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An object with complete boundary or silhouette is essential in various design and computer graphics feats. Due to various reasons,
some parts of the object can bemissing hence increasing the complexity in designing process. It is therefore important to reconstruct
the missing parts of an object while retaining its aesthetic appearance. In this paper, we propose Log-Aestheic Curves (LAC) for
shape completion problem. We propose an algorithm to construct LAC segment and subsequently fit into the gap of the missing
parts with C-shape or S-shape. For C-shape completion, we define LAC segment by specifying two endpoints and their respective
tangent directions between the gaps while, for S-shape, the user defines an inflection point in between the endpoints. The final
section illustrates three examples to showcase the efficiency of the proposed algorithm. The results are further compared with
Kimia’s method to prove that the algorithm produces equally good result. Additionally, the proposed algorithm provides an extra
degree of freedom in which the user would be able to choose the type of spiral that they desire to solve the shape completion
problem.

1. Introduction

In a design environment, there are situations in which the
outlines of an object are missing or occluded.These scenarios
are commonly known as shape completion, gap completion,
or curve completion problem. It is important to recomplete
the shape of the missing object while retaining its aesthetic
appearance since a complete object can be used further for
applications inmodeling, mesh analysis, and computer-aided
design as well as manufacturing purposes. The complete
boundary or silhouette provides geometrical information of
a model which is significant in engineering analysis and
manufacturing process. In order to reconstruct the missing
boundaries of an object, the associated curve segment must
satisfy the boundary conditions so that the curve passes
through the endpoints with specified tangent direction. To
date, there are numbers of algorithms available for shape
completion problem (see the works of [1–6]).

A notable work which received much attention is by
Kimia et al. [3], where they proposed an algorithm which
utilizes Euler spiral to solve shape completion problem.

Euler spiral is also known as Cornu’s spiral or clothoid.
The Euler spiral is widely applied in highway/railway or
robotic trajectories design due to its linear curvature property
(curvature varies linearly with respect to arc length). The
algorithm proposed by Kimia et al. [3] is the implementation
of Euler spiral to solve the shape completion problem. In
their proposed algorithm, two endpoints (𝑃

0
, 𝑃
2
) and their

tangential angles (𝜃
0
, 𝜃
2
) are the inputs. In order to construct

Euler spiral for the given problem, curvature and arc length
of the curve are required to be identified. Since the proposed
Euler spiral algorithm is an iterative process, initial guess for
these two parameters (curvature and arc length) is needed.
Kimia et al. [3] recommended the use of biarc to obtain
the initial curve with its corresponding curvature and arc
length for the proposed algorithm. Note that the goal of their
proposed algorithm is to minimalize the distance between
last point and resulting curve in order for the gap to be filled
using gradient descent method.

Log-Aesthetic Curves (LAC) are curves where the log-
arithmic curvature graph (LCG) can be represented by
a straight line. The idea of LCG was formulated by
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(b) Its corresponding logarithmic curvature graph

Figure 1: Euler spiral defined 𝑠 ∈ [0.2, 1] (solid line) and 𝑠 ∈ [1, 3] (dotted) and its corresponding LCG.

Harada et al. (1999) when they attempted to classify all the
curves used in automobile design. It was first known as
logarithmic distribution diagram of curvature (LDDC). It
is a graph to measure the relationship between curvature
radius (denoted by 𝜌) and arc length of the curve segment
(denoted by 𝑠). They found that all the curves employed in
automobile design depict linear gradient of LDDC. Kanaya et
al. [7] refined the formulation of LDDC which is now known
as LCG. The horizontal axis of LCG represents log 𝜌 and the
vertical axis represents log 𝜌(𝑑𝑠


/𝑑𝜌

) [8]. Figure 1 illustrates

the two segments of Euler spiral.
In 2005, Miura et al. [9] derived a fundamental formula

of LAC based on a linear representation of LCG. A year
later, Yoshida and Saito [10] investigated the characteristics
and overall shape of LAC. They also proposed a method to
construct LAC segment interactively by specifying endpoints
and their tangent vectors. In 2009, they further extended
LAC into space curve and proposed amethod to interactively
control the curves, which is similar to quadratic Bezier
curves.

