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This paper investigates the orbital stability of solitary waves for the generalized symmetric regularized-long-wave equations with
two nonlinear terms and analyzes the influence of the interaction between two nonlinear terms on the orbital stability. Since 𝐽
is not onto, Grillakis-Shatah-Strauss theory cannot be applied on the system directly. We overcome this difficulty and obtain the
general conclusion on orbital stability of solitary waves in this paper. Then, according to two exact solitary waves of the equations,
we deduce the explicit expression of discrimination 𝑑

󸀠󸀠
(𝑐) and give several sufficient conditions which can be used to judge the

orbital stability and instability for the two solitary waves. Furthermore, we analyze the influence of the interaction between two
nonlinear terms of the equations on the wave speed interval which makes the solitary waves stable.

1. Introduction

Symmetric regularized-long-wave equations (SRLWE)

𝑢
𝑥𝑥𝑡

− 𝑢
𝑡
= (V +

1

2
𝑢
2
)
𝑥

,

V
𝑡
+ 𝑢

𝑥
= 0,

(1)

which are the mathematical models describing the propaga-
tion of weakly nonlinear ion acoustic waves [1] and the typical
equations in the field of nonlinear science, arise in many
other areas of nonlinearmathematical physics [2]. References
[1, 2] studied the solitary wave solutions, conservation laws,
and interaction among the solitary wave solutions of (1).
Moreover, [3–5] discussed the global solution and numerical
solution of (1).

Many authors have studied some extended forms of (1).
Guo [3] studied the periodic initial value problem for

generalized nonlinear wave equations including (1)

𝑢
𝑡
− 𝑢

𝑥𝑥𝑡
+ 𝜌

𝑥
+ 𝑓(𝑢)

𝑥
= 𝑔 (𝑢, 𝜌, 𝑢

𝑥
) ,

𝜌
𝑡
+ 𝑢

𝑥
= ℎ (𝜌) ,

(2)

by spectral method, then proved the existence and unique-
ness of the global generalized solution and classical solution,
and gave the convergence and error estimates for the approx-
imate solution in 1987. Zhang [6] obtained the exact solitary
wave solutions for a class of the generalized SRLWE with
high-order nonlinear terms in 2003.

In terms of the orbital stability of solitary wave solutions,
Chen [7] studied it in 1998 for the following generalized
SRLWE:

𝑢
𝑡𝑡
− 𝑢

𝑥𝑥
+ 𝑓(𝑢)

𝑥𝑡
− 𝑢

𝑥𝑥𝑡𝑡
= 0, (3)

where 𝑓(𝑢) is a 𝐶
1 function, satisfying 𝑓(𝑠) > 0 if 𝑠 >

0 and |𝑓(𝑠)| = 𝑜(|𝑠|
𝑝
); |𝑓󸀠(𝑠)| = 𝑜(|𝑠|

𝑝−1
) as 𝑠 → 0

for 𝑝 > 1. In particular, 𝜑
𝑐

> 0 in the solitary wave
solution (𝜑

𝑐
, 𝜓
𝑐
)
𝑇 (𝑇 represents transposition) in Assump-

tion 1 of [7]. Moreover, 𝐻
𝑐
only has a simple negative

eigenvalue, whose kernel is spanned by 𝜑󸀠
𝑐
. In addition, the

rest of its eigenvalues are positive and bounded away from
zero.
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In this paper, we will consider the orbital stability and
instability of solitary wave solutions for the following gener-
alized SRLWE with two nonlinear terms:

𝑢
𝑥𝑥𝑡

− 𝑢
𝑡
= (V + 𝑏

2
𝑢
2
+ 𝑏

3
𝑢
3
)
𝑥
,

𝑏
𝑖
= constant, 𝑏

3
≥ 0, 𝑖 = 2, 3,

V
𝑡
+ 𝑢

𝑥
= 0.

(4)

Our purpose is to investigate the influence of the interaction
of the nonlinear terms on the orbital stability.

Equation (4) is the generalization of (1). If (4) is converted
into (3), then 𝑓(𝑢) = 𝑏

2
𝑢
2
+ 𝑏

3
𝑢
3, where 𝑓(𝑢) has two

nonlinear terms and the symbols of 𝑏
2
, 𝑏
3
are unfixed. Indeed,

𝑓(𝑢) is not always positive when 𝑢 > 0, so the problem
studied in this paper is not included by [7]. In the other
hand, according to Theorem 1 in this paper, (4) has two
bell-profile solitary wave solutions (𝜑

𝑖
, 𝜓
𝑖
)
𝑇
, 𝑖 = 1, 2, where

𝜑
1
(𝜉) > 0 and 𝜑

2
(𝜉) < 0. But the orbital stability of the

solitary wave solution (𝜑
2
(𝜉), 𝜓

2
(𝜉))

𝑇 is not considered in [7].
In this paper, we will consider it as well. So the content of this
study is new. More significantly, we will study the influence
of the interaction between nonlinear terms 𝑏

2
𝑢
2 and 𝑏

3
𝑢
3 on

the orbital stability. It is meaningful for the stability in the
application of the practical problems and the selection of the
models.

The paper is organized as follows. In Section 2, we will
present two exact bell-profile solitary wave solutions of (4)
and local existence for the solution of Cauchy problem. In
Section 3, wewill verify that (4) and its solitarywave solutions
meet the requirements of the orbital stability theory of
Grillakis-Shatah-Strauss and give the general conclusion. In
Section 4, according to two exact solitary waves of the equa-
tions obtained in Section 2, we deduce the explicit expression
of discrimination 𝑑󸀠󸀠(𝑐) and give several sufficient conditions
which can be used to judge the orbital stability and instability
for the two solitary waves. Moreover, we will analyze the
influence of two nonlinear terms on the orbital stability. In
Section 5, we will focus on studying the orbital instability
of solitary wave solutions for (4). Since the skew symmetric
operator 𝐽 is not onto, we will define a new conservational
functional 𝐼(𝑢⃗) = ∫

𝑅
𝑢⃗𝑑𝑥 and estimate solutions of the initial

value problem.Wewill construct a formal Lyapunov function
and present the sufficient condition on orbital instability of
solitary wave solutions.

2. The Bell-Profile Solitary Wave
Solutions and Local Existence for
the Solution of Cauchy Problem

According to [6], the solitary wave solution of (4) satisfies

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) = 𝑢 (𝑥 − 𝑐𝑡)

V (𝑥, 𝑡) = V (𝜉) = V (𝑥 − 𝑐𝑡)

−𝑐𝑢
󸀠󸀠󸀠

(𝜉) + 𝑐𝑢
󸀠

(𝜉) = V󸀠 (𝜉) + (𝑏
2
𝑢
2

(𝜉) + 𝑏
3
𝑢
3

(𝜉))
𝜉
,

V󸀠 (𝜉) =
1

𝑐
𝑢
󸀠

(𝜉) ,

(5)

where 𝑢󸀠(𝜉), 𝑢󸀠󸀠(𝜉) → 0, |𝜉| → ∞. Their exact expressions
are given by the following theorem.

Theorem 1. Suppose that 𝑐2 − 1 > 0.

(1) If 𝑏
3
𝑐 > 0, or 𝑏

3
= 0 and 𝑏

2
𝑐 > 0, then (4) has a bell-

profile solitary wave solution

𝑢 (𝑥, 𝑡) = 𝜑
1
(𝜉) = 𝜑

1
(𝑥 − 𝑐𝑡) ,

V (𝑥, 𝑡) = 𝜓
1
(𝜉) =

1

𝑐
𝜑
1
(𝑥 − 𝑐𝑡) ,

(6a)

where

𝜑
1
(𝜉) =

𝐴
1
secℎ2 (𝛼

1
/2) 𝜉

2 + 𝐵
1
secℎ2 (𝛼

1
/2) 𝜉

, (6b)

𝛼
1
=
√𝑐2 − 1

𝑐
, 𝐴

1
=

3√2 (𝑐
2
− 1)

√𝑐 [2𝑏2
2
𝑐 + 9𝑏

3
(𝑐2 − 1)]

,

𝐵
1
= −1 +

𝑏
2
𝐴
1

3𝛼2
1
𝑐
.

(6c)

(2) If 𝑏
3
𝑐 > 0, or 𝑏

3
= 0 and 𝑏

2
𝑐 < 0, then (4) has another

bell-profile solitary wave solution

𝑢 (𝑥, 𝑡) = 𝜑
2
(𝜉) = 𝜑

2
(𝑥 − 𝑐𝑡) ,

V (𝑥, 𝑡) = 𝜓
2
(𝜉) =

1

𝑐
𝜑
2
(𝑥 − 𝑐𝑡) ,

(7a)

where

𝜑
2
(𝜉) =

𝐴
2
secℎ2 (𝛼

2
/2) 𝜉

2 + 𝐵
2
secℎ2 (𝛼

2
/2) 𝜉

, (7b)

𝛼
2
= 𝛼

1
, 𝐴

2
= −𝐴

1
, 𝐵

2
= −1 +

𝑏
2
𝐴
2

3𝛼2
2
𝑐
= −2 − 𝐵

1
.

(7c)

Next, we study the local existence for the solution of Cauchy
problem for (4) by semigroup theory. Firstly, we give two
lemmas (see [8, 9]).

Lemma 2 (Hille-Yosida-Phillips). A linear unbounded opera-
tor 𝐴 is the infinitesimal generator of a 𝐶

0
semigroup of {𝑇(𝑡) :

𝑡 ≥ 0} if and only if 𝐴 is a closed operator with dense domain
and there exist real numbers𝑀 and 𝜔, such that when 𝜆 > 𝜔,
one has
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(1) 𝜆 ∈ 𝜌(𝐴),
(2) ‖𝑅(𝜆; 𝐴)𝑛‖ ≤ 𝑀/(𝜆 − 𝜔)

𝑛
, 𝑛 = 1, 2, . . .,

where 𝜌(𝐴) is the resolvent set and 𝑅(𝜆; 𝐴)𝑛 is the resolvent of
𝐴.

Lemma 3. Consider the Cauchy problem of nonlinear equa-
tion

𝑑𝑢 (𝑡)

𝑑𝑡
= 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 > 0,

𝑢 (0) = 𝑢
0
, 𝑢

0
∈ 𝑋.

(8)

If the following two conditions hold:

(1) 𝐴 is the infinitesimal generator of a 𝐶
0
semigroup 𝑇(𝑡)

in𝑋;
(2) 𝑓 ∈ 𝐶(𝑅

+
×𝑋,𝑋) satisfies the Lipschitz manner, which

means for any 𝑇 > 0,

there exists 𝐾 = 𝐾(𝑡), such that ‖𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)‖ ≤ 𝐾(𝑡)‖𝑢 −

V‖, for all 𝑢, V ∈ 𝑋, 𝑡 ∈ [0, 𝑇], then the initial value problem (8)
has a unique solution

𝑢 (𝑡) = 𝑇 (𝑡) 𝑢
0
+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 (9)

in 𝑅+.
From Lemmas 2 and 3, we can prove the following

Lemma 4, which describes the local existence for the solution
of Cauchy problem for (4).

Lemma 4. For any 𝑢⃗
0
∈ 𝑋(𝐻

1
(𝑅) × 𝐿

2
(𝑅)), there exists 𝑡

0
>

0, which only depends on ‖𝑢⃗
0
‖
𝑋
, such that (4) has a unique

solution 𝑢⃗ ∈ 𝐶([0, 𝑡
0
);𝐻

1
(𝑅) × 𝐿

2
(𝑅)) with 𝑢⃗(0) = 𝑢⃗

0
.

Proof. Firstly, (4) can be written as

𝑢
𝑡
= (Δ − 1)

−1
(V + 𝑏

2
𝑢
2
+ 𝑏

3
𝑢
3
)
𝑥
,

𝑏
𝑖
= constant, 𝑏

3
≥ 0,

V
𝑡
= −𝑢

𝑥
,

(10)

where Δ = 𝜕
2
/𝜕𝑥

2. (Δ − 1)
−1 is the pseudodifferential

operator. The initial value problem of (10) is equal to

𝑑𝑢⃗ (𝑡)

𝑑𝑡
= 𝐴𝑢⃗ (𝑡) + 𝑓 (𝑡, 𝑢⃗ (𝑡)) , 𝑡 > 0,

𝑢⃗ (0) = 𝑢⃗
0
,

(11)

where

𝑢⃗ (𝑡) = (
𝑢 (𝑡)

V (𝑡)) , 𝑢⃗
0
= (

𝑢 (0)

V (0)) ,

𝐴 = (
0 (Δ − 1)

−1
𝜕
𝑥

−𝜕
𝑥

0
) ,

𝑓 (𝑡, 𝑢⃗ (𝑡)) = (
(Δ − 1)

−1
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)
𝑥

0
) .

(12)

Since for any 𝑇 > 0, there exists 𝐾 = 𝐾(𝑡), such that for
any 𝑢⃗

1
, 𝑢⃗
2
∈ X, 𝑡 ∈ [0, 𝑇], we have

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑢⃗1) − 𝑓 (𝑡, 𝑢⃗2)
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(Δ − 1)

−1
(𝑏
2
𝑢
2

1
+ 𝑏

3
𝑢
3

1
)
𝑥

0
)

− (
(Δ − 1)

−1
(𝑏
2
𝑢
2

2
+ 𝑏

3
𝑢
3

2
)
𝑥

0
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(Δ − 1)

−1
[𝑏
2
(𝑢
2

1
− 𝑢

2

2
) + 𝑏

3
(𝑢
3

1
− 𝑢

3

2
)]
𝑥

0
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝐾 (𝑡)
󵄩󵄩󵄩󵄩𝑢⃗1 − 𝑢⃗2

󵄩󵄩󵄩󵄩 .

