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A stochastic competitive system is investigated. We first show that the positive solution of the above system does not explode
to infinity in a finite time, and the existence and uniqueness of positive solution are discussed. Later, sufficient conditions for the
stochastically ultimate boundedness of positive solution are derived. Also, with the help of Lyapunov function, sufficient conditions
for the global attraction of positive solution are established. Finally, numerical simulations are presented to justify our theoretical
results.

1. Introduction

In recent years, many researches have been done on the
dynamics of many types of Lotka-Volterra competitive sys-
tems. Owing to their theoretical and practical significance,
these competitive systems have been investigated extensively
and there exists a large volume of literature relevant to many
good results (see [1–7]). Particularly, in [8], Gopalsamy intro-
duced the following autonomous two-species competitive
system:
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2
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(1)

where𝑦
1
(𝑡) and𝑦

2
(𝑡) can be interpreted as the population size

of two competing species at time 𝑡, respectively. All parame-
ters involved with the above model are positive constants and
can be interpreted in more detail; 𝑎

1
and 𝑎
2
are the intrinsic

growth rates of two species; 𝑏
1
, 𝑑
1
, 𝑏
2
, and 𝑑

2
represent the

effects of intraspecific competition; 𝑐
1
and 𝑐
2
are the effects of

interspecific competition. Recently, Tan et al. [9] have consid-
ered the effect of impulsive perturbations and discussed the
uniformly asymptotic stability of almost periodic solutions

for a corresponding nonautonomous impulsive version of (1).
It has also been noticed that the ecological systems, in the real
world, are often perturbed by various types of environmental
noise. May [10] also pointed out that, due to environmental
fluctuation, the birth rate, the death rate, and other param-
eters usually show random fluctuation to a certain extent.
To accurately describe such systems, it is necessary to use
stochastic differential equations. Recently, various stochas-
tic dynamical models have been introduced extensively in
[11–17] and many interesting and valuable results includ-
ing extinction, persistence, and stability can be found in
[18–20].

Motivated by the above works, in this contribution,
we assume that the environmental noise affects mainly the
intrinsic growth rate 𝑎

𝑖
with

𝑎
𝑖
󳨀→ 𝑎
𝑖
+ 𝜎
𝑖
𝑤̇
𝑖
(𝑡) , 𝑖 = 1, 2, (2)

where 𝑤̇
𝑖
(𝑡) are independent white noises, 𝑤

𝑖
(𝑡) are standard

Brownian motions defined on the complete probability space
(Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃)with a filtration {F

𝑡
}
𝑡≥0

satisfying the usual
conditions, and 𝜎

2

𝑖
represent the intensities of the white
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noises.Then the stochastically perturbed sytem (1) can be Itô’s
equations

𝑑𝑦
1
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1
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2

1
(𝑡)] 𝑑𝑡

+ 𝜎
1
𝑦
1
(𝑡) 𝑑𝑤

1
(𝑡) ,

𝑑𝑦
2
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2
𝑦
2
(𝑡) − 𝑐

2
𝑦
1
(𝑡) − 𝑑

2
𝑦
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2
(𝑡)] 𝑑𝑡

+ 𝜎
2
𝑦
2
(𝑡) 𝑑𝑤

2
(𝑡)

(3)

with the initial values 𝑦
𝑖
(0) > 0.

In this paper, we will focus on the stochastically ultimate
boundedness and global attraction of positive solutions of
system (3). To the best of our knowledge, there are few
published papers concerning system (3). The rest of this
paper is organized as follows. In Section 2, we present
some assumptions, definitions, and lemmas. In Section 3, we
investigate the existence and uniqueness of positive solution,
and then, we discuss the stochastically ultimate boundedness
of positive solutions. In Section 4, we discuss the global
attraction of positive solutions. Finally, we conclude and
present a specific example to justify the analytical results.

2. Preliminaries

Throughout this paper, we give the notation 𝑅
2

+
= {𝑦
1
>

0, 𝑦
2
> 0} and assumptions.

(𝑆
1
) 𝑏
1
> 𝑑
1
, 𝑏
2
> 𝑑
2
.

(𝑆
2
) For any initial value (𝑦

1
(0), 𝑦
2
(0)) ∈ 𝑅

2

+
, there exists

𝑝 > 1 such that

𝑦
𝑖
(0) ≤

𝑎
𝑖
+ (1/2) (𝑝 − 1) 𝜎

2

𝑖

𝑏
𝑖

, 𝑖 = 1, 2. (4)

(𝑆
3
) 𝑏
1
> 𝑐
2
, 𝑏
2
> 𝑐
1
.

In the following, let us briefly review several basic
definitions and lemmas which will be useful for establishing
our main results.

Definition 1. The solution (𝑦
1
(𝑡), 𝑦
2
(𝑡)) of system (3) is

stochastically ultimately bounded a.s. if for arbitrary 𝜀
𝑖
∈

(0, 1), there exists a positive constant 𝜑
𝑖
= 𝜑(𝜀
𝑖
) such that

lim sup
𝑡→+∞

𝑃 {
󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)

󵄨󵄨󵄨󵄨 > 𝜑𝑖} < 𝜀𝑖, 𝑖 = 1, 2. (5)

Definition 2. Let (𝑦
1
(𝑡), 𝑦
2
(𝑡)) be a positive solution of sys-

tem (3). Then (𝑦
1
(𝑡), 𝑦
2
(𝑡)) is said to be globally attractive

provided that any other solution (𝑦∗
1
(𝑡), 𝑦
∗

2
(𝑡)) of system (3)

satisfies

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 = 0 a.s.