LAC has become a promising curve in graphic and
industrial design due to its monotonic curvature property.
There are two shape parameters of LAC denoted by 𝛼 and
Λ. The shape parameter 𝛼 is used to determine the type of
spiral within the family of LAC, and Λ is used to satisfy
the 𝐺
1 constraint during the design process. LAC comprises

Euler spiral (𝛼 = −1), Nielsen spiral (𝛼 = 0), logarithmic or
equiangular spiral (𝛼 = 1), circle involute (𝛼 = 2), and others.

In 2011, Gobithaasan and Miura [11] expanded the family
of LAC into Generalized Log-Aesthetic Curve (GLAC) by
adding generalized Cornu spiral (GCS) to the family of LAC.
This includes Euler spiral, logarithmic spiral, circle involute,
Nielsen spiral, LAC, and GCS as the members of GLAC.

To note, GCS is proposed by Ali et al. [12] where it becomes
Euler spiral when the shape parameter of GCS is zero. GLAC
has an extra shape parameter compared to LAC in which it
can be used to satisfy additional constraints that occur during
design process [13]. The curvature function of GLAC is also
monotonic similar to LAC. In 2012, they further extended
GLAC into space curve.

In 2012, Ziatdinov et al. [14] defined LAC in the form
of incomplete gamma functions. They claimed that this new
expression of LAC is capable of reducing the computation
time up to 13 times faster. In 2013, the problem of𝐺2 Hermite
interpolation was dealt with by Miura and Gobithaasan [15]
by introducing log-aesthetic splines which consists of triple
LAC segments. Readers are referred to [16] for a detailed
review on aesthetic curves.

In this paper, we introduce the implementation of 𝐺
1

LAC algorithm to fit the gap in between the outlines of
missing/occlusion objects. We compare the performance of
this algorithm with the results obtained by Kimia et al.’s
[3] method on the same examples in order to show the
effectiveness of LAC to solve shape completion problem.

The rest of this paper is organized as follows. First, the for-
mulation of LAC is reviewed followed by a detailed explana-
tion on the LAC algorithm for solving the shape completion
problem. In Section 3, we demonstrate the implementation
of the proposed algorithm with various 𝛼 values with three
examples to show the implementation of this method. The
data and calculation used in the examples are also depicted
in this section.The output of shape completion using Kimia’s
method is also depicted for comparison purposes. We also
make comparison of the results obtained using Kimia et al.’s
[3] method and our algorithm. We further show some shape
variations which can be obtained by using S-shape LAC in
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Figure 2: The configuration of triangle consists of three control points for case 𝛼 > 1. The curve inside the triangle represents the generated
LAC segment.

which the designer tweaks the segment in order to obtain the
desired shape.

2. Log-Aesthetic Curves in Shape Completion

In this section, we show the parametric expression of LAC
and the algorithm used to obtain the solution for shape
completion problem with various 𝛼 values.

2.1. The Analytical Formulas and Parameters. There are two
shape parameters used to define LAC segment: 𝛼 and Λ. The
shape parameter 𝛼 determines the type of spiral andΛ is used
to control the curve so that the constraints are satisfied. Let 𝜌
and 𝜃 represent radius of curvature and tangent angle of the
curve, respectively.