(13)

Therefore, 𝑓(𝑡, 𝑢⃗(𝑡)) satisfies the local Lipschitz manner.
Nowwewant to verify that𝐴 is the infinitesimal generator

of a 𝐶
0
semigroup in𝑋 and𝐷(𝐴) = 𝐻

1
× 𝐿

2.
According to Lemma 2, we only need to prove that there

exists 𝜔, such that

󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼 − 𝐴)

−1󵄩󵄩󵄩󵄩󵄩
≤

1

𝜆 − 𝜔
(14)

if 𝜆 > 𝜔 and 𝜆 ∈ 𝜌(𝐴).
Indeed, since 𝜆 ∈ 𝜌(𝐴), for any V⃗ = (

V⃗
1

V⃗
2

) ∈ 𝑋, we have
𝑢⃗ = (

𝑢⃗
1

𝑢⃗
2

) ∈ 𝐷(𝐴) and (𝜆𝐼 − 𝐴)𝑢⃗ = V⃗. Thus 𝑢⃗ = (𝜆𝐼 − 𝐴)
−1V⃗.

Taking the Fourier transform yields

𝑢̂
1
=

𝜆

𝜆2 + 𝜉2/ (𝜉2 + 1)
V̂
1
−

𝑖𝜉/ (1 + 𝜉
2
)

𝜆2 + 𝜉2/ (1 + 𝜉2)
V̂
2
, (15)

𝑢̂
2
=

𝜆

𝜆2 + 𝜉2/ (𝜉2 + 1)
V̂
2
−

𝑖𝜉

𝜆2 + 𝜉2/ (1 + 𝜉2)
V̂
1
. (16)

By (15), we have

󵄨󵄨󵄨󵄨(𝜆 − 𝜔) 𝑢̂1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 (𝜆 − 𝜔)

𝜆2 + 𝜉2/ (𝜉2 + 1)
V̂
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜆 − 𝜔) 𝜉

𝜆2 (𝜉2 + 1) + 𝜉2
V̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨V̂1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜆 − 𝜔) 𝜉

𝜆2 (𝜉2 + 1) + 𝜉2
V̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(17)

Since (𝜆 − 𝜔)𝜉/(𝜆2(𝜉2 + 1) + 𝜉2) → 0 as |𝜉| → ∞, there
exists positive real number𝑁

1
, when |𝜉| ≥ 𝑁

1
, such that |(𝜆−

𝜔)𝜉/(𝜆
2
(𝜉
2
+ 1) + 𝜉

2
)| ≤ 1; that is, |(𝜆 − 𝜔)𝑢̂

1
| ≤ |V̂

1
| + |V̂

2
|.

Solving the inequality |(𝜆 − 𝜔)𝜉/(𝜆2(𝜉2 + 1) + 𝜉2)| ≤ |(𝜆 −

𝜔)𝜉/𝜆
2
| ≤ 1 when |𝜉| ≤ 𝑁

1
, we can obtain that when 𝜔 ≥

𝑁
1
/4,

󵄨󵄨󵄨󵄨(𝜆 − 𝜔) 𝑢̂1
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨V̂1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V̂2
󵄨󵄨󵄨󵄨 . (18)
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By (16), we know

󵄨󵄨󵄨󵄨(𝜆 − 𝜔) 𝑢̂2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆 (𝜆 − 𝜔)

𝜆2 + 𝜉2/ (𝜉2 + 1)
V̂
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜆 − 𝜔) 𝜉

𝜆2 + 𝜉2/ (𝜉2 + 1)
V̂
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨V̂2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜆 − 𝜔) 𝜉

𝜆2
V̂
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

(19)

Since (𝜆−𝜔)|𝜉|/𝜆2 → 0 as |𝜉| → 0, there exists a positive
real number𝑁

2
, when |𝜉| ≤ 𝑁

2
, such that |(𝜆 − 𝜔)𝜉/𝜆2| ≤ 1;

that is, |(𝜆 − 𝜔)𝑢̂
2
| ≤ |V̂

2
| + |V̂

1
|.

Solving the inequality (𝜆 − 𝜔)|𝜉|/𝜆
2
≤ 1 when |𝜉| ≥ 𝑁

2
,

we can obtain that when 𝜔 ≥ 𝑁
2
/4,

󵄨󵄨󵄨󵄨(𝜆 − 𝜔) 𝑢̂2
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨V̂2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨V̂1
󵄨󵄨󵄨󵄨 . (20)

Combining (18) and (20) and choosing 𝜔 = Max{𝑁
1
/4,

𝑁
2
/4}, then we get (14) due to the definition of the operator

norm.
In conclusion, we can obtain Lemma 4 from Lemmas 2

and 3.

3. General Results for the Orbital Stability of
Solitary Wave Solutions

Equation (4) can be written in a Hamiltonian form

𝑑𝑢⃗

𝑑𝑡
= 𝐽𝐸

󸀠

(𝑢⃗) , (21)

where

𝐽 =
𝜕

𝜕𝑥
(
(1 − Δ)

−1
0

0 1
) , Δ =

𝜕
2

𝜕𝑥2
, (22)

𝐸 (𝑢⃗) = −∫
𝑅

(V𝑢 +
𝑏
2

3
𝑢
3
+
𝑏
3

4
𝑢
4
)𝑑𝑥, (23)

𝐸
󸀠

(𝑢⃗) = (
𝐸
󸀠
(𝑢)

𝐸
󸀠
(V)) = (

−V − 𝑏
2
𝑢
2
− 𝑏

3
𝑢
3

−𝑢
) . (24)

Let 𝑋 = 𝐻
1
(𝑅) × 𝐿

2
(𝑅), whose dual space is 𝑋∗ =

𝐻
−1
(𝑅) × 𝐿

2
(𝑅), and the inner product of𝑋 is

(𝑢⃗
1
, 𝑢⃗
2
) = ∫

𝑅

(𝑢
1
𝑢
2
+ V

1
V
2
+ V

1𝑥
V
2𝑥
) 𝑑𝑥,

∀𝑢⃗
1
, 𝑢⃗
2
∈ 𝑋.

(25)

There exists a natural isomorphism 𝐼 : 𝑋 → 𝑋
∗ defined by

⟨𝐼𝑢⃗
1
, 𝑢⃗
2
⟩ = (𝑢⃗

1
, 𝑢⃗
2
), where ⟨⋅, ⋅⟩ denotes the pairing between

𝑋 and𝑋∗, and

⟨𝑢⃗
1
, 𝑢⃗
2
⟩ = ∫

𝑅

(𝑢
1
𝑢
2
+ V

1
V
2
) 𝑑𝑥. (26)

From (25) and (26), we know that 𝐼 = ( 1 0

0 1−Δ
). And we can

verify that 𝐽 is an skew symmetric operator; that is, ⟨𝐽𝑢⃗, V⃗⟩ =
−⟨𝑢⃗, 𝐽V⃗⟩.

Let 𝑇 be a one-parameter group of unitary operator on𝑋
defined by 𝑇(𝑠)𝑢⃗(⋅) = 𝑢⃗(⋅ − 𝑠), where 𝑢⃗(𝑠) ∈ 𝑋, for all 𝑠 ∈ 𝑅.
Obviously, 𝑇󸀠(0) = (

−𝜕/𝜕𝑥 0

0 −𝜕/𝜕𝑥
). Since 𝑇󸀠(0) = 𝐽𝐵, we can

get 𝐵 = ( Δ−1 0

0 −1
).

Therefore, we define

𝑉 (𝑢⃗) = −
1

2
⟨𝐵𝑢⃗, 𝑢⃗⟩ = −

1

2
⟨(

Δ − 1 0

0 −1
)(

𝑢

V) , (
𝑢

V)⟩

=
1

2
⟨(

𝑢 − 𝑢
𝑥𝑥

V ) , (
𝑢

V)⟩

=
1

2
∫
𝑅

(𝑢
2
− 𝑢

𝑥𝑥
𝑢 + V2) 𝑑𝑥.

(27)

Then 𝑉󸀠(𝑢⃗) = (
𝑉
󸀠
(𝑢)

𝑉
󸀠
(V) ) = ( 𝑢−𝑢𝑥𝑥V ), 𝑉󸀠󸀠(𝑢⃗) = ( 1−Δ 0

0 1
).

The solitary waves (6a) and (7a) of (4) can be written as

⃗𝜙
𝑖𝑐
= (

𝜑
𝑖𝑐
(𝑥 − 𝑐𝑡)

𝜓
𝑖𝑐
(𝑥 − 𝑐𝑡)

) = 𝑇 (𝑐𝑡) ⃗𝜙
𝑖
(𝑥) , 𝑖 = 1, 2, (28)

where 𝜑
1
(𝑥) and 𝜑

2
(𝑥) are defined by (6b) and (7b), respec-

tively. Now, we consider the orbital stability of solitary waves
𝑇(𝑐𝑡) ⃗𝜙

𝑖
(𝑥). Avoiding repetition, we let ⃗𝜙

𝑐
(𝑥) be one of ⃗𝜙

1
(𝑥)

and ⃗𝜙
2
(𝑥). We will verify that (4) and the solitary wave

𝑇(𝑐𝑡) ⃗𝜙
𝑐
(𝑥) satisfy the three assumption conditions of the

orbital stability theory presented by Grillakis et al. in [10].

Verification of Assumption 1. From Lemma 4 in Section 2, we
obtain that the initial value problem of (4) has a unique
solution. And it is easy to prove that 𝐸(𝑢⃗) and 𝑉(𝑢⃗) defined
by (23) and (27) satisfy

𝐸 (𝑢⃗ (𝑡)) = 𝐸 (𝑢⃗ (0)) = 𝐸 (𝑢⃗
0
) ,

𝑉 (𝑢⃗ (𝑡)) = 𝑉 (𝑢⃗ (0)) = 𝑉 (𝑢⃗
0
) ,

(29)

respectively.
This shows that (4) satisfies the Assumption 1 in [10].

Verification of Assumption 2. Firstly, we can prove the follow-
ing lemma.

Lemma 5. ⃗𝜙
𝑐
is a bounded state solution of (4), satisfying

𝐸
󸀠
( ⃗𝜙
𝑐
) + 𝑐𝑉

󸀠
( ⃗𝜙
𝑐
) = 0.

Proof. Substituting the solution ⃗𝜙
𝑐
= (

𝜑
𝑐

𝜓
𝑐
) into (4), we obtain

𝜑
𝑐𝜉
= 𝑐𝜓

𝑐𝜉
,

−𝑐𝜑
𝑐𝜉𝜉𝜉

+ 𝑐𝜑
𝑐𝜉
= (𝜓

𝑐
+ 𝑏

2
𝜑
2

𝑐
+ 𝑏

3
𝜑
3

𝑐
)
𝜉
.

(30)

Integrating (30) once, we get

𝜑
𝑐
= 𝑐𝜓

𝑐
+ 𝑎

1
,

−𝑐𝜑
𝑐𝜉𝜉

+ 𝑐𝜑
𝑐
= (𝜓

𝑐
+ 𝑏

2
𝜑
2

𝑐
+ 𝑏

3
𝜑
3

𝑐
) + 𝑎

2
,

(31)

where 𝑎
1
, 𝑎
2
are integral constants.
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𝜑
𝑐
, 𝜓
𝑐
, 𝜑
𝑐𝜉𝜉

→ 0 as |𝜉| → ∞, so 𝑎
1
= 0 and 𝑎

2
= 0. Thus,

𝜑
𝑐
= 𝑐𝜓

𝑐
,

−𝑐𝜑
𝑐𝜉𝜉

+ 𝑐𝜑
𝑐
= 𝜓

𝑐
+ 𝑏

2
𝜑
2

𝑐
+ 𝑏

3
𝜑
3

𝑐
.

(32)

Furthermore,

𝐸
󸀠
( ⃗𝜙
𝑐
) + 𝑐𝑉

󸀠
( ⃗𝜙
𝑐
)

= (
−𝜓

𝑐
− 𝑏

2
𝜑
2

𝑐
− 𝑏

3
𝜑
3

𝑐

−𝜑
𝑐

) + 𝑐(
𝜑
𝑐
− 𝜑

𝑐𝜉𝜉

𝜓
𝑐

)

= (
−𝜓

𝑐
− 𝑏

2
𝜑
2

𝑐
− 𝑏

3
𝜑
3

𝑐
− 𝑐𝜑

𝑐𝜉𝜉
+ 𝑐𝜑

𝑐

−𝜑
𝑐
+ 𝑐𝜓

𝑐

) .

(33)

Due to (32), we have 𝐸󸀠( ⃗𝜙
𝑐
) + 𝑐𝑉

󸀠
( ⃗𝜙
𝑐
) = 0.

The above Lemma 5 shows that (4) has the bounded
state solutions, and the two solitary waves ⃗𝜙

1𝑐
and ⃗𝜙

2𝑐
given

in Theorem 1 both are the bounded state solutions of the
equation.

Verification of Assumption 3. We consider spectrum analysis
of the operator𝐻

𝑐
.

Now we define the operator 𝐻
𝑐
: 𝑋 → 𝑋

∗ as 𝐻
𝑐
=

𝐸
󸀠󸀠
( ⃗𝜙
𝑐
) + 𝑐𝑉

󸀠󸀠
( ⃗𝜙
𝑐
), where

𝐸
󸀠󸀠

(𝑢⃗) = (
−2𝑏

2
𝑢 − 3𝑏

3
𝑢
2
−1

−1 0
) , 𝑉

󸀠󸀠

(𝑢⃗) = (
1 − Δ 0

0 1
) .

(34)

Therefore,

𝐻
𝑐
= 𝐸

󸀠󸀠
( ⃗𝜙
𝑐
) + 𝑐𝑉

󸀠󸀠
( ⃗𝜙
𝑐
)

= (
−2𝑏

2
𝜑
𝑐
− 3𝑏

3
𝜑
2

𝑐
−1

−1 0
) + 𝑐 (

1 − Δ 0

0 1
)

= (
−2𝑏

2
𝜑
𝑐
− 3𝑏

3
𝜑
2

𝑐
− 𝑐

𝜕
2

𝜕𝑥2
+ 𝑐 −1

−1 𝑐

) .