(6)

Lemma 3 (see [21]). Let 𝑝 > 2, 𝑔 ∈M𝑝([0, 𝑇]; 𝑅𝑚) such that

𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠 < ∞, (7)

whereM𝑝([0, 𝑇]; 𝑅𝑚) is the family of processes {ℎ(𝑡)}
0≤𝑡≤𝑇

such
that

𝐸∫

𝑇

0

|ℎ (𝑡)|
𝑝
𝑑𝑡 < ∞. (8)

Then

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑇
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𝑔 (𝑠) 𝑑𝑤 (𝑠)
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𝑝

≤ (
𝑝 (𝑝 − 1)

2
)

𝑝/2

𝑇
(𝑝−2)/2

𝐸∫

𝑇

0

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠.

(9)

Lemma 4 (see [22]). Suppose that 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
are real

numbers; then
󵄨󵄨󵄨󵄨𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛

󵄨󵄨󵄨󵄨
𝑝

≤ 𝐶
𝑝
(
󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
𝑝

+
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨
𝑝

+ ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
𝑝

) , (10)

where 𝑝 > 0 and

𝐶
𝑝
= {

1, 0 < 𝑝 ≤ 1;

𝑛
𝑝−1

, 𝑝 > 1.
(11)

Lemma 5 (see [23]). Assume that an n-dimensional stochastic
process 𝑋(𝑡) on 𝑡 ≥ 0 satisfies the condition

𝐸|𝑋 (𝑡) − 𝑋 (𝑠)|
𝛼
≤ 𝜆|𝑡 − 𝑠|

1+𝛽
, 0 ≤ 𝑠, 𝑡 < ∞, (12)

for positive constants𝛼,𝛽, and𝜆.Then there exists a continuous
version 𝑋(𝑡) of 𝑋(𝑡) which has the property that, for every 𝜗 ∈
(0, 𝛽/𝛼), there is a positive random variable 𝜓(𝜔) such that

𝑃{𝜔 : sup
0<|𝑡−𝑠|<𝜓(𝜔),0≤𝑠,𝑡<∞

󵄨󵄨󵄨󵄨󵄨
𝑋 (𝑡, 𝜔) − 𝑋 (𝑡, 𝜔)

󵄨󵄨󵄨󵄨󵄨

|𝑡 − 𝑠|
𝜗

≤
2

1 − 2−𝜗
}

= 1.

(13)

In other words, almost every sample path of 𝑋(𝑡) is locally but
uniformly𝐻 ̈𝑜𝑙𝑑𝑒𝑟 continuous with exponent 𝜗.

Lemma 6 (see [24]). Let 𝑓(𝑡) be a nonnegative function on
𝑡 ≥ 0 such that 𝑓(𝑡) is integrable on 𝑡 ≥ 0 and is uniformly
continuous on 𝑡 ≥ 0. Then lim

𝑡→+∞
𝑓(𝑡) = 0.

3. Stochastically Ultimate Boundedness

In this section, we first show, under the assumption (𝑆
1
), that

the positive solution of system (3) will not explode to infinity
at any finite time.

Lemma 7. Let (𝑆
1
) hold and the initial value (𝑦

1
(0), 𝑦
2
(0)) ∈

𝑅
2

+
. Then system (3) has a unique solution (𝑦

1
(𝑡), 𝑦
2
(𝑡)) on 𝑡 ≥

0, which will remain in 𝑅2
+
with probability one.

Proof. It is easy to see that the coefficients of system (3)
satisfy the local Lipschitz condition.Then for any given initial
value (𝑦

1
(0), 𝑦
2
(0)) ∈ 𝑅

2

+
, there exists a unique local solution

(𝑦
1
(𝑡), 𝑦
2
(𝑡)) on [0, 𝜏

𝑒
), where 𝜏

𝑒
is the explosion time. To

show that the positive solution is global, we only need to
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show that 𝜏
𝑒
= +∞ a.s. Let 𝑛

0
be sufficiently large for every

component of (𝑦
1
(0), 𝑦
2
(0)) which remains in the interval

[1/𝑛
0
, 𝑛
0
]. For each integer 𝑛 ≥ 𝑛

0
, one can define the

stopping time

𝜏
𝑛
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : 𝑦
1
(𝑡) ∉ (

1

𝑛
, 𝑛) or 𝑦

2
(𝑡) ∉ (

1

𝑛
, 𝑛)} .

(14)

Clearly, 𝜏
𝑛
is increasing as 𝑛 → +∞. Assign 𝜏

+∞
=

lim
𝑛→+∞

𝜏
𝑛
, whence 𝜏

+∞
≤ 𝜏
𝑒
a.s. If we can show that 𝜏

+∞
=

+∞ a.s., then 𝜏
𝑒
= +∞ a.s. and (𝑦

1
(𝑡), 𝑦
2
(𝑡)) ∈ 𝑅

2

+
a.s. for all

𝑡 ≥ 0. In other words, to complete the proof, we just need to
show that 𝜏

+∞
= +∞ a.s.