Equation (1) shows the radius of curvature function in
terms of its turning angle. To note, (1) is used to define the
parametric expression of LAC in terms of its turning angle as
shown in (2) as follows:

𝜌 (𝜃) =

{

{

{

𝑒
Λ𝜃

, if 𝛼 = 1

((𝛼 − 1) Λ𝜃 + 1)
1/(𝛼−1)

, otherwise
(1)

LAC (𝜃) = 𝑃
𝑎
+ ∫

𝜃

0

𝑒
𝑖𝑢
𝜌 (𝑢) 𝑑𝑢, (2)

where 𝑃
𝑎
represents starting point and 𝑖 and 𝑒 represent the

imaginary unit and exponent, respectively. LAC can also be
represented in the arc length parameter, 𝑠, as follows:

LAC (𝑠) =

{{{{{{{{

{{{{{{{{

{

𝑃
𝑎
+ ∫

𝑠

0

𝑒
𝑖((1/Λ)(1−𝑒

−Λ𝑢

))
𝑑𝑢, if 𝛼 = 0

𝑃
𝑎
+ ∫

𝑠

0

𝑒
𝑖(log[Λ𝑢+1]/Λ)

𝑑𝑢, if 𝛼 = 1

𝑃
𝑎
+ ∫

𝑠

0

𝑒
𝑖(((Λ𝛼𝑢+1)

(𝛼−1)/𝛼

−1)/Λ(𝛼−1))
𝑑𝑢, otherwise.

(3)

Both (2) and (3) generate the same LAC. The curve can
be drawn in complex plane by the 𝑥-axis representing real
numbers and the 𝑦-axis representing imaginary numbers.
Readers are referred to [10] for a detailed derivation of the
parametric expression of LAC.

2.2. The LAC Algorithm

C-Shape. We customize the algorithm of constructing LAC
segment to fill the gap by specifying two endpoints, its tangent
vector, and𝛼 value.TheC-shape LAC curve is a direct process
in which the user may interactively input the endpoints
and the tangent direction of those points. We can further
automate the identification of tangents at the endpoints by
using three-point circular arc approximation around the
endpoints as explained in Steps 1 and 2 in the algorithmbelow.
Using these tangents, we may calculate the midpoint. These
three points are then used to fit LAC segment in the gap
for shape completion problem. The idea of this method is
to find a LAC segment defined in a triangle composed of
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Figure 3: The configuration of triangle consists of three control points for case 𝛼 ≤ 1. The curve inside the triangle represents the generated
LAC segment.

three control points as proposed by Yoshida and Saito [10].
Therefore, by using thismethod, it is only possible to generate
a C-curve. Figures 2 and 3 show the configuration of the
triangle formed by three control points for cases 𝛼 > 1 and
𝛼 ≤ 1, respectively. Step 5 in the algorithm below elaborates
these configurations.

S-Shape. Basically, a S-shape LAC segment consists of two C-
shape curves joined with 𝐺

1 continuity. In order to construct
the S-curve for a given gap, the inflection point is essential. A
simple approach used is that users are given the freedom to
define the inflection point so that the algorithm is carried out
twice consisting of two C-shape segments of LAC. Thus, this
approach needs two endpoints, its tangent vectors, 𝛼 value,
and an inflection point.

The process involves breaking the S-curve into two C-
curves so the first piece of curve is constructed between
starting point (black) and inflection point (gray), while the
second piece is between inflection point (gray) and endpoint
(black). Figure 4 illustrates the inflection point that we define
for one of the numerical examples in this paper.

Algorithm 1 demonstrates the LAC algorithm.

2.2.1. Computation of Tangent Angles (Step 1–Step 3). To auto-
mate the process of defining the tangents at the endpoints,
we may use circular arc approximation (osculating circle)
that best fits the endpoints and points surrounding them in
order to determine the tangent angle at both endpoints. Since
it is an osculating circle, we substitute the points into the
equation of circle.Then, we identify the center (ℎ, 𝑘), radius 𝑟,
and turning angle 𝑡 of circle from three points which include

Figure 4: The input for S-shape completion problem.

the endpoint. Next, we determine the unit tangent vector at
the endpoints and subsequently calculate the corresponding
tangent angle by using specified formula as indicated in the
algorithm. Alternately, we may also allow the user to directly
define tangent vectors at those points.