(35)

For any 𝑢⃗
1
, 𝑢⃗
2

∈ 𝐻
1
(𝑅) × 𝐿

2
(𝑅), we have ⟨𝐻

𝑐
𝑢⃗
1
, 𝑢⃗
2
⟩ =

⟨𝐻
𝑐
𝑢⃗
2
, 𝑢⃗
1
⟩. This means that 𝐻

𝑐
is a self-conjugate operator,

that is,𝐻
𝑐
= 𝐻

∗

𝑐
, and that 𝐼−1𝐻

𝑐
is a bounded self-conjugate

operator on 𝑋. The eigenvalues of 𝐻
𝑐
consist of the real

numbers 𝜆 which ensure that𝐻
𝑐
− 𝜆𝐼 are irreversible.

From (30), we have −𝑐𝜑
𝑐𝜉𝜉𝜉

+ 𝑐𝜑
𝑐𝜉

= ((1/𝑐)𝜑
𝑐
+ 𝑏

2
𝜑
2

𝑐
+

𝑏
3
𝜑
3

𝑐
)
𝜉
. Namely,

[−2𝑏
2
𝜑
𝑐
− 3𝑏

3
𝜑
2

𝑐
− 𝑐

𝜕
2

𝜕𝑥2
+ (𝑐 −

1

𝑐
)]𝜑

𝑐𝑥
= 0. (36)

Let 𝐿 = −2𝑏
2
𝜑
𝑐
− 3𝑏

3
𝜑
2

𝑐
− 𝑐(𝜕

2
/𝜕𝑥

2
) + (𝑐 − (1/𝑐)). Since the

existence of solitary wave solution ⃗𝜙
𝑐
= (

𝜑
𝑐

𝜓
𝑐
) of (4) is based

on the condition that 𝑐2 − 1 > 0, 𝑐 − 1/𝑐 > 0 as 𝑐 > 1, and
−2𝑏

2
𝜑
𝑐
− 3𝑏

3
𝜑
2

𝑐
→ 0 as |𝜉| → ∞, it is easy to know that

𝜎
𝑒𝑠𝑠
(𝐿) = [𝑐−1/𝑐, +∞) byWeyl’s essential spectrum theorem.

Moreover, from (36), we have 𝐿𝜑
𝑐𝑥

= 0, where 𝑥 = 0 is
a unique zero point of 𝜑

𝑐𝑥
. By Sturm-Liouville theorem we

know that zero is the second eigenvalue of 𝐿. Thus 𝐿 only
has one strictly negative eigenvalue −𝜎2 in the case of 𝑐 > 1,
whose corresponding eigenfunction is denoted by 𝜒; that is,
𝐿𝜒 = −𝜎

2
𝜒.

Therefore, 𝐻
𝑐
has a unique simple negative eigenvalue,

and zero is its eigenvalue and the rest of its spectrums are
bounded away from zero. So, 𝐻

𝑐
satisfies the Assumption 3

in [10].
According to [10, 11], we can get the following lemma.

Lemma 6. For any real function 𝑦 ∈ 𝐻
1
(𝑅) with ⟨𝑦, 𝜒⟩ =

⟨𝑦, 𝜑
𝑐𝑥
⟩ = 0, there exists 𝛿 > 0 such that ⟨𝐿𝑦, 𝑦⟩ ≥ 𝛿‖𝑦‖

2

𝐻
2
(𝑅)
.

Let ⃗𝜒
𝑐
= (

𝜒

(1/𝑐)𝜒
). We have

⟨𝐻
𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩

= ∫
𝑅

[−2𝑏
2
𝜑
𝑐
𝜒
2
− 3𝑏

3
𝜑
2

𝑐
𝜒
2
− 𝑐𝜒

𝑥𝑥
𝜒 + (𝑐 −

1

𝑐
) 𝜒

2
] 𝑑𝑥

= ⟨𝐿𝜒, 𝜒⟩

= −𝜎
2
⟨𝜒, 𝜒⟩ < 0.

(37)

Let 𝜑⃗
𝑐𝑥
= (

𝜑
𝑐𝑥

(1/𝑐)𝜑
𝑐𝑥
), and then

⟨𝐻
𝑐
𝜑⃗
𝑐𝑥
, 𝜑⃗
𝑐𝑥
⟩

= ∫
𝑅

[−2𝑏
2
𝜑
𝑐
𝜑
2

𝑐𝑥
− 3𝑏

3
𝜑
2

𝑐
𝜑
2

𝑐𝑥
− 𝑐𝜑

𝑐𝑥𝑥𝑥
𝜑
𝑐𝑥
+ (𝑐 −

1

𝑐
) 𝜑

2

𝑐𝑥
] 𝑑𝑥

= ⟨𝐿𝜑
𝑐𝑥
, 𝜑
𝑐𝑥
⟩ = 0.

(38)

Le

𝑃 = {𝑝⃗
𝑐
∈ 𝑋 | 𝑝⃗

𝑐
= (

𝑝
1

𝑝
2

) , ⟨𝑝
1
, 𝜒⟩ = ⟨𝑝

1
, 𝜑
𝑐𝑥
⟩ = 0,

⟨𝑝
2
,
1

𝑐
𝜒⟩ = ⟨𝑝

2
,
1

𝑐
𝜑
𝑐𝑥
⟩ = 0} .

(39)

We have

⟨𝐻
𝑐
𝑝⃗
𝑐
, 𝑝⃗
𝑐
⟩

= ∫
𝑅

[ − 2𝑏
2
𝜑
𝑐
𝑝
2

1
− 3𝑏

3
𝜑
2

𝑐
𝑝
2

1

−𝑐𝑝
1𝑥𝑥

𝑝
1
+ (𝑐 −

1

𝑐
) 𝑝

2

1
+
1

𝑐
(𝑝
1
− 𝑐𝑝

2
)
2

] 𝑑𝑥.

(40)

Thus ⟨𝐻
𝑐
𝑝⃗
𝑐
, 𝑝⃗
𝑐
⟩ ≥ ⟨𝐿𝑝

1
, 𝑝
1
⟩ ≥ 𝛿‖𝑝⃗

𝑐
‖
2

> 0 for any 𝑝⃗
𝑐
∈ 𝑃

when 𝑐 > 1.
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According to the above analysis, when 𝑐 > 1, we can make
spectrum decomposition for𝐻

𝑐
. Let

𝑁 = {𝑘
1
⃗𝜒
𝑐
| 𝑘
1
∈ 𝑅} ,

𝑍 = {𝑘
2
𝜑⃗
𝑐𝑥
| 𝑘
2
∈ 𝑅} ,

𝑃 = {𝑝⃗
𝑐
∈ 𝑋 | 𝑝⃗

𝑐
= (

𝑝
1

𝑝
2

) , ⟨𝑝
1
, 𝜒⟩ = ⟨𝑝

1
, 𝜑
𝑐𝑥
⟩ = 0,

⟨𝑝
2
,
1

𝑐
𝜒⟩ = ⟨𝑝

2
,
1

𝑐
𝜑
𝑐𝑥
⟩ = 0} .

(41)

For any 𝑢⃗ ∈ 𝑁, 𝑢⃗ ̸= 0, ⟨𝐻
𝑐
𝑢⃗, 𝑢⃗⟩ < 0 due to ⟨𝐻

𝑐
𝑘
1
⃗𝜒
𝑐
,

𝑘
1
⃗𝜒
𝑐
⟩ = 𝑘

2

1
⟨𝐻

𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩ = −𝑘

2

1
𝜎
2
⟨𝜒, 𝜒⟩ < 0.

For any 𝑧⃗ ∈ 𝑍, 𝑧⃗ ̸= 0, ⟨𝐻
𝑐
𝑧⃗, 𝑧⃗⟩ = 0 due to ⟨𝐻

𝑐
𝑘
2
𝜑⃗
𝑐𝑥
,

𝑘
2
𝜑⃗
𝑐𝑥
⟩ = 0.

For any 𝑝⃗
𝑐
∈ 𝑃, 𝑝⃗

𝑐
̸= 0, ⟨𝐻

𝑐
𝑝⃗
𝑐
, 𝑝⃗
𝑐
⟩ > 𝛿‖𝑝⃗

𝑐
‖
2

𝐻
2
(𝑅)
.

Thus the space 𝑋 can be decomposed as a direct sum 𝑋 =

𝑁 + 𝑍 + 𝑃, where 𝑍 is the kernel space of 𝐻
𝑐
, 𝑁 is a finite-

dimensional subspace and 𝑃 is a closed subspace.
We now define 𝑑(𝑐) : 𝑅 → 𝑅 as 𝑑(𝑐) = 𝐸( ⃗𝜙

𝑐
) + 𝑐𝑉( ⃗𝜙

𝑐
),

and then

𝑑
󸀠

(𝑐) = ⟨𝐸
󸀠
( ⃗𝜙
𝑐
) , ⃗𝜙󸀠

𝑐
⟩ + 𝑐 ⟨𝑉

󸀠
( ⃗𝜙
𝑐
) , ⃗𝜙󸀠

𝑐
⟩ + 𝑉 ( ⃗𝜙

𝑐
) = 𝑉 ( ⃗𝜙

𝑐
) .

(42)

According to the above verification of Assumptions 1–3, (4)
and its solitary wave solutions satisfy the three assump-
tions of Theorem 2 in [10], so we can obtain the following
general conclusion on orbital stability of solitary waves for
(4).

Theorem 7. Suppose that 𝑏
2
𝑏
3

̸= 0, 𝑏
3
≥ 0, 𝑐 > 1, and ⃗𝜙

𝑐
=

𝑇(𝑐𝑡) ⃗𝜙(𝑥) is the solitary wave solution of (4). Then,

(1) ⃗𝜙
𝑐
is orbitally stable as 𝑑󸀠󸀠(𝑐) > 0;

(2) ⃗𝜙
𝑐
is orbitally unstable as 𝑑󸀠󸀠(𝑐) < 0.

Remark 8. The proof of the conclusion (2) in Theorem 7 will
be given byTheorem 26 in Section 5.

4. Orbital Stability and
Influence of the Interaction between
Nonlinear Terms on It

In this section, by using two exact solitary waves (6a), (6b),
and (6c) and (7a), (7b), and (7c) given in Theorem 1, we
will give the explicit expressions for the discrimination 𝑑󸀠󸀠

𝑖
(𝑐).

Then with the analysis method, we will give several sufficient
conditions to judge the orbital stability and instability of
the solitary waves. Furthermore, we will also analyze the
influence of the interaction between two nonlinear terms on
the orbital stability. We assume that 𝑏

3
> 0 and 𝑐 > 1 in this

section.

4.1. Discrimination 𝑑󸀠󸀠
𝑖
(𝑐). In view of (42), we have

𝑑
󸀠

𝑖
(𝑐) = 𝑉 ( ⃗𝜙

𝑖𝑐
)

=
1

2
∫
𝑅

(𝜑
2

𝑖𝑐
− 𝜑

𝑖𝑐𝑥𝑥
𝜑
𝑖𝑐
+ 𝜓

2

𝑖𝑐
) 𝑑𝑥, 𝑖 = 1, 2.

(43)

Next, we simplify (43). According to (6a) and (7a) in
Theorem 1, we have 𝜓

𝑖
= (1/𝑐)𝜑

𝑖
. Substituting it into (43),

and letting 𝑧 = 𝑒
𝛼
𝑖
𝜉
(𝛼
𝑖
> 0), we obtain

𝑑
󸀠

𝑖
(𝑐) =

1

2
∫
𝑅

(𝜑
2

𝑖𝑐
− 𝜑

𝑖𝑐𝑥𝑥
𝜑
𝑖𝑐
+ 𝜓

2

𝑖𝑐
) 𝑑𝑥

=
1

2
∫
𝑅

[(1 +
1

𝑐2
)𝜑

2

𝑖𝑐
+ 𝜑

2

𝑖𝑐𝑥
] 𝑑𝑥

=
1

2
∫
𝑅

[(1 +
1

𝑐2
)𝜑

2

𝑖𝑐
+ 𝜑

2

𝑖𝑐𝜉
] 𝑑𝜉

=
1

2𝛼
𝑖

∫

+∞

0

1

𝑧
[

2𝐴
𝑖
𝑧

(1 + 𝑧)
2
+ 2𝐵

𝑖
𝑧
]

2

×
{

{

{

1 +
1

𝑐2
+ [

𝛼
𝑖
(𝑧
2
− 1)

(1 + 𝑧)
2
+ 2𝐵

𝑖
𝑧
]

2

}

}

}

𝑑𝑧

= (1 +
1

𝑐2
)
2𝐴

2

𝑖

𝛼
𝑖

∫

+∞

0

𝑧

[(1 + 𝑧)
2
+ 2𝐵

𝑖
𝑧]
2
𝑑𝑧

+ 2𝐴
2

𝑖
𝛼
𝑖
∫

+∞

0

𝑧(𝑧
2
− 1)

2

[(1 + 𝑧)
2
+ 2𝐵

𝑖
𝑧]
4
𝑑𝑧,

(44)

where 𝛼
𝑖
, 𝐴

𝑖
, 𝐵

𝑖
are given by (6c) and (7c).

Since −2 < 𝐵
𝑖
< 0, we can solve above two integrations.