By reduction to absurdity, we suppose that 𝜏
+∞

̸= +∞;
then there exists a pair of constants 𝑇 > 0 and 𝜀 ∈ (0, 1) such
that

𝑃 {𝜏
+∞

≤ 𝑇} > 𝜀. (15)

As a result, there exists an integer 𝑛
1
≥ 𝑛
0
such that for all

𝑛 ≥ 𝑛
1

𝑃 {𝜏
𝑛
≤ 𝑇} ≥ 𝜀. (16)

Define a 𝐶2-function 𝑉 : 𝑅2
+
→ 𝑅
+
as

𝑉 (𝑦
1
, 𝑦
2
) = 𝑦
1
− 1 − ln𝑦

1
+ 𝑦
2
− 1 − ln𝑦

2
. (17)

Obviously, 𝑉(𝑦
1
, 𝑦
2
) is a nonnegative function. If (𝑦

1
(𝑡),

𝑦
2
(𝑡)) ∈ 𝑅

2

+
, then using Itô’s formula, one can derive that

𝑑𝑉 (𝑦
1
, 𝑦
2
)

= (1 −
1

𝑦
1

)𝑑𝑦
1
+ 0.5

1

𝑦2
1

(𝑑𝑦
1
)
2

+ (1 −
1

𝑦
2

)𝑑𝑦
2

+ 0.5
1

𝑦2
2

(𝑑𝑦
2
)
2

= {−𝑑
1
𝑦
3

1
(𝑡) − 𝑏

1
𝑦
2

1
(𝑡) + 𝑑

1
𝑦
2

1
(𝑡)

+ 𝑎
1
𝑦
1
(𝑡) + 𝑏

1
𝑦
1
(𝑡) + 𝑐

2
𝑦
1
(𝑡)

− 𝑐
1
𝑦
1
(𝑡) 𝑦
2
(𝑡) − 𝑐

2
𝑦
1
(𝑡) 𝑦
2
(𝑡) − 𝑑

2
𝑦
3

2
(𝑡)

− 𝑏
2
𝑦
2

2
(𝑡) + 𝑑

2
𝑦
2

2
(𝑡) + 𝑎

2
𝑦
2
(𝑡)

+ 𝑏
2
𝑦
2
(𝑡) + 𝑐

1
𝑦
2
(𝑡) − 𝑎

1
− 𝑎
2

+ 0.5𝜎
2

1
+ 0.5𝜎

2

2
} 𝑑𝑡

+ (𝑦
1
(𝑡) − 1) 𝜎

1
𝑑𝑤
1
(𝑡) + (𝑦

2
(𝑡) − 1) 𝜎

2
𝑑𝑤
2
(𝑡)

= 𝐹 (𝑦
1
, 𝑦
2
) 𝑑𝑡 + (𝑦

1
(𝑡) − 1) 𝜎

1
𝑑𝑤
1
(𝑡)

+ (𝑦
2
(𝑡) − 1) 𝜎

2
𝑑𝑤
2
(𝑡) ,

(18)

where
𝐹 (𝑦
1
, 𝑦
2
) = − 𝑑

1
𝑦
3

1
(𝑡) − 𝑏

1
𝑦
2

1
(𝑡) + 𝑑

1
𝑦
2

1
(𝑡)

+ 𝑎
1
𝑦
1
(𝑡) + 𝑏

1
𝑦
1
(𝑡) + 𝑐

2
𝑦
1
(𝑡)

− 𝑐
1
𝑦
1
(𝑡) 𝑦
2
(𝑡) − 𝑐

2
𝑦
1
(𝑡) 𝑦
2
(𝑡) − 𝑑

2
𝑦
3

2
(𝑡)

− 𝑏
2
𝑦
2

2
(𝑡) + 𝑑

2
𝑦
2

2
(𝑡) + 𝑎

2
𝑦
2
(𝑡) + 𝑏

2
𝑦
2
(𝑡)

+ 𝑐
1
𝑦
2
(𝑡) − 𝑎

1
− 𝑎
2
+ 0.5𝜎

2

1
+ 0.5𝜎

2

2
.

(19)

A simple calculation shows that

𝐹 (𝑦
1
, 𝑦
2
) ≤ − (𝑏

1
− 𝑑
1
) 𝑦
2

1
(𝑡) + (𝑎

1
+ 𝑏
1
+ 𝑐
2
) 𝑦
1
(𝑡)

− (𝑏
2
− 𝑑
2
) 𝑦
2

2
(𝑡)

+ (𝑎
2
+ 𝑏
2
+ 𝑐
1
) 𝑦
2
(𝑡) − 𝑎

1
− 𝑎
2

+ 0.5𝜎
2

1
+ 0.5𝜎

2

2
.

(20)

It then follows from (𝑆
1
) that the upper bound of 𝐹(𝑦

1
, 𝑦
2
),

noted by 𝐾, exists. We therefore have

𝑑𝑉 (𝑦
1
, 𝑦
2
) ≤ 𝐾𝑑𝑡 + (𝑦

1
(𝑡) − 1) 𝜎

1
𝑑𝑤
1
(𝑡)

+ (𝑦
2
(𝑡) − 1) 𝜎

2
𝑑𝑤
2
(𝑡) .