2.2.2. Identification of Second Control Point (Step 4). Once the
unit tangent vector at endpoints is identified, we determine
the coordinate of the second control point 𝑃

𝑏
which is
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REMARK: Endpoints {𝑃
𝑎
, 𝑃
𝑐
}, inflection point 𝑃inflect and 𝛼 are user defined. The tangent angle at both endpoints {𝜃

0
, 𝜃
2
} can be

obtained either from three point circular arc approximation around the endpoints or the user defines it. Let (𝑋, 𝑌) represent the
coordinate of a point.
INPUT: 𝑃

𝑎
, 𝑃
𝑐
, 𝑃inflect, 𝛼.

OUTPUT: 𝜃
𝑑
, Λ, 𝑟scale, LAC segment.

Begin
Step 1. Set 𝑓 (𝑡) ← {ℎ + 𝑟 cos (𝑡) , 𝑘 + 𝑟 sin (𝑡)}, where (ℎ, 𝑘) is the center of circle, 𝑟 is radius and 𝑡 represents angle.
Step 2. Identify unit tangent vector, UTV (𝑡) ← 𝑓


(𝑡)/

𝑓

(𝑡)

 and set (𝑋new, 𝑌new) ← (𝑋, 𝑌) + UTV (𝑡).
Step 3. Calculate directional angle, 𝜃 ← tan−1((𝑌new − 𝑌)/(𝑋new − 𝑋)).
Step 4. Solve simultaneous equations 𝑌 = 𝑚𝑋 + 𝑐, where 𝑚 ← (𝑌new − 𝑌)/(𝑋new − 𝑋) to get position of second control point 𝑃

𝑏
.

Step 5. If 𝑃𝑎𝑃𝑏
 ≤

𝑃𝑏𝑃𝑐
, then 𝑃

𝑎
← 𝑃
𝑎
; 𝑃
𝑐
← 𝑃
𝑐
,

else 𝑃
𝑎
← 𝑃
𝑐
; 𝑃
𝑐
← 𝑃
𝑎
.

If 𝛼 > 1, then 𝑃start ← 𝑃
𝑐
; 𝑃end ← 𝑃

𝑎
,

else 𝑃start ← 𝑃
𝑎
; 𝑃end ← 𝑃

𝑐
.

Step 6. Translate 𝑃start = (0, 0), rotate triangle such that 𝑃
𝑏
= (−𝑋, 0) for 𝛼 > 1; 𝑃

𝑏
= (𝑋, 0) for 𝛼 ≤ 1.

If 𝑃end = (𝑋, −𝑌) or 𝑃end = (−𝑋, −𝑌), then reflect the triangle through 𝑥-axis.
Step 7. Compute 𝜃

𝑑
← 𝜋 − cos−1((− 𝑃𝑎𝑃𝑐



2

+
𝑃𝑏𝑃𝑐



2

+
𝑃𝑎𝑃𝑏



2

)/(2
𝑃𝑏𝑃𝑐



𝑃𝑎𝑃𝑏
)).

Step 8. If 𝛼 > 1, then 𝜃
𝑓
← cos−1((− 𝑃𝑎𝑃𝑏



2

+
𝑃𝑏𝑃𝑐



2

+
𝑃𝑎𝑃𝑐



2

)/(2
𝑃𝑎𝑃𝑐



𝑃𝑏𝑃𝑐
)),

else 𝜃
𝑒
← cos−1((− 𝑃𝑏𝑃𝑐



2

+
𝑃𝑎𝑃𝑏



2

+
𝑃𝑎𝑃𝑐



2

)/(2
𝑃𝑎𝑃𝑏



𝑃𝑎𝑃𝑐
)).

Step 9. Identify bound of Λ. If 𝛼 < 1, then 𝑎 ← 1 × 10
−10; 𝑏 ← 1/(𝜃

𝑑
(1 − 𝛼)),

else if 𝛼 > 1, then 𝑎 ← 1 × 10
−10; 𝑏 ← 1/(𝜃

𝑑
(𝛼 − 1)),

else 𝑎 ← 1 × 10
−10; 𝑏 ← 1 × 10

5.
Step 10. Set tolerance Tol ← 10

−10;
iteration number 𝑁 ← (1/ In 2) In (| 𝑎 − 𝑏 | /Tol).