Then,

𝑑
󸀠

𝑖
(𝑐)

= (1 +
1

𝑐2
)

× 𝐴
2

𝑖

{{

{{

{

𝐵
𝑖
+ 1

√−𝐵
𝑖
(𝐵
𝑖
+ 2)

×
[
[

[

𝜋 − 2 arctan(
𝐵
𝑖
+ 1

√−𝐵
𝑖
(𝐵
𝑖
+ 2)

)
]
]

]

− 2

}}

}}

}

× (2𝛼
𝑖
𝐵
𝑖
(𝐵
𝑖
+ 2))

−1
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+ 𝐴
2

𝑖
𝛼
𝑖

{{

{{

{

2 (3 + 2𝐵
𝑖
+ 𝐵

2

𝑖
) − 3

𝐵
𝑖
+ 1

√−𝐵
𝑖
(𝐵
𝑖
+ 2)

×
[
[

[

𝜋 − 2 arctan(
𝐵
𝑖
+ 1

√−𝐵
𝑖
(𝐵
𝑖
+ 2)

)
]
]

]

}}

}}

}

× (12𝐵
2

𝑖
(𝐵
𝑖
+ 2)

2

)
−1

.

(45)

If

𝐵
𝑖
= 𝐵

1
= −1 +

√2𝑏
2
𝑐

√𝑐 [2𝑏2
2
𝑐 + 9𝑏

3
(𝑐2 − 1)]

, (46)

then (45) can be simplified into the following form:

𝑑
󸀠

1
(𝑐)

=
1

3√𝑏
3
𝑐
{6𝛼√𝑏

3
𝑐 − √2𝑏

2

×[𝜋 − 2 arctan(
√2𝑏

2

3
√

𝑐

𝑏
3
(𝑐2 − 1)

)]}

⋅ (
1

2𝑏
3
𝑐
+
3𝑐

2𝑏
3

+
𝑏
2

2

9𝑏2
3

) −
𝑐𝛼
3

3𝑏
3

.

(47)

If

𝐵
𝑖
= 𝐵

2
= −1 −

√2𝑏
2
𝑐

√𝑐 [2𝑏2
2
𝑐 + 9𝑏

3
(𝑐2 − 1)]

, (48)

then (45) can be simplified into the following form:

𝑑
󸀠

2
(𝑐)

=
1

3√𝑏
3
𝑐
{6𝛼√𝑏

3
𝑐 + √2𝑏

2

×[𝜋 + 2 arctan(
√2𝑏

2

3
√

𝑐

𝑏
3
(𝑐2 − 1)

)]}

⋅ (
1

2𝑏
3
𝑐
+
3𝑐

2𝑏
3

+
𝑏
2

2

9𝑏2
3

) −
𝑐𝛼
3

3𝑏
3

.

(49)

By calculating, we have

𝑑
󸀠󸀠

1
(𝑐)

= −
𝑘 (3𝑐 − 3/𝑐 − 𝑘

2
)𝐷

1

4𝑏
3
𝑐3/2

+

√𝑐2 − 1 (16𝑐
4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16)

6𝑏
3
𝑐3 (𝑐2 − 1 + 𝑘2𝑐)

,

(50)

𝑑
󸀠󸀠

2
(𝑐)

=
𝑘 (3𝑐 − 3/𝑐 − 𝑘

2
)𝐷

2

4𝑏
3
𝑐3/2

+

√𝑐2 − 1 (16𝑐
4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16)

6𝑏
3
𝑐3 (𝑐2 − 1 + 𝑘2𝑐)

,

(51)

where

𝑘 =
√2𝑏

2

3√𝑏
3

, 𝐷
1
= 𝜋 − 2 arctan(𝑘√ 𝑐

𝑐2 − 1
) ,

𝐷
2
= 𝜋 + 2 arctan(𝑘√ 𝑐

𝑐2 − 1
) .

(52)

Furthermore, suppose that

𝑀
1
= 𝑘√

𝑐

𝑐2 − 1
𝐷
1

= 𝑘√
𝑐

𝑐2 − 1
[𝜋 − 2 arctan(𝑘√ 𝑐

𝑐2 − 1
)] ,

𝑀
2
= 𝑘√

𝑐

𝑐2 − 1
𝐷
2

= 𝑘√
𝑐

𝑐2 − 1
[𝜋 + 2 arctan(𝑘√ 𝑐

𝑐2 − 1
)] .

(53)

Then (50) can be written as

𝑑
󸀠󸀠

1
(𝑐)

=
√𝑐2 − 1

12𝑏
3
𝑐2

× [ − 3𝑀
1
(3𝑐 −

3

𝑐
− 𝑘

2
)

+
2 (16𝑐

4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16)

𝑐 (𝑐2 − 1 + 𝑘2𝑐)
] .

(54)

And (51) can be written as

𝑑
󸀠󸀠

2
(𝑐)

=
√𝑐2 − 1

12𝑏
3
𝑐2

× [3𝑀
2
(3𝑐 −

3

𝑐
− 𝑘

2
)

+
2 (16𝑐

4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16)

𝑐 (𝑐2 − 1 + 𝑘2𝑐)
] .

(55)
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Therefore, we only need to consider the conditions such that
𝑑
󸀠󸀠

𝑖
(𝑐) > 0 hold in (54) and (55) to study the orbital stability

of the solitary waves ⃗𝜙
𝑖𝑐
, while needing to consider 𝑑󸀠󸀠

𝑖
(𝑐) < 0

to study instability.

4.2. Discussion on 𝑀
1
and 𝑀

2
. In this section, we consider

𝑀
1
and𝑀

2
in the case of 𝑐 > 1 and 𝑏

3
> 0.

(1) For 𝑀
1
. If 𝑏

2
> 0, then 𝑘 > 0. Suppose that 𝑥 =

𝑘√𝑐/(𝑐2 − 1) ∈ (0, +∞), and then

lim
𝑐→+∞

𝑥 = lim
𝑐→+∞

𝑘√
𝑐

𝑐2 − 1
= 0,

lim
𝑐→1

𝑥 = lim
𝑐→1

𝑘√
𝑐

𝑐2 − 1
= +∞.

(56)

Let 𝑔(𝑥) = 𝑥(𝜋 − 2 arctan𝑥). We have

𝑔
󸀠

(𝑥) = 𝜋 − 2 arctan𝑥 − 2𝑥

1 + 𝑥2
,

𝑔
󸀠󸀠

(𝑥) = −
4

(1 + 𝑥2)
2
< 0.

(57)

Moreover, 𝑔(𝑥) can obtain the local maximum at 𝑥
0
, where

𝑥
0
satisfies 𝑔󸀠(𝑥

0
) = 0 and

𝑔 (𝑥
0
) = 𝑥

0
(𝜋 − 2 arctan𝑥

0
) =

2𝑥
2

0

1 + 𝑥2
0

< 2. (58)

Since
lim

𝑥→+∞

𝑀
1
= lim
𝑥→+∞

𝑔 (𝑥) = lim
𝑥→+∞

𝑥 (𝜋 − 2 arctan𝑥) = 2,

𝑀
1
∈ (0, 2) .

(59)

When 𝑏
2
< 0, it is easy to know that 𝑥 ∈ (−∞, 0), and

then𝑀
1
∈ (−∞, 0).

(2) For𝑀
2
. When 𝑏

2
> 0, it is clear that 𝑥 ∈ (0, +∞), and

then 𝑀
2
∈ (0, +∞). But if 𝑏

2
< 0, then 𝑘 < 0 and

𝑥 = 𝑘√𝑐/(𝑐2 − 1) ∈ (−∞, 0). Therefore
lim

𝑥→−∞

𝑀
2
= lim
𝑥→−∞

𝑥 (𝜋 + 2 arctan𝑥) = −2. (60)

Similarly, we can get𝑀
2
∈ (−2, 0).

4.3. Orbital Stability of Solitary Waves for (4) in the Case of
3𝑐 − 3/𝑐 − 𝑘

2
> 0. Based on (54), (55), and above dis-

cussion on 𝑀
1
,𝑀

2
, we want to obtain much more simple

conditions on the orbital stability of solitary waves ⃗𝜙
1𝑐

and
⃗𝜙
2𝑐
.

4.3.1. Orbital Stability of ⃗𝜙
1𝑐
. (1) If 𝑏

2
> 0, then𝑀

1
∈ (0, 2).

At this time, −3𝑀
1
(3𝑐 − 3/c − 𝑘2) < 0. In order to find 𝑐 such

that 𝑑󸀠󸀠
1
(𝑐) > 0, we only need to consider𝑀

1
= 2 in (54). It is

easy to see that 𝑑󸀠󸀠
1
(𝑐) > 0 when 𝑐 satisfies

7𝑐
4
+ 𝑘

2
𝑐
3
+ 10𝑐

2
− 𝑘

2
𝑐 + 7 > 0. (61)

Thus, ⃗𝜙
1𝑐
is orbitally stable.

If 𝑏
2
< 0, −3𝑀

1
(3𝑐 − 3/c − 𝑘

2
) > 0. In order to make

𝑑
󸀠󸀠

1
(𝑐) > 0, that is, ⃗𝜙

1𝑐
is orbitally stable, only when 𝑐 satisfies

16𝑐
4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16 > 0. (62)

(2) If 𝑏
2
> 0, then𝑀

1
∈ (0, 2). Here,−3𝑀

1
(3𝑐−3/c−𝑘2) <

0 in (54). In order tomake𝑑󸀠󸀠
1
(𝑐) < 0, we only need to consider

𝑀
1
= 0 in (54). Then, it is easy to see that 𝑑󸀠󸀠

1
(𝑐) < 0 when 𝑐

satisfies

16𝑐
4
+ 7𝑘

2
𝑐
3
− (8 + 3𝑘

4
) 𝑐
2
− 7𝑘

2
𝑐 + 16 < 0. (63)

Thus, ⃗𝜙
1𝑐
is orbitally unstable.

4.3.2. Orbital Stability of ⃗𝜙
2𝑐
. (1) If 𝑏

2
> 0, then 𝑀

2
∈

(0, +∞). In order to make 𝑑󸀠󸀠
2
(𝑐) > 0, it is easy to know that

⃗𝜙
2𝑐
is orbitally stable if 𝑐 satisfies (62).
If 𝑏

2
< 0, then𝑀

2
∈ (−2, 0). In order to make 𝑑󸀠󸀠

2
(𝑐) > 0,

we only need to consider𝑀
2
= −2 in (55). It is easy to know

that ⃗𝜙
2𝑐
is orbitally stable if 𝑐 satisfies (61).

(2) If 𝑏
2
< 0, in order to make 𝑑󸀠󸀠

2
(𝑐) < 0, we only need to

consider 𝑀
2
= 0 in (55). Then, it is easy to know that ⃗𝜙

2𝑐
is

orbitally unstable if 𝑐 satisfies (63).
In addition, we know that 3𝑐 − 3/𝑐 − 𝑘2 > 0 is equal to 𝑐 >

(1/27𝑏
3
)[𝑏

2

2
+√𝑏4

2
+ 729𝑏2

3
] or 𝑐 < (1/27𝑏

3
)[𝑏

2

2
−√𝑏4

2
+ 729𝑏2

3
],

but we always assume 𝑐 > 1 through this section. So if we
assume 𝑐

0
= (1/27𝑏

3
)[𝑏

2

2
+√𝑏4

2
+ 729𝑏2

3
], then 3𝑐−3/𝑐−𝑘2 > 0

is equal to 𝑐 > 𝑐
0
.

Summarizing above results, we have the following theo-
rem.

Theorem 9. Suppose that 𝑏
3
> 0 and 𝑐 > 𝑐

0
, where 𝑐

0
= (𝑏

2

2
+

√𝑏4
2
+ 729𝑏2

3
)/27𝑏

3
> 1.

(1) ⃗𝜙
1𝑐
is orbitally stable if 𝑏

2
> 0 and the wave speed 𝑐

satisfies (61), or 𝑏
2
< 0 and the wave speed 𝑐 satisfies

(62); ⃗𝜙
1𝑐
is orbitally unstable if 𝑏

2
> 0 and the wave

speed 𝑐 satisfies (63).
(2) ⃗𝜙

2𝑐
is orbitally stable if 𝑏

2
> 0 and the wave speed 𝑐

satisfies (62), or 𝑏
2
< 0 and the wave speed 𝑐 satisfies

(61); ⃗𝜙
2𝑐

is orbitally unstable if 𝑏
2
< 0 and the wave

speed 𝑐 satisfies (63).

4.4. Orbital Stability of Solitary Waves for
(4) in the Case of 3𝑐 − 3/𝑐 − 𝑘

2
< 0

4.4.1. Orbital Stability of ⃗𝜙
1𝑐
. (1) If 𝑏

2
> 0, −3𝑀

1
(3𝑐 − 3/𝑐 −

𝑘
2
) > 0. In order to make 𝑑󸀠󸀠

1
(𝑐) > 0, we only need to consider

𝑀
1
= 0 in (54). It is easy to see that ⃗𝜙

1𝑐
is orbitally stable if c

satisfies (62).
(2) If 𝑏

2
> 0. In order to find 𝑐 such that 𝑑󸀠󸀠

1
(𝑐) < 0, we

only need to consider 𝑀
1
= 2 in (54). It is easy to see that

𝑑
󸀠󸀠

1
(𝑐) < 0 when 𝑐 satisfies

7𝑐
4
+ 𝑘

2
𝑐
3
+ 10𝑐

2
− 𝑘

2
𝑐 + 7 < 0. (64)

Thus, ⃗𝜙
1𝑐
is orbitally unstable.
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If 𝑏
2
< 0, −3𝑀

1
(3𝑐 − 3/𝑐 − 𝑘

2
) < 0. In order to make

𝑑
󸀠󸀠

1
(𝑐) < 0, it is easy to know that ⃗𝜙

1𝑐
is orbitally unstable if 𝑐

satisfies (63).

4.4.2. Orbital Stability of ⃗𝜙
2𝑐
. (1) If 𝑏

2
< 0, then𝑀

2
∈ (−2, 0).

At this time, 3𝑀
2
(3𝑐 − 3/𝑐 − 𝑘

2
) > 0. In order to find 𝑐 such

that 𝑑󸀠󸀠
2
(𝑐) > 0, we only need to consider𝑀

2
= 0 in (55). It is

easy to see that ⃗𝜙
2𝑐
is orbitally stable if 𝑐 satisfies (62).