(21)

Integrating both sides from 0 to 𝜏
𝑘
∧ 𝑇 yields that

∫

𝜏𝑘∧𝑇

0

𝑑𝑉 (𝑦
1
, 𝑦
2
)

≤ ∫

𝜏𝑘∧𝑇

0

𝐾𝑑𝑡 + ∫

𝜏𝑘∧𝑇

0

(𝑦
1
(𝑡) − 1) 𝜎

1
𝑑𝑤
1
(𝑡)

+ ∫

𝜏𝑘∧𝑇

0

(𝑦
2
(𝑡) − 1) 𝜎

2
𝑑𝑤
2
(𝑡) ,

(22)

whence taking expectations leads to

𝐸𝑉 (𝑦
1
(𝜏
𝑘
∧ 𝑇) , 𝑦

2
(𝜏
𝑘
∧ 𝑇))

≤ 𝑉 (𝑦
1
(0) , 𝑦

2
(0)) + 𝐾𝐸 (𝜏

𝑘
∧ 𝑇)

≤ 𝑉 (𝑦
1
(0) , 𝑦

2
(0)) + 𝐾𝑇.

(23)

Set Ω
𝑛
= {𝜏
𝑛
≤ 𝑇} for 𝑛 ≥ 𝑛

1
, and then 𝑃(Ω

𝑛
) ≥ 𝜀. Note that

arbitrary 𝜔 ∈ Ω
𝑛
, there exist some 𝑖 such that 𝑦

𝑖
(𝜏
𝑛
, 𝜔) equals

either 𝑛 or 1/𝑛. Then 𝑉(𝑦
1
(𝜏
𝑛
, 𝜔), 𝑦

2
(𝜏
𝑛
, 𝜔)) is not less than

min {(𝑛 − 1 − ln 𝑛) , (1
𝑛
− 1 + ln 𝑛)} . (24)

As a consequence,

𝑉 (𝑦
1
(0) , 𝑦

2
(0)) + 𝐾𝑇

≥ 𝐸 [1
Ω𝑛
(𝜔)𝑉 (𝑦

1
(𝜏
𝑛
, 𝜔) , 𝑦

2
(𝜏
𝑛
, 𝜔))]

≥ 𝜀min {(𝑛 − 1 − ln 𝑛) , (1
𝑛
− 1 + ln 𝑛)} ,

(25)

where 1
Ω𝑛

is the indicator function of Ω
𝑛
. Let 𝑛 → +∞ lead

to the contradiction

+∞ > 𝑉 (𝑦
1
(0) , 𝑦

2
(0)) + 𝐾𝑇 = +∞. (26)

So we must have 𝜏
+∞

= +∞ a.s. This completes the proof of
Lemma 7.
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Lemma 7 is fundamental in this paper. In the following,
we will show that the 𝑝th moment of the positive solution of
system (3) is upper bounded and then discuss the stochasti-
cally ultimate boundedness.

Theorem 8. Let (𝑆
1
) and (𝑆

2
) hold; then the positive solution

(𝑦
1
(𝑡), 𝑦
2
(𝑡)) of system (3) with initial value (𝑦

1
(0), 𝑦
2
(0)) ∈

𝑅
2

+
is stochastically ultimately bounded.

Proof. From Lemma 7, we can see that system (3) has a
unique positive solution under assumption (𝑆

1
). Assign𝑝 > 1

arbitrarily; then by Itô’s formula we can show that

𝑑𝑦
𝑝

𝑖
(𝑡) = 𝑝𝑦

𝑝−1

𝑖
(𝑡) 𝑑𝑦
𝑖
(𝑡) +

1

2
𝑝 (𝑝 − 1) 𝑦

𝑝−2

𝑖
(𝑑𝑦
𝑖
(𝑡))
2

= 𝑝𝑦
𝑝

𝑖
(𝑡) (𝑎
𝑖
− 𝑏
𝑖
𝑦
𝑖
(𝑡) − 𝑐

𝑖
𝑦
𝑗
(𝑡) − 𝑑

𝑖
𝑦
2

𝑖
(𝑡)

+
1

2
(𝑝 − 1) 𝜎

2

𝑖
)𝑑𝑡 + 𝑝𝜎

𝑖
𝑦
𝑝

𝑖
𝑑𝑤
𝑖
(𝑡) .

(27)

Integrating and taking expectations on both sides yield that

𝐸 (𝑦
𝑝

𝑖
(𝑡)) − 𝐸 (𝑦

𝑝

𝑖
(0))

= ∫

𝑡

0

𝑝𝐸{𝑦
𝑝

𝑖
(𝑠) (𝑎

𝑖
− 𝑏
𝑖
𝑦
𝑖
(𝑠) − 𝑐

𝑖
𝑦
𝑗
(𝑠)

− 𝑑
𝑖
𝑦
2

𝑖
(𝑠) +

𝑝 − 1

2
𝜎
2

𝑖
)} 𝑑𝑠.

