In this study it was possible to formalize the problemwith
a mathematical representation so that it can be solved as an
ILP problem, because in literature we cannot find a represen-
tation of the problem as a whole, only part of the problem.

One of the contributions of this paper is a new model to
scheduling problem that is not based in traveling salesman
problem (TSP). Due to complexity of due date and the
maximization of profit and not minimization of makespan
this problem cannot be modeled as TSP.

It was demonstrated that the real scheduling problem is
able to bemodeling as mixed integer linear program problem
different the classical models. And it is possible to resolve this
problem utilizing metaheuristics to find good solutions.

The solutions from greedy heuristic presented a very low
runtime and the value of objective functions was the next
best solution obtained. And the algorithmwas shown to have
polynomial order of complexity in practical, which shows
that even if the problem grows over time it is still acceptable.

However, the genetic algorithm showed strong adaptation
to the problem, so the solution was easily represented to be
used by the genetic algorithm, making the algorithm easy
to implement. The results showed themselves to be very
efficient, obtaining good quality solutions for some instances
which came close to the upper bound obtained in solving
the ILP. The algorithm also proved to be efficient for larger
instances, obtaining good solutions in an acceptable runtime,
that is, within the limits to enable a viable plan. In the
complexity analysis, the algorithm proved itself to be efficient
in having logarithmic complexity, which shows that evenwith
the growth of the problem the running time should not vary
greatly, thus enabling the execution of the algorithm for larger
problems.
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