(2) If 𝑏
2
> 0, then𝑀

2
∈ (0, +∞). In order tomake𝑑󸀠󸀠

2
(𝑐) <

0, it is easy to know that ⃗𝜙
2𝑐
is orbitally unstable if c satisfies

(63).
If 𝑏

2
< 0, then𝑀

2
∈ (−2, 0). Here, 3𝑀

2
(3𝑐 − 3/𝑐 − 𝑘

2
) > 0

in (55). In order to find 𝑐 such that 𝑑󸀠󸀠
2
(𝑐) < 0, we only need to

consider𝑀
2
= −2 in (55). It is easy to see that ⃗𝜙

2𝑐
is orbitally

unstable if 𝑐 satisfies (64).
Summarizing above results, we have the following theo-

rem.

Theorem 10. Suppose that 𝑏
3
> 0 and 1 < 𝑐 < 𝑐

0
, where

𝑐
0
= (𝑏

2

2
+ √𝑏4

2
+ 729𝑏2

3
)/27𝑏

3
> 1.

(1) ⃗𝜙
1𝑐

is orbitally stable if 𝑏
2
> 0 and the wave speed 𝑐

satisfies (62). ⃗𝜙
1𝑐
is orbitally unstable if 𝑏

2
> 0 and the

wave speed 𝑐 satisfies (64), or 𝑏
2
< 0 and the wave speed

𝑐 satisfies (63).

(2) ⃗𝜙
2𝑐

is orbitally stable if 𝑏
2
< 0 and the wave speed 𝑐

satisfies (62). ⃗𝜙
2𝑐
is orbitally unstable if 𝑏

2
> 0 and the

wave speed 𝑐 satisfies (63), or 𝑏
2
< 0 and the wave speed

𝑐 satisfies (64).

4.5. Corollaries and Influences of Nonlinear Terms on Orbital
Stability of the Solitary Waves for (4). In this part, we will
firstly consider the orbital stability of the solitary waves for
(4) with only one nonlinear term. Secondly, we will discuss
the effect of nonlinear terms on orbital stability of the solitary
waves for (4).

Corollary 11. Suppose that 𝑏
3
> 0 and 𝑐 > 1. If 𝑏

2
= 0, (4) has

the solitary wave solutions ⃗𝜙
𝑖𝑐
= (

𝜑
𝑖
(𝜉)

𝜓
𝑖
(𝜉)
) , 𝑖 = 1, 2, where

𝜑
1
(𝜉) =

𝐴
1
secℎ2 (𝛼

1
/2) 𝜉

2 + 𝐵
1
secℎ2 (𝛼

1
/2) 𝜉

, 𝜓
1
(𝜉) =

1

𝑐
𝜑
1
(𝜉) ,

𝛼
1
=
√𝑐2 − 1

𝑐
, 𝐴

1
=

√2 (𝑐2 − 1)

√𝑏
3
𝑐

, 𝐵
1
= −1,

𝜑
2
(𝜉) =

𝐴
2
secℎ2 (𝛼

2
/2) 𝜉

2 + 𝐵
2
secℎ2 (𝛼

2
/2) 𝜉

, 𝜓
2
(𝜉) =

1

𝑐
𝜑
2
(𝜉) ,

𝛼
2
=
√𝑐2 − 1

𝑐
, 𝐴

2
=

√2 (𝑐2 − 1)

√𝑏
3
𝑐

, 𝐵
2
= −1.

(65)

Under the given conditions, we can easily conclude that the
solitary waves ⃗𝜙

𝑖𝑐
, 𝑖 = 1, 2, are both orbitally stable.

Proof. When 𝑏
2
= 0, the above solitary waves (65) of (4) can

be deduced fromTheorem 1 directly.
Actually, it is clear that 𝑘 = 0 as 𝑏

2
= 0. Substituting 𝑘 = 0

into (50) and (51), we have

𝑑
󸀠󸀠

1
(𝑐) = 𝑑

󸀠󸀠

2
(𝑐) =

4

3𝑏
3
𝑐3

2𝑐
4
− 𝑐

2
+ 2

√𝑐2 − 1
. (66)

We know that 2𝑐4 − 𝑐
2
+ 2 > 0 in (66), so 𝑑󸀠󸀠

𝑖
(𝑐) > 0, 𝑖 =

1, 2, if 𝑐 > 1 and 𝑏
3
> 0. Thus, we know that the solitary

waves ⃗𝜙
𝑖𝑐
, 𝑖 = 1, 2, of (4) are both orbitally stable according

toTheorem 7.

Corollary 12. When 𝑐 > 1 and 𝑏
3
= 0, then (4) has the solitary

wave solution ⃗𝜙
𝑐
= (

𝜑(𝜉)

𝜓(𝜉)
), where

𝜑 (𝜉) =
𝐴secℎ2 (𝛼/2) 𝜉

2 + 𝐵secℎ2 (𝛼/2) 𝜉
, 𝜓 (𝜉) =

1

𝑐
𝜑 (𝜉) ,

𝛼 =
√𝑐2 − 1

𝑐
, 𝐴 =

3 (𝑐
2
− 1)

𝑏
2
𝑐

, 𝐵 = 0.

(67)

Under the given conditions, we know that the solitary wave ⃗𝜙
𝑐

of (4) is orbitally stable.

Proof. When 𝑏
3
= 0, the above solitary wave (67) of (4) can

be deduced fromTheorem 1 directly.
Moreover, similar to deducing (50) and (51), by calculat-

ing, we can obtain

𝑑
󸀠

(𝑐) =
1

2
∫
𝑅

(𝜑
2

𝑐
− 𝜑

𝑐𝑥𝑥
𝜑
𝑐
+ 𝜓

2

𝑐
) 𝑑𝑥

=
1

2
∫
𝑅

[(1 +
1

𝑐2
)𝜑

2

𝑐
+ 𝜑

2

𝑐𝑥
] 𝑑𝑥

=
1

2
∫
𝑅

[(1 +
1

𝑐2
)𝜑

2

𝑐
+ 𝜑

2

𝑐𝜉
] 𝑑𝜉

=
1

2𝛼
∫

+∞

0

1

𝑧
[

2𝐴𝑧

(1 + 𝑧)
2
+ 2𝐵𝑧

]

2

×
{

{

{

1 +
1

𝑐2
+ [

𝛼 (𝑧
2
− 1)

(1 + 𝑧)
2
+ 2𝐵𝑧

]

2

}

}

}

𝑑𝑧

= (1 +
1

𝑐2
)
2𝐴

2

𝛼
∫

+∞

0

𝑧

[(1 + 𝑧)
2
+ 2𝐵𝑧]

2
𝑑𝑧

+ 2𝐴
2
𝛼∫

+∞

0

𝑧(𝑧
2
− 1)

2

[(1 + 𝑧)
2
+ 2𝐵z]

4
𝑑𝑧.

(68)

Substituting (67) into the above formula yields

𝑑
󸀠

(𝑐) =
6

5

(𝑐
2
− 1)

3/2

(3𝑐
2
+ 2)

𝑐3𝑏2
2

. (69)

Therefore

𝑑
󸀠󸀠

(𝑐) =
18

5

√𝑐2 − 1 (2𝑐
4
+ 𝑐

2
+ 2)

𝑐4𝑏2
2

. (70)
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We know that 2𝑐4+𝑐2+2 > 0 in (70). According toTheorem 7,
⃗𝜙
𝑐
is orbitally stable if 𝑐 > 1 and 𝑏

3
= 0. Thus, Corollary 12

holds.

According to the above Corollaries 11 and 12, we know
that if (4) has only one nonlinear term 𝑏

2
(𝑢
2
)
𝑥
or 𝑏

3
(𝑢
3
)
𝑥
, that

is, 𝑏
3
= 0 or 𝑏

2
= 0, the solitary waves of (4) are both orbitally

stable if 𝑐 > 1. That is to say the wave speed intervals which
make the two solitary waves stable are both (1, +∞). But
according toTheorems 9 and 10, when (4) has two nonlinear
items 𝑏

2
(𝑢
2
)
𝑥
and 𝑏

3
(𝑢
3
)
𝑥
, the stability of solitary waves will

be affected by the interaction between them. For convenience,
we call the solitary wave whose wave speed 𝑐 satisfies 𝑐 > 𝑐

0

(𝑐
0
= (𝑏

2

2
+ √𝑏4

2
+ 729𝑏2

3
)/27𝑏

3
) the big wave speed solitary

wave, while we call the solitary wave whose wave speed 𝑐

satisfies 𝑐 < 𝑐
0
the small wave speed solitary wave. Generally,

we have the results fromTheorems 9 and 10 as follows.

(1) For given 𝑏
3
> 0, when |𝑏

2
| is larger, the wave speed

interval which makes the solitary waves stable will
become smaller for the big wave speed solitary wave,
but the wave speed interval which makes the solitary
waves stable will become larger for the small wave
speed solitary wave.

(2) For given 𝑏
2
. For the big wave speed solitary wave, the

wave speed interval whichmakes it stable will become
larger if 𝑏

3
is bigger and the wave speed interval will

become smaller if 𝑏
3
is smaller. For the small wave

speed solitary wave, the wave speed interval which
makes it stable will become smaller if 𝑏

3
is bigger and

the wave speed interval will become larger if 𝑏
3
is

smaller.

Summarizing the above results, it is significant to analyze
the effect by multiple nonlinear terms on orbital stability of
the solitary waves, at least in the application. For example,
fix 𝑏

2
in (4). If we need to know the orbital stability of the

small wave speed solitary wave in practical problems, since
the wave speed interval which makes it stable will become
larger as 𝑏

3
is smaller, and (𝑏2

2
+√𝑏4

2
+ 729𝑏2

3
)/27𝑏

3
→ +∞ as

𝑏
3
→ 0, it has little influence on the stability to ignore 𝑏

3
𝑢
3 in

the application. But if we need to consider the orbital stability
of the big wave speed solitary wave, the wave speed interval
which makes it stable will become smaller as 𝑏

3
is smaller, so

it is not suitable to ignore 𝑏
3
𝑢
3 in the application here.

5. Instability of the Solitary Waves

In this section, we will prove the conclusion (2) given in
Theorem 7; that is, the solitary wave solution ⃗𝜙

𝑐
is orbitally

unstable if 𝑑󸀠󸀠(𝑐) < 0.
Since 𝐽 given in Section 3 is not onto, we cannot apply

Grillakis-Shatah-Strauss theory on the system (4) directly.
In order to prove instability, we define a new conservational
functional

𝐼 (𝑢⃗) = ∫

∞

−∞

𝑢⃗ (𝑥) 𝑑𝑥. (71)

We will prove that 𝑑󸀠󸀠(𝑐) < 0 is the sufficient condition
to judge orbital instability of solitary wave solutions by
estimating to the solution of initial value problem.

5.1. Estimate to the Solution of Initial Value Problem for (4)

Lemma 13. The unique solution 𝑢⃗(𝑡) of (4) with initial data
𝑢⃗(0) = 𝑢⃗

0
satisfies

𝐸 (𝑢⃗ (𝑡)) = 𝐸 (𝑢, V) = constant, 𝑡 ∈ 𝑅
+
,

𝑉 (𝑢⃗ (𝑡)) = 𝑉 (𝑢, V) = constant, 𝑡 ∈ 𝑅
+
,

(72)

where 𝐸(𝑢⃗) = − ∫
𝑅
(V𝑢 + (𝑏

2
/3)𝑢

3
+ (𝑏

3
/4)𝑢

4
)𝑑𝑥 and 𝑉(𝑢⃗) =

(1/2) ∫
𝑅
(−𝑢

𝑥𝑥
𝑢 + 𝑢

2
+ V2)𝑑𝑥.

From Lemma 4, (23), and (27), we can prove Lemma 13
easily. We now prove that 𝐼(𝑢⃗) = ∫

∞

−∞
𝑢⃗(𝑥)𝑑𝑥 is an invariance.

Lemma 14. If ∫
𝑅
𝑢
0
(𝑥)𝑑𝑥 and ∫

𝑅
V
0
(𝑥)𝑑𝑥 converge, then

𝐼(𝑢) = ∫
𝑅
𝑢𝑑𝑥 and 𝐼(V) = ∫

𝑅
V𝑑𝑥 converge and are constants

for any 𝑡 ∈ 𝑅+.

Proof. Integrating (4) separately yields

∫

𝑏

𝑎

𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

𝑏

𝑎

𝑢 (𝑥, 0) 𝑑𝑥

= ∫

𝑡

0

∫

𝑏

𝑎

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥2
− 1)

−1

(V + 𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
) 𝑑𝑥 𝑑𝜏,

∫

𝑏

𝑎

V (𝑥, 𝑡) 𝑑𝑥 − ∫
𝑏

𝑎

V (𝑥, 0) 𝑑𝑥 = −∫

𝑡

0

∫

𝑏

𝑎

𝜕

𝜕𝑥
𝑢 (𝑥, 𝜏) 𝑑𝑥 𝑑𝜏.

(73)

Now we analyze the second formula and have

−∫

𝑡

0

∫

𝑏

𝑎

𝑢
𝑥
𝑑𝑥 𝑑𝜏 = −∫

𝑡

0

[𝑢 (𝑏, 𝜏) − 𝑢 (𝑎, 𝜏)] 𝑑𝜏. (74)

For any fixed 𝜏, 𝑢(𝑏, 𝜏) → 0 and 𝑢(𝑎, 𝜏) → 0, as 𝑎 → −∞

and 𝑏 → +∞,

−∫

𝑏

𝑎

∫

𝑡

0

𝑢
𝑥
𝑑𝜏 𝑑𝑥 󳨀→ 0. (75)

Thus

∫

𝑏

𝑎

V (𝑥, 𝑡) 𝑑𝑥 − ∫
𝑏

𝑎

V (𝑥, 0) 𝑑𝑥 󳨀→ 0. (76)

Similarly,

∫

𝑏

𝑎

𝑢 (𝑥, 𝑡) 𝑑𝑥 − ∫

𝑏

𝑎

𝑢 (𝑥, 0) 𝑑𝑥 󳨀→ 0. (77)

Hence 𝐼(𝑢) = ∫
𝑅
𝑢𝑑𝑥 and 𝐼(V) = ∫

𝑅
V𝑑𝑥 exist and are equal to

∫
𝑅
𝑢
0
(𝑥)𝑑𝑥 and ∫

𝑅
V
0
(𝑥)𝑑𝑥, respectively. This completes the

proof of Lemma 14.