(28)

We then derive that
𝑑𝐸 (𝑦

𝑝

𝑖
(𝑡))

𝑑𝑡
= 𝑝𝐸{𝑦

𝑝

𝑖
(𝑡) (𝑎
𝑖
− 𝑏
𝑖
𝑦
𝑖
(𝑡) − 𝑐

𝑖
𝑦
𝑗
(𝑡)

− 𝑑
𝑖
𝑦
2

𝑖
(𝑡) +

𝑝 − 1

2
𝜎
2

𝑖
)}

≤ 𝑝𝑎
𝑖
𝐸 (𝑦
𝑝

𝑖
(𝑡)) − 𝑝𝑏

𝑖
𝐸 (𝑦
𝑝+1

𝑖
(𝑡))

+
1

2
𝑝 (𝑝 − 1) 𝜎

2

𝑖
𝐸 (𝑦
𝑝

𝑖
(𝑡))

= 𝑝𝐸 (𝑦
𝑝

𝑖
(𝑡)) [𝑎

𝑖
+
𝑝 − 1

2
𝜎
2

𝑖
] − 𝑝𝑏

𝑖
𝐸 (𝑦
𝑝+1

𝑖
(𝑡)) .

(29)

By Hölder inequality one has

𝐸 (𝑦
𝑝+1

𝑖
(𝑡)) ≥ (𝐸 (𝑦

𝑝

𝑖
(𝑡)))
(𝑝+1)/𝑝

, (30)

and moreover
𝑑𝐸 (𝑦

𝑝

𝑖
(𝑡))

𝑑𝑡

≤ 𝑝𝐸 (𝑦
𝑝

𝑖
(𝑡)) {𝑎

𝑖
+
𝑝 − 1

2
𝜎
2

𝑖
− 𝑏
𝑖
[𝐸 (𝑦
𝑝

𝑖
(𝑡))]
1/𝑝

} .

(31)

Denote 𝑋
𝑖
(𝑡) = 𝐸(𝑦

𝑝

𝑖
(𝑡)), 𝑋

𝑖
(0) = 𝑦

𝑝

𝑖
(0); then (31) can be

rewritten as
𝑑𝑋
𝑖
(𝑡)

𝑑𝑡
≤ 𝑝𝑋
𝑖
(𝑡) [𝑎
𝑖
+
𝑝 − 1

2
𝜎
2

𝑖
− 𝑏
𝑖
𝑋
1/𝑝

𝑖
(𝑡)] . (32)

It follows from (𝑆
2
) that

0 < 𝑏
𝑖
𝑋
1/𝑝

𝑖
(0) = 𝑏𝑦

𝑖
(0) ≤ 𝑎

𝑖
+
1

2
(𝑝 − 1) 𝜎

2

𝑖
; (33)

that is,

0 < 𝑋
𝑖
(0) ≤ [

𝑎
𝑖
+ (1/2) (𝑝 − 1) 𝜎

2

𝑖

𝑏
𝑖

]

𝑝

:= 𝐻
𝑖
(𝑝) . (34)

Meanwhile, it is easy to see that

𝑑𝑋
𝑖
(𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑋𝑖(𝑡)=𝐻𝑖(𝑝)
≤ 0. (35)

By the standard comparison theorem, we therefore derive
that

𝐸 (𝑦
𝑝

𝑖
(𝑡)) ≤ 𝐻

𝑖
(𝑝) , (36)

which implies that the 𝑝th moment of positive solution is
upper bounded.

Let us now proceed to discuss the stochastically ultimate
boundedness of system (3). Setting 𝜑

𝑖
= [𝐻
𝑖
(𝑝)/𝜀
𝑖
]
1/𝑝, then

by the Chebyshev inequality, we obtain that

𝑃 {
󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)

󵄨󵄨󵄨󵄨 > 𝜑𝑖} <
𝐸 (𝑦
𝑝

𝑖
(𝑡))

𝜑
𝑝

𝑖

≤
𝐻
𝑖
(𝑝)

𝐻
𝑖
(𝑝) /𝜀

𝑖

= 𝜀
𝑖
. (37)

This gives that

lim sup
𝑡→+∞

𝑃 {
󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)

󵄨󵄨󵄨󵄨 > 𝜑𝑖} < 𝜀𝑖, 𝑖 = 1, 2. (38)

The proof of Theorem 8 is complete.

4. Global Attraction

In this section, we will establish sufficient conditions for
global attraction of system (3).

Lemma 9. Let (𝑆
2
) hold and let (𝑦

1
(𝑡), 𝑦
2
(𝑡)) be a solution of

(3) with initial value (𝑦
1
(0), 𝑦
2
(0)) ∈ 𝑅

2

+
; then almost every

sample path of (𝑦
1
(𝑡), 𝑦
2
(𝑡)) is uniformly continuous for 𝑡 ≥ 0.

Proof. We first prove 𝑦
1
(𝑡). Let us consider the following

integral equation:

𝑦
1
(𝑡) = 𝑦

1
(0) + ∫

𝑡

0

𝑓
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑔
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑤

1
(𝑠) ,

(39)

where

𝑓
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠))

= 𝑦
1
(𝑠) [𝑎
1
− 𝑏
1
𝑦
1
(𝑠) − 𝑐

1
𝑦
2
(𝑠) − 𝑑

1
𝑦
2

1
(𝑠)] ,

𝑔
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) = 𝜎

1
𝑦
1
(𝑠) .