Step 11. Calculate Λ using Bisection method.
Step 12. Determine scaling factor, 𝑟scale ←

𝑃𝑎𝑃𝑐
 /

𝑃0𝑃2
.

Step 13. Scale 𝑟scale to the curve and transform inversely the triangle to its original position.
Step 14. Construct LAC segment using (2).
Step 15. OUTPUT (𝜃

𝑑
, Λ, 𝑟scale, LAC segment).

End

Algorithm 1

the intersection point of the tangential line at both endpoints
by solving the equations simultaneously.

2.2.3. Affirmation of Initial and Last Point Position (Step 5).
We assume the distance between 𝑃

𝑎
and 𝑃

𝑏
is less than 𝑃

𝑏

and 𝑃
𝑐
as proposed by Yoshida and Saito [10]. The position

of 𝑃
𝑎
and 𝑃

𝑐
is switched if the criterion is not satisfied.

Otherwise, the position remains unchanged. Note that there
are two cases of constructing LAC segment based on the
𝛼 value as illustrated in Figures 2 and 3. For case 𝛼 ≤ 1,
the initial endpoint 𝑃

𝑎
is the starting point during the curve

construction process 𝑃start. On the other hand, starting point
of curve construction process for case 𝛼 > 1 is the last
endpoint 𝑃

𝑐
.

2.2.4. Transformation Process (Step 6). The transformation
process includes translation, rotation, and reflection of the
original triangle that consist of𝑃

𝑎
,𝑃
𝑏
,𝑃
𝑐
. Initially, the original

triangle is translated to the origin so that the starting point
𝑃start is located at the origin. Next, we rotate the triangle
so that the second control point is placed on the 𝑥-axis.
Finally, we ensure the last point of the curve construction
process 𝑃end is located at the positive 𝑦-axis region. If not,
the reflection process is needed to reflect the last point with

negative 𝑦-coordinate through the 𝑥-axis. The configuration
after transformation is illustrated in Figures 2 and 3.

2.2.5. Computation of Tangent and Turning Angle (Step 7
and Step 8). We apply the law of cosine of a triangle to
calculate corresponding angles as shown in Figures 2 and 3.
The tangent angle 𝜃

𝑑
and turning angle 𝜃

𝑒
for case 𝛼 ≤ 1

or 𝜃
𝑓
for case 𝛼 > 1 will be used in the subsequent step for

calculating shape parameter Λ.

2.2.6. Upper Bound of Shape Parameter Λ (Step 9). For the
casewhen𝛼 = 1, there is no upper bound for shape parameter
Λ. So, the value of Λ can be arbitrarily large. However, there
are upper bounds for Λ when 𝛼 < 1 and 𝛼 > 1. Therefore,
theΛ value of these two cases is restricted within the range of
(𝑎, 𝑏) where 𝑎 and 𝑏 are assigned a specified value as indicated
in the algorithm above.

2.2.7. Shape Parameter Λ Calculation (Step 10 and Step 11).
We determine the Λ value that satisfies the constraints
of endpoints and angles by using bisection method. First,
tolerance and bound of Λ are used in the calculation of
iteration number for bisection method.Then, the calculating
process will run until the iteration number is met. Once theΛ
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(a) Euler spiral algorithm (b) LAC algorithm with two tangents setting for s-
shaped curve and 𝛼 = −1

(c) LACalgorithmwith two tangents setting for s-shaped curve
and 𝛼 = 2

Figure 5: The results of fitting Euler spiral and LAC segment for two missing parts of a jug.

value of the curve is obtained, it is an interpolating curve that
satisfies boundary constraints as shape parameter Λ is used
to control the curve so that the constraints are satisfied. The
obtainedΛ value ensures the generated LAC segment starts at
the starting point and ends at the last point while the shape of
curve follows the specified tangent vectors at two endpoints.