The next theorem is the key step in the proof of instability,
and it is the main result of this section.
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Theorem 15. Let Λ1𝑢
0
∈ 𝐿

1 and V
0
∈ 𝐿

1, where Λ𝑘 =

(1 − 𝜕
2
/𝜕𝑥

2
)
𝑘/2

(𝑘 ∈ 𝑍). Assume that 𝑢⃗ = (
𝑢

V ) satisfies (4)
and 𝑢(0, 𝑥) = 𝑢

0
. Then

sup
−∞<𝑥<∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑥

−∞

𝑢⃗ (𝑧, 𝑡) 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

0
(1 + 𝑡

2/3
+ 𝑡

9/10
) , (78)

where the constant 𝑐
0
only depends on 𝑢⃗

0
.

In order to proveTheorem 15, we need a series of lemmas.
The first one is the well-known Van der Corput lemma [12].
The proofs of the following Lemmas 17 and 18 are similar to
those which are given in [13], and we omit the details.

Lemma 16 (Van derCorput lemma). Let ℎ(𝜉) be either convex
or concave on [𝑎, 𝑏] with −∞ ≤ 𝑎 < 𝑏 ≤ ∞. If ℎ󸀠󸀠(𝜉) ̸= 0 in
[𝑎, 𝑏]; then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑏

𝑎

𝑒
𝑖ℎ(𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 4{min
[𝑎,𝑏]

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠󸀠

(𝜉)
󵄨󵄨󵄨󵄨󵄨
}

−1/2

. (79)

Lemma 17. Suppose 𝑡 > 0, 𝑛 > 0, one has

sup
−∞<𝛼<+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑛

−𝑛

𝑒
𝑖𝑡ℎ(𝜉,𝛼)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

0
(𝑡
−1/3

+ 𝑡
−1/2

𝑛
2
) , (80)

where 𝑐
0
is a constant and ℎ(𝜉, 𝛼) = 𝜉/√1 + 𝜉2 + 𝛼𝜉.

Lemma 18. For 1 ≤ 𝑝 ≤ ∞, if 𝑢 ∈ 𝐿𝑝(𝑅), we have Λ−1𝑢 ∈ 𝐿𝑝
and ‖Λ−1𝑢‖

𝑝
≤ ‖𝑢‖

𝑝
.

The following lemma concerns the decay of the linear
evolution operator.

Lemma 19. Suppose that 𝑆(𝑡) the evolution operator of the
linear equation

𝑢⃗
𝑡
+ (

0 (1 − Δ)
−1

1 0
) 𝑢⃗

𝑥
= 0, 𝑢⃗ (0) = 𝑢⃗

0
= (

𝑢
0

V
0

) . (81)

That is to say, 𝑆(𝑡)𝑢⃗(0) = 𝑢⃗(𝑡). If Λ1𝑢
0
∈ 𝐿

1 and V
0
∈ 𝐿

1, we
have 𝑆(𝑡)𝑢⃗

0
∈ 𝐿

∞ and

󵄩󵄩󵄩󵄩𝑆(𝑡)𝑢⃗0
󵄩󵄩󵄩󵄩∞ ≤ 𝑐

0
(𝑡
−1/3

+ 𝑡
−1/10

) (
󵄩󵄩󵄩󵄩󵄩
Λ
1
𝑢
0

󵄩󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩1) , (82)

where 𝑐
0
is a constant.

Proof. The solution of the linear equation is

𝑢⃗ (𝑡) = 𝑆 (𝑡) 𝑢⃗
0
(𝑥) =

1

2𝜋
∫

∞

−∞

𝑒
𝑖𝑥𝜉

(

cos( 𝜉

√1 + 𝜉2
𝑡)

1

𝑖√1 + 𝜉2
sin( 𝜉

√1 + 𝜉2
𝑡)

√1 + 𝜉2

𝑖
sin( 𝜉

√1 + 𝜉2
𝑡) cos( 𝜉

√1 + 𝜉2
𝑡)

) ⋅ ̂⃗𝑢
0
(𝜉) 𝑑𝜉

=
1

2𝜋
∫

∞

−∞

𝑒
𝑖𝑥𝜉

(

cos(− 𝜉

√1 + 𝜉2
𝑡)

𝑖

√1 + 𝜉2
sin(− 𝜉

√1 + 𝜉2
𝑡)

𝑖√1 + 𝜉2 sin(− 𝜉

√1 + 𝜉2
𝑡) cos(− 𝜉

√1 + 𝜉2
𝑡)

) ⋅ ̂⃗𝑢
0
(𝜉) 𝑑𝜉,

(83)

where ̂⃗𝑢
0
is the Fourier transform of 𝑢⃗

0
.

According to Fubini’s theorem and Lemmas 17 and 18, we
have

|𝑢⃗ (𝑡)|

=
󵄨󵄨󵄨󵄨𝑆 (𝑡) 𝑢⃗0 (𝑥)

󵄨󵄨󵄨󵄨

≤
1

4𝜋
∑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

+∞

−∞

(𝑢̂
0
±

1

√1 + 𝜉2
V̂
0
) 𝑒

𝑖𝑡(−𝜉/√1+𝜉
2
±(𝑥/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

4𝜋
∑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

+∞

−∞

(V̂
0
± √1 + 𝜉2𝑢̂

0
) 𝑒

𝑖𝑡(−𝜉/√1+𝜉
2
±(𝑥/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

4𝜋
∑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

+∞

−∞

(𝑢̂
0
± Λ̂−1V

0
) 𝑒

𝑖𝑡(−𝜉/√1+𝜉
2
±(𝑥/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

4𝜋
∑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

+∞

−∞

(V̂
0
± Λ̂1𝑢

0
) 𝑒

𝑖𝑡(−𝜉/√1+𝜉
2
±(𝑥/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2𝜋
∫
|𝜉|>𝑛

(
󵄨󵄨󵄨󵄨𝑢̂0

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨
Λ̂−1V

0

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨V̂0
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨
Λ̂1𝑢

0

󵄨󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜉

+
1

4𝜋
∑∫

𝑅

󵄨󵄨󵄨󵄨󵄨
𝑢
0
(𝑦) ± Λ

−1V
0
(𝑦)

󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑛

−𝑛

𝑒
𝑖𝑡(−𝜉/√1+𝜉

2
±(𝑥/𝑡)𝜉−(𝑦/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

+
1

4𝜋
∑∫

𝑅

󵄨󵄨󵄨󵄨󵄨
V
0
(𝑦) ± Λ

1
𝑢
0
(𝑦)

󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑛

−𝑛

𝑒
𝑖𝑡(−𝜉/√1+𝜉

2
±(𝑥/𝑡)𝜉−(𝑦/𝑡)𝜉)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑦.

(84)
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Therefore,

|𝑢⃗ (𝑡)| ≤ 𝑐
0
(
󵄩󵄩󵄩󵄩󵄩
Λ
1
𝑢
0

󵄩󵄩󵄩󵄩󵄩𝐿1
+
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩𝐿1)

× (∫
|𝜉|>𝑛

(1 +
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨)
−2

𝑑𝜉)

1/2

+ 𝑐
0
(
󵄩󵄩󵄩󵄩𝑢⃗0

󵄩󵄩󵄩󵄩𝐿1×𝐿1 +
󵄩󵄩󵄩󵄩󵄩
Λ
−1V

0

󵄩󵄩󵄩󵄩󵄩𝐿1
+
󵄩󵄩󵄩󵄩󵄩
Λ
1
𝑢
0

󵄩󵄩󵄩󵄩󵄩𝐿1
)

× sup
−∞<𝛼<∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

−∞

𝑒
𝑖𝑡ℎ(𝜉,𝛼)

𝑑𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ c
0
(𝑛
−1/2

+ 𝑡
−1/3

+ 𝑡
−1/2

𝑛
2
) (
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩𝐿1 +
󵄩󵄩󵄩󵄩󵄩
Λ
1
𝑢
0

󵄩󵄩󵄩󵄩󵄩𝐿1
) .

(85)

Choosing 𝑛 = 𝑡
1/5, we have

󵄨󵄨󵄨󵄨𝑆 (𝑡) 𝑢⃗0
󵄨󵄨󵄨󵄨 ≤ c

0
(𝑡
−1/3

+ 𝑡
−1/10

) (
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩𝐿1 +
󵄩󵄩󵄩󵄩󵄩
Λ
1
𝑢
0

󵄩󵄩󵄩󵄩󵄩𝐿1
) , (86)

where 𝑡 > 0. This completes the proof of Lemma 19.

Proof of Theorem 15. Let 𝑤⃗(𝑡) = 𝑆(𝑡)𝑢⃗
0
. Then 𝑤⃗(𝑡) satisfies

𝑤⃗
𝑡
+(

0 (1 −
𝜕
2

𝜕𝑥2
)

−1

1 0

) 𝑤⃗
𝑥
= 0, with 𝑤⃗ (0) = 𝑢⃗

0
. (87)

The solution 𝑢⃗(𝑡) of the nonlinear (4) can be written as

𝑢⃗ (𝑡) = 𝑤⃗ (𝑡) +
𝜕

𝜕𝑥
∫

𝑡

0

𝑆 (𝑡 − 𝜏) (
−Λ

−2
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)

0
)𝑑𝜏.

(88)

Let 𝑈⃗(𝑥, 𝑡) = ∫
𝑥

−∞
𝑢⃗(𝑦, 𝑡)𝑑𝑦, 𝑈⃗(𝑥, 0) = ∫

𝑥

−∞
𝑢⃗(𝑦, 0)𝑑𝑦, and

𝑊⃗(𝑥, 𝑡) = ∫
𝑥

−∞
𝑤⃗(𝑦, 𝑡)𝑑𝑦. Then 𝑈⃗(𝑥, 𝑡) = 𝑊⃗(𝑡) − ∫

𝑡

0
𝑆(𝑡 −

𝜏) ( Λ
−2
(𝑏
2
𝑢
2
+𝑏
3
𝑢
3
)

0
) 𝑑𝜏.

We estimate both two terms in the above formula on the
right-hand side separately. Firstly, from the equation for 𝑤⃗(𝑡),
we can obtain

𝑤⃗ (𝑡) = 𝑢⃗
0
− 𝜕

𝑥
∫

𝑡

0

(
0 (1 − Δ)

−1

1 0
) 𝑤⃗ (𝜏) 𝑑𝜏. (89)

Therefore

𝑊⃗ (𝑡) = 𝑈⃗
0
− ∫

𝑡

0

(
0 (1 − Δ)

−1

1 0
) 𝑤⃗ (𝜏) 𝑑𝜏. (90)

Since 𝑤⃗(𝑡) = 𝑆(𝑡)𝑢⃗
0
, we obtain

󵄨󵄨󵄨󵄨󵄨
𝑊⃗ (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑢⃗0

󵄨󵄨󵄨󵄨𝐿1×𝐿1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

(
0 (1 − Δ)

−1

1 0
) 𝑆 (𝜏) (

𝑢
0

V
0

)𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑢⃗0

󵄨󵄨󵄨󵄨𝐿1×𝐿1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

0

𝑆 (𝜏) (
(1 − Δ)

−1V
0

𝑢
0

)𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑢⃗0

󵄨󵄨󵄨󵄨𝐿1×𝐿1 + ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑆 (𝜏) (

(1 − Δ)
−1V

0

𝑢
0

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝜏.

(91)

Using Lemma 19, substituting ( (1−Δ)−1V0
𝑢
0

) for ( 𝑢0V
0
), we have

󵄨󵄨󵄨󵄨󵄨
𝑊⃗ (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝑢⃗0

󵄨󵄨󵄨󵄨𝐿1×𝐿1

+ 𝑐
0
∫

𝑡

0

(𝜏
−1/3

+ 𝜏
−1/10

) 𝑑𝜏 (
󵄩󵄩󵄩󵄩󵄩
Λ
−1V

0

󵄩󵄩󵄩󵄩󵄩𝐿1
+
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐿1)

≤ 𝑐
0
(1 + 𝑡

2/3
+ 𝑡

9/10
) (
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩𝐿1 +
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐿1) .

(92)

Let

𝑌⃗ (𝑥, 𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝜏) (
Λ
−2
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)

0
)𝑑𝜏. (93)

Using Lemma 19 again, and substituting ( Λ
−2
(𝑏
2
𝑢
2
+𝑏
3
𝑢
3
)

0
)

for ( 𝑢0V
0
), we obtain

󵄨󵄨󵄨󵄨󵄨
𝑌⃗ (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑆 (𝑡 − 𝜏) (
Λ
−2
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜏

≤ 𝑐
0
∫

𝑡

0

((𝑡 − 𝜏)
−1/3

+ (𝑡 − 𝜏)
−1/10

)
󵄩󵄩󵄩󵄩󵄩
Λ
−1
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)
󵄩󵄩󵄩󵄩󵄩𝐿1

𝑑𝜏.