(40)
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Recalling (𝑆
2
), (32), and the standard comparison theorem,

we can know that
𝐸 (𝑦
𝑝

𝑖
(𝑡)) ≤ 𝐻

𝑖
(𝑝) , 𝑖 = 1, 2. (41)

Then from Lemma 4 and (41) one derives that

𝐸 (
󵄨󵄨󵄨󵄨𝑓1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

)

= 𝐸 (𝑦
𝑝

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑎
1
− 𝑏
1
𝑦
1
(𝑠) − 𝑐

1
𝑦
2
(𝑠) − 𝑑

1
𝑦
2

1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

𝑝

)

≤ 0.5𝐸 (𝑦
2𝑝

1
(𝑠)) + 0.5𝐸 (

󵄨󵄨󵄨󵄨󵄨
𝑎
1
− 𝑏
1
𝑦
1
(𝑠) − 𝑐

1
𝑦
2
(𝑠)

−𝑑
1
𝑦
2

1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2𝑝

)

≤ 0.5𝐸 (𝑦
2𝑝

1
(𝑠))

+ 0.5𝐸 (4
2𝑝−1

(
󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
2𝑝

+
󵄨󵄨󵄨󵄨𝑏1𝑦1 (𝑠)

󵄨󵄨󵄨󵄨
2𝑝

+
󵄨󵄨󵄨󵄨𝑐1𝑦2 (𝑠)

󵄨󵄨󵄨󵄨
2𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑑
1
𝑦
2

1
(𝑠)
󵄨󵄨󵄨󵄨󵄨

2𝑝

))

≤ 0.5𝐸 (𝑦
2𝑝

1
(𝑠)) + 0.5 ⋅ 4

2𝑝−1󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
2𝑝

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨
2𝑝

𝐸 (𝑦
2𝑝

1
(𝑠))

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑐1

󵄨󵄨󵄨󵄨
2𝑝

𝐸 (𝑦
2𝑝

2
(𝑠))

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑑1

󵄨󵄨󵄨󵄨
2𝑝

𝐸 (𝑦
4𝑝

1
(𝑠))

≤ 0.5𝐻
1
(2𝑝) + 0.5 ⋅ 4

2𝑝−1󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨
2𝑝

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨
2𝑝

𝐻
1
(2𝑝)

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑐1

󵄨󵄨󵄨󵄨
2𝑝

𝐻
2
(2𝑝)

+ 0.5 ⋅ 4
2𝑝−1󵄨󵄨󵄨󵄨𝑑1

󵄨󵄨󵄨󵄨
2𝑝

𝐻
1
(4𝑝) :=L (𝑝) ,

𝐸 (
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

)

= 𝐸 (𝜎
𝑝

1
𝑦
𝑝

1
(𝑠))

≤ 𝜎
𝑝

1
𝐸 (𝑦
𝑝

1
(𝑠))

≤ 𝜎
𝑝

1
𝐻
1
(𝑝) :=R (𝑝) .

(42)

Meanwhile, by Lemma 3, we obtain that, for 0 ≤ 𝑡
1
< 𝑡
2
<

+∞ and 𝑝 > 2,

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

𝑔
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑤

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ [
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

× ∫

𝑡2

𝑡1

𝐸
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠.

(43)

Let

𝑡
2
− 𝑡
1
≤ 1,

1

𝑝
+
1

𝑞
= 1, (44)

and then from (42), (43), and Lemma 4, one can derive that

𝐸
󵄨󵄨󵄨󵄨𝑦1 (𝑡2) − 𝑦1 (𝑡1)

󵄨󵄨󵄨󵄨
𝑝

= 𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

𝑓
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑠

+∫

𝑡2

𝑡1

𝑔
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑤

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 2
𝑝−1

𝐸(∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨𝑓1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠)

𝑝

+ 2
𝑝−1

𝐸

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡2

𝑡1

𝑔
1
(𝑠, 𝑦
1
(𝑠) , 𝑦
2
(𝑠)) 𝑑𝑤

1
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 2
𝑝−1

(∫

𝑡2

𝑡1

1
𝑞
𝑑𝑠)

𝑝/𝑞

𝐸(∫

𝑡2

𝑡1

󵄨󵄨󵄨󵄨𝑓1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))
󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠)

+ 2
𝑝−1

[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

× ∫

𝑡2

𝑡1

𝐸
󵄨󵄨󵄨󵄨𝑔1 (𝑠, 𝑦1 (𝑠) , 𝑦2 (𝑠))

󵄨󵄨󵄨󵄨
𝑝

𝑑𝑠

≤ 2
𝑝−1

(∫

𝑡2

𝑡1

1
𝑞
𝑑𝑠)

𝑝/𝑞

∫

𝑡2

𝑡1

L (𝑝) 𝑑𝑠

+ 2
𝑝−1

[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
(𝑝−2)/2

∫

𝑡2

𝑡1

R (𝑝) 𝑑𝑠

≤ 2
𝑝−1

(𝑡
2
− 𝑡
1
)
𝑝/𝑞+1

L (𝑝)