2.2.8. Computation of Scale Factor (Step 12). We calculate the
scaling factor by using the formula as shown in the algorithm
where 𝑃

𝑎
and 𝑃

𝑐
are endpoints of the original triangle while

𝑃
0
and 𝑃

2
are endpoints of the transformed triangle.

2.2.9. Construction of LACSegment (Step 13–Step 15). In order
to obtain the curve which is defined in the original triangle,
we inversely transform the triangle to its original position.

The curve segment is constructed using (2) with the obtained
value of Λ, 𝜃

𝑑
, 𝑟scale.

3. Numerical Examples and Discussion

This section shows the input data and numerical and graph-
ical results of implementing the algorithm presented in
Section 2 for three examples. For comparison purpose, we
present the results of Kimia’s algorithm [3] algorithm on the
same examples as well.

3.1. The Graphical Results. Figure 5 shows the first example
of fitting Euler spiral and LAC segment to two parts of a jug.
The results of the second example (artifact) and third example
(vase) are depicted in Figures 6 and 7, respectively.
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(a) Euler spiral algorithm (b) LAC algorithm when 𝛼 = −1

(c) LAC algorithm when 𝛼 = 0

Figure 6: The results of fitting Euler spiral and LAC segment for an artifact.

3.2. The Numerical Results. The input data and the obtained
parameter values to render LAC segment for C-shaped and
S-shaped gaps are shown in Tables 1, 2, and 3, respectively.

3.3. Discussion. We implemented LAC algorithm with var-
ious 𝛼 values for each example. In Figures 5, 6, and 7, we
showed a subfigure of LAC with 𝛼 = −1 in between the gaps
for the missing part of the objects.These examples are indeed
Euler spiral similar to the work of Kimia et al. [3]. Users are
indeed fitting a circle involute when 𝛼 = 2 as shown in each
figure; Nielsen spiral is fitted when 𝛼 = 0 and logarithmic
spiral when 𝛼 = 1. The shape parameter 𝛼 definitely dictates
the type of spiral the user desires to fit into the gap.

Based on the comparison of graphical results in Figures
5, 6 and 7 we found that Kimia’s algorithm [3] and the
LAC algorithm behave similarly. However, the proposed LAC
algorithm gives more flexibility to designers as they can
manipulate the shape parameter 𝛼 and the tangent direction
at the inflection point in order to get various S-shaped LAC
segments.

4. Conclusion

A LAC segment can be constructed by specifying the end-
points and their tangent directions. LAC is a family of aes-
thetic curves where their curvature changes monotonically.
It comprises Euler spiral, logarithmic spiral, Nielsen spiral,
and circle involute with different 𝛼 values. The algorithm
for constructing LAC segment to solve shape completion

problem is defined in Section 2. The results of implementing
both Kimia et al.’s [3] algorithm and the proposed LAC
algorithm on the same images are depicted in Section 3.
LAC has an upper hand due to its flexibility although both
algorithms are capable of solving shape completion problems.
Since LAC represents a bigger family rather than Euler
spiral alone, it is clear that more shapes are available to fill
the missing gap. Moreover, the resulting LAC segments are
satisfying𝐺

1 continuity where the curve segments interpolate
both endpoints in the specified tangent directions. In case the
user wants a𝐺

2 LAC solution, one may plug in the technique
proposed by Miura et al. [15] or employ 𝐺

2 GLAC [17] in
which we may use shape parameter V in GLAC to satisfy the
desired curvatures.
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(a) Euler spiral algorithm (b) Three types of tangents at the inflection points and 𝛼 = −1

(c) Tangents setting as in 7(b) and 𝛼 = −1 (d) Tangents setting as in 7(b) and 𝛼 = 1

Figure 7: The results of fitting Euler spiral and LAC segment to a vase.

Table 1: The input data for LAC algorithm.