(94)

In view of Lemma 18, we have
󵄩󵄩󵄩󵄩󵄩
Λ
−1
(𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3
)
󵄩󵄩󵄩󵄩󵄩𝐿1

≤
󵄩󵄩󵄩󵄩󵄩
𝑏
2
𝑢
2
+ 𝑏

3
𝑢
3󵄩󵄩󵄩󵄩󵄩𝐿1

. (95)

Therefore
󵄨󵄨󵄨󵄨󵄨
𝑌⃗ (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
0
∫

𝑡

0

((𝑡 − 𝜏)
−1/3

+ (𝑡 − 𝜏)
−1/10

) (
󵄩󵄩󵄩󵄩󵄩
𝑢
2󵄩󵄩󵄩󵄩󵄩𝐿1

+
󵄩󵄩󵄩󵄩󵄩
𝑢
3󵄩󵄩󵄩󵄩󵄩𝐿1

) 𝑑𝜏

≤ 𝑐
0
(𝑡
2/3

+ 𝑡
9/10

) .

(96)

Summarizing the estimate of 𝑊⃗(𝑥, 𝑡) and 𝑌⃗(𝑥, 𝑡) above
yields the result of Theorem 15; that is,

sup
−∞<𝑥<∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑥

−∞

𝑢⃗ (𝑧, 𝑡) 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

0
(1 + 𝑡

2/3
+ 𝑡

9/10
) . (97)

5.2. Proof of Instability

Theorem 20. Let 𝑐 ̸= 0 be fixed. If 𝑑󸀠󸀠(𝑐) < 0, then there is a
curve 𝜔 → Φ

𝜔
such that 𝑉(Φ⃗

𝜔
) = 𝑉(𝜑⃗

𝑐
), Φ⃗

𝑐
= 𝜑⃗

𝑐
, and on

which 𝐸(𝑢⃗) has a strict local maximum at 𝑢⃗ = 𝜑⃗
𝑐
.

Proof. Let 𝜒
𝑐
be the unique negative eigenfunction of 𝐻

𝑐
,

which has been proved in Section 2. Next we define

Φ⃗
𝜔
= 𝜑⃗

𝜔
+ 𝑠 (𝜔) ⃗𝜒

𝑐
, for 𝜔 󳨀→ 𝑐, (98)

where 𝑠(𝜔) satisfies 𝑠(𝑐) = 0 and 𝑉(Φ⃗
𝜔
) = 𝑉(𝜑⃗

𝑐
).
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By the implicit function theorem, the function 𝑠(𝜔) can
be determined. In fact,

𝜕

𝜕𝑠
𝑉 (𝜑⃗

𝜔
+ 𝑠 ⃗𝜒)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{𝑠=0,𝜔=𝑐}

= ⟨𝑉
󸀠
(𝜑⃗
𝑐
) , ⃗𝜒

𝑐
⟩ = ∫

∞

−∞

(Λ
2
𝜑
𝑐
⋅ 𝜒
1,𝑐
+ 𝜓

𝑐
⋅ 𝜒
2,𝑐
) 𝑑𝑥,

(99)

where 𝜒
𝑐
= (

𝜒
1,𝑐

𝜒
2,𝑐
) with 𝜒

1,𝑐
= (𝑐 − 𝜆)𝜒

2,𝑐
, and 𝜆 is the unique

negative eigenvalue of 𝐻
𝑐
and 𝜑

𝑐
= 𝑐𝜓

𝑐
, 𝜑

𝑐
> 0, 𝜒

1,𝑐
>

0, Λ
2
𝜑
𝑐
> 0. Therefore

𝜕

𝜕𝑠
𝑉 (𝜑⃗

𝜔
+ 𝑠 ⃗𝜒)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨{𝑠=0,𝜔=𝑐}

= ∫

+∞

−∞

(Λ
2
𝜑
𝑐
⋅ 𝜒
1,𝑐
+ 𝜓

𝑐
⋅ 𝜒
2,𝑐
) 𝑑𝑥

= ∫

+∞

−∞

(Λ
2
𝜑
𝑐
⋅ 𝜒
1,𝑐
+

1

𝑐 (𝑐 − 𝜆)
𝜑
𝑐
⋅ 𝜒
1,𝑐
)𝑑𝑥 ̸= 0.

(100)

It is easy to see that

𝑑
2

𝑑𝜔2
𝐸 (Φ⃗

𝜔
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝑐

= ⟨𝐻
𝑐
⃗𝑦, ⃗𝑦⟩ ,

where ⃗𝑦 =
𝜕Φ⃗

𝜔

𝜕𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜔=𝑐

=
𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
.

(101)

So it suffices to show that ⟨𝐻
𝑐
⃗𝑦, ⃗𝑦⟩ < 0. Since

0 =
𝑑𝑉 (𝜑⃗

𝑐
)

𝑑𝜔
=
𝑑𝑉 (Φ⃗

𝜔
)
󵄨󵄨󵄨󵄨󵄨𝜔=𝑐

𝑑𝜔

= ⟨𝑉
󸀠
(𝜑⃗
𝑐
) , ⃗𝑦⟩ = ⟨𝑉

󸀠
(𝜑⃗
𝜔
) , ⃗𝑦⟩

󵄨󵄨󵄨󵄨󵄨𝜔=𝑐
,

(102)

then

𝑑
󸀠󸀠

(𝑐) = ⟨𝑉
󸀠
(𝜑⃗
𝑐
) ,
𝑑𝜑⃗

𝑐

𝑑𝑐
⟩ = ⟨𝑉

󸀠
(𝜑⃗
𝑐
) , ⃗𝑦 − 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
⟩

= ⟨𝑉
󸀠
(𝜑⃗
𝑐
) , ⃗𝑦⟩ − ⟨𝑉

󸀠
(𝜑⃗
𝑐
) , 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
⟩

= −𝑠
󸀠

(𝑐) ⟨𝑉
󸀠
(𝜑⃗
𝑐
) , ⃗𝜒

𝑐
⟩ ,

𝐻
𝑐
⃗𝑦 = 𝐻

𝑐

𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝐻

𝑐
𝑠
󸀠

(𝑐) ⃗𝜒
𝑐

= (𝐸
󸀠󸀠
(𝜑⃗
𝑐
) + 𝑐𝑉

󸀠󸀠
(𝜑⃗
𝑐
))
𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝐻

𝑐
𝑠
󸀠

(𝑐) ⃗𝜒
𝑐
.

(103)

Note that 𝐸󸀠(𝜑⃗
𝑐
) + 𝑐𝑉

󸀠
(𝜑⃗
𝑐
) = 0. We derivate it with respect to

𝑐, and then

𝐸
󸀠󸀠
(𝜑⃗
𝑐
)
𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝑉

󸀠
(𝜑⃗
𝑐
) + 𝑐𝑉

󸀠󸀠
(𝜑⃗
𝑐
)
𝜕𝜑⃗
𝑐

𝜕𝑐
= 0. (104)

Namely,

(𝐸
󸀠󸀠
(𝜑⃗
𝑐
) + 𝑐𝑉

󸀠󸀠
(𝜑⃗
𝑐
))
𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝑉

󸀠
(𝜑⃗
𝑐
) = 0. (105)

So

𝐻
𝑐
⃗𝑦 = −𝑉

󸀠
(𝜑⃗
𝑐
) + 𝑠

󸀠

(𝑐)𝐻
𝑐
⃗𝜒
𝑐
,

⟨𝐻
𝑐
⃗𝑦, ⃗𝑦⟩

= ⟨−𝑉
󸀠
(𝜑⃗
𝑐
) + 𝑠

󸀠

(𝑐)𝐻
𝑐
⃗𝜒
𝑐
,
𝜕𝜑⃗
𝑐

𝜕𝑐
+ 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
⟩

= ⟨−𝑉
󸀠
(𝜑⃗
𝑐
) ,
𝜕𝜑⃗
𝑐

𝜕𝑐
⟩ + ⟨−𝑉

󸀠
(𝜑⃗
𝑐
) , 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
⟩

+ ⟨𝑠
󸀠

(𝑐)𝐻
𝑐
⃗𝜒
𝑐
,
𝜕𝜑⃗
𝑐

𝜕𝑐
⟩ + ⟨𝑠

󸀠

(𝑐)𝐻
𝑐
⃗𝜒
𝑐
, 𝑠
󸀠

(𝑐) ⃗𝜒
𝑐
⟩

= 𝑠
󸀠

(𝑐)⟨𝐻
𝑐
⃗𝜒
𝑐
,
𝜕𝜑⃗
𝑐

𝜕𝑐
⟩ + (𝑠

󸀠

(𝑐))
2

⟨𝐻
𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩

= 𝑠
󸀠

(𝑐)⟨𝐻
𝑐

𝜕𝜑⃗
𝑐

𝜕𝑐
, ⃗𝜒
𝑐
⟩ + (𝑠

󸀠

(𝑐))
2

⟨𝐻
𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩

= 𝑠
󸀠

(𝑐) ⟨−𝑉
󸀠
(𝜑⃗
𝑐
) , ⃗𝜒

𝑐
⟩ + (𝑠

󸀠

(𝑐))
2

⟨𝐻
𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩

= 𝑑
󸀠󸀠

(𝑐) + (𝑠
󸀠

(𝑐))
2

⟨𝐻
𝑐
⃗𝜒
𝑐
, ⃗𝜒
𝑐
⟩ < 0.

(106)

Hence, (𝑑2/𝑑𝜔2)𝐸(Φ⃗
𝜔
)|
𝜔=𝑐

= ⟨𝐻
𝑐
⃗𝑦, ⃗𝑦⟩ < 0. The result in

Theorem 20 holds.

Lemma 21 (see [14]). There exists 𝜀 > 0 and a unique 𝐶1 map
𝛼 : 𝑈

𝜀
→ 𝑅, such that for any 𝑢⃗ ∈ 𝑈

𝜀
and 𝑟 ∈ 𝑅,

(1) ⟨𝑢⃗ (⋅ + 𝛼 (𝑢⃗)) , 𝑇
󸀠

(0) 𝜑⃗
𝑐
⟩ = 0,

(2) 𝛼 (𝑢⃗ (⋅ + 𝑟)) = 𝛼 (𝑢⃗) − 𝑟,

(3) 𝛼
󸀠

(𝑢⃗) =
(𝜕/𝜕𝑥) 𝜑⃗

𝑐
(⋅ − 𝛼 (𝑢⃗))

⟨𝑢⃗, (𝜕2/𝜕𝑥2) 𝜑⃗
𝑐
(⋅ − 𝛼 (𝑢⃗))⟩

,

(107)

where

𝑈
𝜀
= {𝑢⃗ ∈ 𝑋 : inf

𝑠∈𝑅

󵄩󵄩󵄩󵄩𝑢⃗ − 𝜏𝑠𝜑⃗𝑐
󵄩󵄩󵄩󵄩𝑋 < 𝜀} . (108)

Next we define an auxiliary operator 𝐵 which will play a
critical role in the proof of instability.

Definition 22. For 𝑢⃗ ∈ 𝑈
𝜀
, 𝐵(𝑢⃗) is defined by the formula

𝐵 (𝑢⃗) = ⃗𝑦 (⋅ − 𝛼 (𝑢⃗)) − ⟨𝐼𝑢⃗, ⃗𝑦 (⋅ − 𝛼 (𝑢⃗))⟩
𝜕

𝜕𝑥
𝐼
−1
𝛼
󸀠

(𝑢⃗) .

(109)

By Lemma 21, 𝐵(𝑢⃗) can also be written as

𝐵 (𝑢⃗) = ⃗𝑦 (⋅ − 𝛼 (𝑢⃗))

−
⟨𝐼𝑢⃗, ⃗𝑦 (⋅ − 𝛼 (𝑢⃗))⟩

⟨𝑢⃗, (𝜕2/𝜕𝑥2) 𝜑⃗
𝑐
(⋅ − 𝛼 (𝑢⃗))⟩

𝐼
−1 𝜕

2

𝜕𝑥2
𝜑
𝑐
(⋅ − 𝛼 (𝑢⃗)) ,

(110)

where 𝐼 = ( 1−Δ 0
0 1

).

The next lemma summarizes the properties of 𝐵.
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Lemma 23 (see [14]). 𝐵(𝑢⃗) : 𝑈
𝜀

→ 𝑋 is a 𝐶
1 function.

Moreover, 𝐵 commutes with translations, 𝐵(𝜑⃗
𝑐
) = ⃗𝑦 and for

any 𝑢⃗ ∈ 𝑈
𝜀
, ⟨𝐵(𝑢⃗), 𝐼𝑢⃗⟩ = 0.

Lemma 24 (see [14]). There exists a 𝐶1 function

Π : {V⃗ ∈ 𝑈
𝜀
: 𝑉 (V⃗) = 𝑉 (𝜑⃗

𝑐
)} 󳨀→ 𝑅, (111)

which is invariant under translations, such that

𝐸 (𝜑⃗
𝑐
) < 𝐸 (V⃗) + Π (V⃗) ⟨𝐸󸀠 (V⃗) , 𝐵 (V⃗)⟩ , (112)

for any V⃗ ∈ 𝑈
𝜀
with𝑉(V⃗) = 𝑉(𝜑⃗

𝑐
) and V⃗ is not a translate of 𝜑⃗

𝑐
.

Lemma 25 (see [14]). According to Theorem 20, there is a
curve 𝜔 → Φ

𝜔
which satisfies 𝐸(Φ⃗

𝜔
) < 𝐸(𝜑⃗

𝑐
) for 𝜔 ̸= 𝑐,

𝑉(Φ⃗
𝜔
) = 𝑉(𝜑⃗

𝑐
), and ⟨𝐸󸀠(Φ⃗

𝜔
), 𝐵(Φ⃗

𝜔
)⟩ changes sign as𝜔 passes

through 𝑐, with 𝑐 ̸= 0.

Theorem 26. If (4) has a bell-profile solitary wave solution ⃗𝜙
𝑐
,

when 𝑑󸀠󸀠(𝑐) < 0, then ⃗𝜙
𝑐
is orbitally unstable.