+ 2
𝑝−1

[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
𝑝/2

R (𝑝)

≤ 2
𝑝−1

(𝑡
2
− 𝑡
1
)
𝑝

L (𝑝)

+ 2
𝑝−1

[
𝑝 (𝑝 − 1)

2
]

𝑝/2

(𝑡
2
− 𝑡
1
)
𝑝/2

R (𝑝)

≤ 2
𝑝−1

(𝑡
2
− 𝑡
1
)
𝑝/2

× {(𝑡
2
− 𝑡
1
)
𝑝/2

L (𝑝) + [
𝑝 (𝑝 − 1)

2
]

𝑝/2

R (𝑝)}

≤ 2
𝑝−1

(𝑡
2
− 𝑡
1
)
𝑝/2

{L (𝑝) + [
𝑝 (𝑝 − 1)

2
]

𝑝/2

R (𝑝)} .

(45)

Thus, it follows from Lemma 5 that almost every sample
path of 𝑦

1
(𝑡) is locally but uniformly Hölder-continuous with

exponent 𝜗 for 𝜗 ∈ (0, (𝑝−2)/2𝑝) and therefore almost every
sample path of 𝑦

1
(𝑡) is uniformly continuous on 𝑡 ≥ 0.

By a similar procedure as above, 𝑦
2
(𝑡) can be proven.

Thus, (𝑦
1
(𝑡), 𝑦
2
(𝑡)) is uniformly continuous on 𝑡 ≥ 0. The

proof of Lemma 9 is complete.
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Theorem 10. Let (𝑆
1
), (𝑆
2
), and (𝑆

3
) hold; then the unique

positive solution of system (3) is globally attractive for initial
data (𝑦

1
(0), 𝑦
2
(0)) ∈ 𝑅

2

+
.

Proof. It follows from (𝑆
1
) that, for initial data (𝑦

1
(0), 𝑦
2
(0)) ∈

𝑅
2

+
, system (3) has a unique solution (𝑦

1
(𝑡), 𝑦
2
(𝑡)) ∈ 𝑅

2

+
(see

Lemma 7). Assume that (𝑦∗
1
(𝑡), 𝑦
∗

2
(𝑡)) is another solution of

system (3) with initial values 𝑦∗
1
(0), 𝑦
∗

2
(0) > 0.

Define a Lyapunov function 𝑉(𝑡) as

𝑉 (𝑡) =
󵄨󵄨󵄨󵄨ln𝑦1 (𝑡) − ln𝑦∗

1
(𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨ln𝑦2 (𝑡) − ln𝑦∗
2
(𝑡)
󵄨󵄨󵄨󵄨 . (46)

Using Itô’s formula, a calculation of the right differential
𝐷
+
𝑉(𝑡) along (3) shows that

𝐷
+
𝑉 (𝑡)

= sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)) 𝑑 (ln𝑦

1
(𝑡) − ln𝑦∗

1
(𝑡))

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)) 𝑑 (ln𝑦

2
(𝑡) − ln𝑦∗

2
(𝑡))

= sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

× {[
𝑑𝑦
1
(𝑡)

𝑦
1
(𝑡)

−
(𝑑𝑦
1
(𝑡))
2

2𝑦2
1
(𝑡)

] − [
𝑑𝑦
∗

1
(𝑡)

𝑦∗
1
(𝑡)

−
(𝑑𝑦
∗

1
(𝑡))
2

2(𝑦∗
1
(𝑡))
2
]}

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

× {[
𝑑𝑦
2
(𝑡)

𝑦
2
(𝑡)

−
(𝑑𝑦
2
(𝑡))
2

2𝑦2
2
(𝑡)

] − [
𝑑𝑦
∗

2
(𝑡)

𝑦∗
2
(𝑡)

−
(𝑑𝑦
∗

2
(𝑡))
2

2(𝑦∗
2
(𝑡))
2
]}

= sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

× {[(𝑎
1
− 𝑏
1
𝑦
1
(𝑡) − 𝑐

1
𝑦
2
(𝑡) − 𝑑

1
𝑦
2

1
(𝑡) −

𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝑤
1
]

− [(𝑎
1
− 𝑏
1
𝑦
∗

1
(𝑡) − 𝑐

1
𝑦
∗

2
(𝑡) − 𝑑

1
𝑦
∗

1
(𝑡)
2
−
𝜎
2

1

2
)𝑑𝑡

+ 𝜎
1
𝑑𝑤
1
]}

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

× {[(𝑎
2
− 𝑏
2
𝑦
2
(𝑡) − 𝑐

2
𝑦
1
(𝑡) − 𝑑

2
𝑦
2

2
(𝑡) −

𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝑤
2
]

− [(𝑎
2
− 𝑏
2
𝑦
∗

2
(𝑡) − 𝑐

2
𝑦
∗

1
(𝑡) − 𝑑

2
𝑦
∗

2
(𝑡)
2
−
𝜎
2

2

2
)𝑑𝑡

+ 𝜎
2
𝑑𝑤
2
]}

= sgn (𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

× {−𝑏
1
(𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡)) − 𝑐

1
(𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

− 𝑑
1
(𝑦
1
(𝑡) + 𝑦

∗

1
(𝑡)) (𝑦

1
(𝑡) − 𝑦

∗

1
(𝑡))} 𝑑𝑡

+ sgn (𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡))