Figure Part/gap shape Starting point Inflection point Terminating point
𝑃
𝑎

𝑃inflect 𝑃
𝑐

Figure 5
Outer C (475.33, 290.67) — (408, 512)
Inner C (444, 319.3) — (406.7, 490.7)

S (68.67, 198) (115.139, 317.874) (132, 445.33)

Figure 6 Left C (150.4, 320.8) — (123.2, 589.6)
Right C (853, 307) — (824, 583)

Figure 7
C (504, 126) — (176, 120)

Right S (576.67, 379.33) (501.722, 483.092) (445.33, 598)
Left S (215.33, 599.33) (166.565, 481.2) (94, 376)
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Table 2: The value of parameters obtained in LAC algorithm for C-shaped gap.

Figure Part Shape parameter Angles (radian) Scale factor
Λ 𝜃

𝑑
𝜃
𝑒
or 𝜃
𝑓

𝑟scale

Figure 5(b) Outer C 0.181102 1.97352 1.09383 106.443
Inner C 0.187822 2.50305 1.53612 57.7559

Figure 5(c) Outer C 0.236827 1.97352 0.879684 179.903
Inner C 0.307163 2.50305 0.966927 144.024

Figure 6(b) Left C 0.319685 1.55147 1.00107 105.562
Right C 0.204861 2.35562 1.47579 89.6424

Figure 6(c) Left C 0.53364 1.55147 1.00107 90.2434
Right C 0.610563 2.35562 1.47579 65.4159

Figure 7(c) — 0.140054 1.1637 0.601359 271.762
Figure 7(d) — 0.169061 1.1637 0.601359 270.036

Table 3: The value of parameters obtained in LAC algorithm for S-shaped gap.

Figure Part Line style Shape parameter Angles (radian) Scale factor
Λ 𝜃

𝑑
𝜃
𝑒
or 𝜃
𝑓

𝑟scale

Figure 5(b) —
Piece 1 Thick 0.646746 0.739623 0.451367 107.501

Dashed 1.13587 0.43963 0.288258 152.739

Piece 2 Thick 0.140372 1.32647 0.689653 93.5698
Dashed 0.473033 1.02648 0.63682 76.6964

Figure 5(c) —
Piece 1 Thick 2.19523 0.43963 0.151372 568.396

Dashed 1.07216 0.739623 0.288256 293.721

Piece 2 Thick 0.811123 1.02648 0.389659 222.587
Dashed 0.156681 1.32647 0.63682 116.479

Figure 7(c) Right S

Piece 1
Thick 0.0000429688 0.571501 0.285752 227.044
Dashed 0.698712 0.871501 0.585746 39.271
Dotted 2.45758 0.371528 0.285746 23.657

Piece 2
Thick 0.0118778 0.908437 0.455056 145.074
Dashed 0.403597 1.20905 0.755673 65.1694
Dotted 0.700923 0.707704 0.45338 100.657

Figure 7(d) Right S

Piece 1
Thick 2.53147 0.871501 0.585746 41.1231
Dashed 0.0000429592 0.571501 0.285752 227.044
Dotted 10.7779 0.371528 0.285746 25.7032

Piece 2
Thick 1.2606 1.20905 0.755673 47.4646
Dashed 0.0120078 0.908437 0.455056 145.071
Dotted 2.48785 0.707704 0.45338 67.3212

Figure 7(c) Left S

Piece 1
Thick 0.188412 0.981157 0.509674 121.657
Dashed 0.603719 0.781142 0.471473 103.99
Dotted 0.361402 1.38114 0.909666 52.4523

Piece 2
Thick 0.0000462514 0.594672 0.297337 218.104
Dashed 0.884532 0.394671 0.297335 35.514
Dotted 0.564167 0.994666 0.697331 27.5123

Figure 7(d) Left S

Piece 1
Thick 1.61781 0.781142 0.471473 83.3887
Dashed 0.234412 0.981157 0.509674 120.616
Dotted 1.42816 1.38114 0.909666 31.5215

Piece 2
Thick 9.26646 0.394671 0.297335 31.4849
Dashed 0.0000462423 0.594672 0.297337 218.104
Dotted 2.66752 0.994666 0.697331 26.6104
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