Proof. Firstly, we consider 𝑐 ̸= 0. Let 𝜀 > 0, small enough,
and 𝑈

𝜀
be the tubular neighbourhood defined above. By

Lemma 25 we can choose 𝑢⃗
0
∈ 𝑋 which is arbitrarily close

to 𝜑⃗
𝑐
, such that 𝑉(𝑢⃗

0
) = 𝑉(𝜑⃗

𝑐
), 𝐸(𝑢⃗

0
) < 𝐸(𝜑⃗

𝑐
), and

⟨𝐸
󸀠
(𝑢⃗
0
), 𝐵(𝑢⃗

0
)⟩ > 0. To prove the instability of 𝜑⃗

𝑐
, it suffices

to show that there are some elements 𝑢⃗
0
∈ 𝑋 which are

arbitrarily close to 𝜑⃗
𝑐
, but the solution 𝑢⃗(𝑥, 𝑡) with the initial

data 𝑢⃗
0
exits from𝑈

𝜀
in finite time. Let [0, 𝑡

1
) be the maximal

interval for which 𝑢⃗(𝑥, 𝑡) lies continuously in 𝑈
𝜀
, where 𝑡

1
>

0. Let 𝑇 be the maximum existence time for the solution
𝑢⃗(𝑥, 𝑡) with initial data 𝑢⃗

0
. If 𝑇 is finite, it is easy to see that

𝜑⃗
𝑐
is orbital instability by definition, so we may assume that

𝑇 = +∞ and our purpose now is to show that 𝑡
1
< +∞; that

is to say, it is instability if it blows up at a finite time.The proof
is as follows.

Firstly, in view of Lemmas 4, 13, and 14 and Theorem 15,
we know that 𝑢⃗ enjoys the following properties:

𝑢⃗ ∈ 𝐶 ([0, 𝑡
1
) ; 𝑋) , 𝑢⃗ (0, 𝑥) = 𝑢⃗

0
(𝑥) ,

𝐸 (𝑢⃗ (𝑡)) , 𝑉 (𝑢⃗ (𝑡)) are constant, for 𝑡 ∈ [0, 𝑡
1
) ,

𝐼 (𝑢 (𝑡)) , 𝐼 (V (𝑡)) converge and are constant,

for 𝑡 ∈ [0, 𝑡
1
) ,

sup
0≤𝑡<𝑡

1

‖𝑢⃗ (𝑥, 𝑡)‖
𝑋
≤ 𝑐

1
,

sup
𝑥∈𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑥

−∞

𝑢⃗ (𝑦, 𝑡) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

2
(1 + 𝑡

2/3
+ 𝑡

9/10
) ,

(113)

where 𝑐
1
depends on 𝜑⃗

𝑐
and 𝜀, 𝑐

2
depends on 𝑐

1
, ‖V

0
‖
𝐿
1 , and

‖𝑢⃗
0
‖
𝐿
1 .

Let 𝛽(𝑡) = 𝛼(𝑢⃗(𝑡)), where 𝛼 is defined by Lemma 21 and
define

⃗𝑦 (𝑧) =
𝑑Φ⃗

𝑐

𝑑𝑐
=
𝑑𝜑⃗

𝑐

𝑑𝑐
+ 𝑠

󸀠

(𝑐) ⃗𝜒
𝑐
,

𝑌⃗ (𝑥) = ∫

𝑥

−∞

𝐼 ⃗𝑦 (𝑧) 𝑑𝑧,

𝐴 (𝑡) = ∫

∞

−∞

𝑌⃗ (𝑥 − 𝛽 (𝑡)) ⋅ 𝑢⃗ (𝑥, 𝑡) 𝑑𝑥, 0 ≤ 𝑡 < 𝑡
1
,

(114)

where the function 𝐴(𝑡) serves as a Lyapunov function, and

⃗𝛾 = ∫

∞

−∞

⃗𝑦 (𝑥) 𝑑𝑥. (115)

Due to the assumptions above, it is observed that

∫

∞

−∞

(1 + |𝑥|)
1/2

𝜕𝜑⃗
𝑐

𝜕𝑐
𝑑𝑥 < ∞,

∫

∞

−∞

(1 + |𝑥|)
1/2

⃗𝜒
𝑐
𝑑𝑥 < ∞.

(116)

Therefore ∫∞
−∞

(1 + |𝑥|)
1/2
| ⃗𝑦(𝑥)|𝑑𝑥 < ∞, such that | ⃗𝛾| < +∞.

Indeed, if 𝐻 is the Heaviside function and 𝑊⃗(𝑥) =

∫
𝑥

−∞
⃗𝑦(𝑧)𝑑𝑧 − ⃗𝛾𝐻(𝑥), then

𝑊⃗ (𝑥) = ∫

𝑥

−∞

⃗𝑦 (𝑧) 𝑑𝑧 for 𝑥 < 0,

𝑊⃗ (𝑥) = −∫

∞

𝑥

⃗𝑦 (𝑧) 𝑑𝑧 for 𝑥 ≥ 0.

(117)

Now we can have

𝐴 (𝑡) = ∫

∞

−∞

(𝑌⃗ (𝑥 − 𝛽 (𝑡)) − ⃗𝛾𝐻 (𝑥 − 𝛽 (𝑡))) ⋅ 𝑢⃗ (𝑥, 𝑡) 𝑑𝑥

+ ⃗𝛾 ∫

∞

−∞

𝐻⃗ (𝑥 − 𝛽 (𝑡)) ⋅ 𝑢⃗ (𝑥, 𝑡) 𝑑𝑥

= ∫

∞

−∞

(𝑌⃗ (𝑥 − 𝛽 (𝑡)) − ⃗𝛾𝐻 (𝑥 − 𝛽 (𝑡))) ⋅ 𝑢⃗ (𝑥, 𝑡) 𝑑𝑥

+ ⃗𝛾 ∫

∞

𝛽(𝑡)

𝑢⃗ (𝑥, 𝑡) 𝑑𝑥.

(118)

Hence, by (113),

|𝐴 (𝑡)| ≤
󵄩󵄩󵄩󵄩󵄩
𝑌⃗ − ⃗𝛾𝐻

󵄩󵄩󵄩󵄩󵄩0
‖𝑢⃗(𝑡)‖

0
+ 𝑐

2
(1 + 𝑡

2/3
+ 𝑡

9/10
) . (119)
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It follows fromMinkowski’s inequality that

(∫

0

−∞

󵄨󵄨󵄨󵄨󵄨
𝑌⃗(𝑥) − ⃗𝛾𝐻(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

= (∫

0

−∞

󵄨󵄨󵄨󵄨󵄨
𝑌⃗(𝑥)

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

≤ ∫

0

−∞

(∫

0

𝑧

󵄨󵄨󵄨󵄨𝐼 ⃗𝑦(𝑧)
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

1/2

𝑑𝑧

= ∫

0

−∞

(∫

0

𝑧

󵄨󵄨󵄨󵄨 ⃗𝑦(𝑧)
󵄨󵄨󵄨󵄨
2

𝑑𝑥)

1/2

𝑑𝑧

= ∫

0

−∞

󵄨󵄨󵄨󵄨 ⃗𝑦 (𝑧)
󵄨󵄨󵄨󵄨
√−𝑧𝑑𝑧 < ∞.

(120)

Similarly, (∫∞
0
|𝑌⃗ − ⃗𝛾𝐻(𝑥)|

2

𝑑𝑥)
1/2

< ∞. Therefore

|𝐴 (𝑡)| ≤ 𝑐
2
(1 + 𝑡

2/3
+ 𝑡

9/10
) , for 0 ≤ 𝑡 < 𝑡

1
. (121)

Since 𝐴(𝑡) = ⟨𝑌⃗(𝑥 − 𝛽(𝑡)), 𝑢⃗(𝑥, 𝑡)⟩, and 𝛽(𝑡) = 𝛼(𝑢⃗(𝑡)), now
we estimate 𝑑𝐴(𝑡)/𝑑𝑡, by calculating, and have

𝑑𝐴 (𝑡)

𝑑𝑡

= ⟨
𝑑𝑌⃗ (𝑥 − 𝛽 (𝑡))

𝑑𝑡
, 𝑢⃗ (𝑥, 𝑡)⟩ + ⟨𝑌⃗ (𝑥 − 𝛽 (𝑡)) ,

𝜕

𝜕𝑡
𝑢⃗ (𝑥, 𝑡)⟩

= ⟨− ⟨𝐼 ⃗𝑦 (𝑥 − 𝛽) , 𝑢⃗⟩ 𝛼
󸀠

(𝑢⃗) + 𝑌⃗ (𝑥 − 𝛽) ,
𝜕

𝜕𝑡
𝑢⃗ (𝑥, 𝑡)⟩ .

(122)

Since 𝑑𝑢⃗/𝑑𝑡 = 𝐽𝐸
󸀠
(𝑢⃗), where 𝐽 = (𝜕/𝜕𝑥)𝐼

−1 and (𝜕/𝜕𝑥)𝑌⃗ =

𝐼 ⃗𝑦, it follows that

𝑑𝐴

𝑑𝑡
= ⟨⟨𝐼 ⃗𝑦 (𝑥 − 𝛽 (𝑡)) , 𝑢⃗⟩

𝜕

𝜕𝑥
𝛼
󸀠

(𝑢⃗)

−𝐼 ⃗𝑦 (𝑥 − 𝛽 (𝑡)) , 𝐼
−1
𝐸
󸀠

(𝑢⃗)⟩

= ⟨⟨𝐼 ⃗𝑦 (𝑥 − 𝛽 (𝑡)) , 𝑢⃗⟩
𝜕

𝜕𝑥
𝐼
−1
𝛼
󸀠

(𝑢⃗)

− ⃗𝑦 (𝑥 − 𝛽 (𝑡)) , 𝐸
󸀠

(𝑢⃗)⟩

= −⟨𝐵 (𝑢⃗) , 𝐸
󸀠

(𝑢⃗)⟩ .

(123)

Since 0 < 𝐸(𝜑⃗
0
) − 𝐸(𝑢⃗

0
) = 𝐸(𝜑⃗

𝑐
) − 𝐸(𝑢⃗(𝑡)), from Lemma 24,

we can deduce that

0 < Π (𝑢⃗ (𝑡)) ⟨𝐵 (𝑢⃗ (𝑡)) , 𝐸
󸀠

(𝑢⃗ (𝑡))⟩ . (124)

Since ⟨𝐸󸀠(𝑢⃗
0
), 𝐵(𝑢⃗

0
)⟩ > 0 and it is continuous, we can obtain

⟨𝐸
󸀠
(𝑢⃗(𝑡)), 𝐵(𝑢⃗(𝑡))⟩ > 0. Therefore for all 0 < 𝑡 < 𝑡

1
,Π(𝑢⃗(𝑡)) >

0. Moreover, since 𝑢⃗(𝑡) ∈ 𝑈
𝜀
and Π(𝜑⃗

𝑐
) = 0, we may assume

that 0 < Π(𝑢⃗(𝑡)) < 1, 0 < 𝑡 < 𝑡
1
, by choosing 𝜀 smaller if

necessary. So for all 𝑡 ∈ [0, 𝑡
1
), by Lemma 24, we have

⟨𝐵 (𝑢⃗ (𝑡)) , 𝐸
󸀠

(𝑢⃗)⟩

≥ Π (𝑢⃗ (𝑡)) ⟨𝐵 (𝑢⃗ (𝑡)) , 𝐸
󸀠

(𝑢⃗ (𝑡))⟩

> 𝐸 (𝜑⃗
𝑐
) − 𝐸 (𝑢⃗ (𝑡))

= 𝐸 (𝜑⃗
𝑐
) − 𝐸 (𝑢⃗

0
) = 𝜀

0
> 0,

(125)

−
𝑑𝐴

𝑑𝑡
≥ 𝐸 (𝜑⃗

𝑐
) − 𝐸 (𝑢⃗

0
) = 𝜀

0
> 0, for 𝑡 ∈ [0, 𝑡

1
) . (126)

Integrating (126) on [0, 𝑡
1
), we have

𝐴 (0) − 𝐴 (𝑡
1
) ≥ 𝜀

0
𝑡
1
= [𝐸 (𝜑⃗

𝑐
) − 𝐸 (𝑢⃗

0
)] 𝑡

1
. (127)

And then

𝑡
1
≤

𝐴 (0) − 𝐴 (𝑡
1
)

𝐸 (𝜑⃗
𝑐
) − 𝐸 (𝑢⃗

0
)
≤

2 |𝐴 (𝑡)|

𝐸 (𝜑⃗
𝑐
) − 𝐸 (𝑢⃗

0
)
. (128)

Since |𝐴(𝑡)| ≤ 𝑐
2
(1+𝑡

2/3
+𝑡
9/10

), we can conclude that 𝑡
1
< ∞.

This completes the proof of Theorem 26.

6. Conclusions

In this paper, we studied the orbital stability and instability
of solitary waves for (4) with two nonlinear terms. By using
the orbital stability theory proposed in [10, 11], we obtained a
general theorem judging the orbital stability for solitarywaves
of (4) in Section 3 based on proof of the local existence of
the solutions, existence of the bounded state solution, and
the spectral analysis of operator 𝐻

𝑐
. In Section 4, we gave

the explicit expressions for the discrimination 𝑑
󸀠󸀠

𝑖
(𝑐), 𝑖 =

1, 2, of orbital stability in terms of the two exact solitary
waves (𝜑

𝑖
, 𝜓
𝑖
)
𝑇
, 𝑖 = 1, 2, of (4). Furthermore, we deduced

Theorems 9 and 10 which could easily judge the orbital
stability of the two solitary waves (𝜑

𝑖
, 𝜓
𝑖
)
𝑇
, 𝑖 = 1, 2, and

analyzed the influence of the two nonlinear terms on the
orbital stability. Finally, we studied instability in Section 5.We
defined a new conservational functional and estimated to the
solution of initial value problem to overcome the difficulty
that we could not apply Grillakis-Shatah-Strauss theory on
the system directly since 𝐽 is not onto. We constructed a
formal Lyapunov function and provedTheorem 26.
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