× {−𝑏
2
(𝑦
2
(𝑡) − 𝑦

∗

2
(𝑡)) − 𝑐

2
(𝑦
1
(𝑡) − 𝑦

∗

1
(𝑡))

− 𝑑
2
(𝑦
2
(𝑡) + 𝑦

∗

2
(𝑡)) (𝑦

2
(𝑡) − 𝑦

∗

2
(𝑡))} 𝑑𝑡

≤ {−𝑏
1
− 𝑑
1
(𝑦
1
(𝑡) + 𝑦

∗

1
(𝑡)) + 𝑐

2
}
󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦

∗

1
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

+ {−𝑏
2
− 𝑑
2
(𝑦
2
(𝑡) + 𝑦

∗

2
(𝑡)) + 𝑐

1
}
󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

≤ − (𝑏
1
− 𝑐
2
)
󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦

∗

1
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡

− (𝑏
2
− 𝑐
1
)
󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦

∗

2
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡.

(47)

Integrating both sides yields that

𝑉 (𝑡) − 𝑉 (0) ≤ − (𝑏
1
− 𝑐
2
) ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑦1 (𝑠) − 𝑦
∗

1
(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠

− (𝑏
2
− 𝑐
1
) ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑦2 (𝑠) − 𝑦
∗

2
(𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠;

(48)

that is,

𝑉 (𝑡) + (𝑏
1
− 𝑐
2
) ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑠

+ (𝑏
2
− 𝑐
1
) ∫

𝑡

0

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝑉 (0) < ∞.

(49)

In view of (𝑆
3
) and 𝑉(𝑡) ≥ 0, then it follows from (49) that

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 ∈ 𝐿
1

[0,∞) ,

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 ∈ 𝐿
1

[0,∞) .

(50)

So recalling Lemmas 9 and 6, we can show that

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑦1 (𝑡) − 𝑦
∗

1
(𝑡)
󵄨󵄨󵄨󵄨 = 0,

lim
𝑡→+∞

󵄨󵄨󵄨󵄨𝑦2 (𝑡) − 𝑦
∗

2
(𝑡)
󵄨󵄨󵄨󵄨 = 0 a.s.

(51)

This completes the proof of Theorem 10.

5. Numerical Simulations

In this paper, we derived the sufficient conditions for the
existence, uniqueness, stochastically ultimate boundness, and
global attraction of positive solutions of system (3). In order
to illustrate the above theoretical results, we will perform
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Figure 1: The sample path of (𝑦
1
(𝑡); 𝑦
∗

1
(𝑡)) in the same coordinate

system.

a specific example. Motivated by the Milsten method men-
tioned in Higham [25], we can obtain the following discrete
version of system (3):

𝑦
1
(𝑘 + 1) = 𝑦

1
(𝑘) + 𝑦

1
(𝑘) [𝑎
1
− 𝑏
1
𝑦
1
(𝑘) − 𝑐

1
𝑦
2
(𝑘)

− 𝑑
1
𝑦
2

1
(𝑘)] Δ𝑡

+ 𝜎
1
𝑦
1
(𝑘)√Δ𝑡 𝜉

1
(𝑘)

+ 0.5𝜎
2

1
𝑦
1
(𝑘) (𝜉

2

1
(𝑘) − 1) Δ𝑡,

𝑦
2
(𝑘 + 1) = 𝑦

2
(𝑘) + 𝑦

2
(𝑘) [𝑎
2
− 𝑏
2
𝑦
2
(𝑘) − 𝑐

2
𝑦
1
(𝑘)

− 𝑑
2
𝑦
2

2
(𝑘)] Δ𝑡

+ 𝜎
2
𝑦
2
(𝑘)√Δ𝑡 𝜉

2
(𝑘)

+ 0.5𝜎
2

2
𝑦
2
(𝑘) (𝜉

2

2
(𝑘) − 1) Δ𝑡,

(52)

where 𝜉
1
(𝑘) and 𝜉

2
(𝑘) are Gaussian random variables that

follow𝑁(0, 1). Let 𝑎
1
= 0.6, 𝑏

1
= 0.5, 𝑐

1
= 0.2, 𝑑

1
= 0.3, and

𝜎
1
= 0.1; 𝑎

2
= 0.7, 𝑏

2
= 0.4, 𝑐

2
= 0.3, 𝑑

2
= 0.2, and 𝜎

2
= 0.1;

Δ𝑡 = 0.001; and the initial value (𝑦
1
(0), 𝑦
2
(0)) = (0.3, 0.2),

(𝑦
∗

1
(0), 𝑦
∗

2
(0)) = (0.6, 0.5). After a calculation, we can see that

the assumptions of Theorems 8 and 10 hold. Figures 1 and 2
show that the positive solution of system (52) is stochastically
ultimately bounded and globally attractive.

It follows from Theorem 8 that a preliminary result
on the stochastically ultimate boundness of system (3) is
obtained. We would like to mention here that an interesting
but challenging problem associated with the investigation of
system (3) should be the stochastic permanence; we leave this
for future work.
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system.
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