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Electric vehicles (EVs) are developing remarkably fast these years which makes the technology of vehicle-to-grid (V2G) easier to
implement. Peak load shifting (PLS) is an important part of V2G service. A model of EVs’ capacity in V2G service is proposed
for the research on PLS in this paper. The capacity is valued in accordance with three types of situations. Based on the model,
three different scenarios are suggested in order to evaluate the capacity with MATLAB. The evaluation results indicate that EVs
can provide potential energy to participate in PLS. Then, the principle of PLS with EVs is researched through the analysis of the
relationship between their power and capacity.The performance of EVs in PLS is also simulated.The comparison of two simulation
results shows that EVs can fulfill the request of PLS without intensely lowering their capacity level.

1. Introduction

In recent years, electric vehicles (EVs) are developing rapidly
in many countries [1]. Many automotive companies have
introduced their new EV products. As a new kind of trans-
portation, EVs have the extraordinary ability to deal with the
lack of fuel and the air pollution [2]. Vehicle-to-grid (V2G)
is the technology which uses EVs to support the grid and at
the same time EVs can obtain power from the grid. Various
researches have been done to utilize the EVs to participate
in V2G services. V2G services are often applied for wind
power balancing [3–7], frequency regulation [8], and peak
load shifting (PLS) [9, 10].

Among all the hopeful V2G services, PLS is easier to
realize and is greatly helpful for the grid. PLS can improve
the utilization rate of existing equipment and postpone the
upgrade of new equipment. To realize PLS, EVs only have to
release part of the energy stored in the EV batteries. There
are many researches on the strategy of arranging the EVs’
charge and discharge behaviors in order to realize PLS [11, 12].
However, these researches focus on the behavior of every EV
and do not research on the essence of PLS with EVs. There

are also some researches on evaluating the capacity of EVs
[13–15]. But they are not applied for PLS. Besides, there are
some researches on PLS with battery storage which has an
important reference value [16, 17].

This paper researches on the model of EVs’ capacity
which can be used for PLS. According to the accessing time,
all the EVs are divided into three types which have different
values of capacity. Then three scenarios are introduced
for simulating the specific capacity of EVs. Based on the
simulation results, the principle of EVs in PLS is thoroughly
analyzed and a few simulations of EVs’ performance in PLS
are proposed for comparison.

2. Model of Electric Vehicles’ Capacity

Usually, peak load will last for several hours such as from
19:00 to 21:00. The phenomenon is often caused by the rise
of residential load because most people have arrived home
at that time. And peak load will go down as night falls.
So this characteristic of peak load requests long-time active
power support. In order to shift peak load, EVs should be
capable of maintaining certain amount of capacity during
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the whole time. But the problem is howmuch capacity can be
achieved from all the EVs connected with the grid at urgent
time. Unlike the traditional generators or energy storages, the
capacity of EVs is strong stochastic and changeable, because
in a short period of time some EVs could leave and some
could be connected with the grid.

All the energy stored in the EVs can be discharged for
load shifting if the requests of EVs’ customers are neglected.
But customers’ feelings should be respected because they are
the people who finallymake the decisionwhether to purchase
and drive EVs. At least, EVs should be finished charging at
the time their customers want to drive them. Assume that
every EV user will set up leaving time 𝑇leave while his EV is
plugged in at 𝑇arrive and the EV will leave exactly at that time.
In the following studies, it is found that the assumption is
reasonable except for emergency use. Most of the EVs will
not be so overdischarged for PLS that they cannot deal with a
temporary use for short travel. Otherwise the customer ought
to choose other transportation instead.

Power batteries are the only equipment to store energy
for EVs. State of charge (SOC) is usually used to describe the
energy left in the battery. 𝑄

𝑥
is defined to represent SOC of

EV’s battery at time 𝑇
𝑥
. Different users will request different

𝑄leave. The requirement is related to travel plan of EV users in
the next day. For simplicity of calculation, it is assumed that
all users need a fully charged battery at𝑇leave.The assumption
will actually increase the requirement for charging and at the
same time decrease the capability of PLS. So

𝑄leave = 1. (1)

Now with the assumptions above, the EVs’ aggregator
knows how long the EV will stay for charging and it could
manage all the charge and discharge strategies. At one time
period, there are three types of EVs that the aggregator may
deal with: accessing time is

(1) so short that EV cannot be fully charged;

(2) enough for discharging all the energy left and then
charging until the battery is full;

(3) others.

Actually the accessing time is not the only variable which
decides the types. SOC decides the time of discharging all
the energy in EV’s battery which indirectly judges whether
accessing time is enough or not.

All the energy stored in EVs’ batteries at time 𝑇now is
calculated by

𝑆all = ∑
𝑖

𝜉
𝑖
𝑆
𝑖
𝑄
𝑖
, (2)

where 𝑆all is the energy of all the EVs at time 𝑇now; 𝑖 is the
serial number of EVs; 𝑆

𝑖
and 𝑄

𝑖
are the capacity and SOC of

EV 𝑖. The value of 𝜉
𝑖
represents the state of the EV. If the EV

is connected with the grid at time 𝑇now, 𝜉𝑖 equals 1 otherwise
0. The unit of all the capacity variables is kWh in this paper.
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Figure 1: The SOC and time points of type-one EV.

However, not all the 𝑆
𝑖
𝑄
𝑖
in (2) can be discharged for PLS.

𝑆
𝐶,𝑖

is used to replace 𝑆
𝑖
𝑄
𝑖
and represent the energy which can

be used. So (2) is changed into

𝑆capacity = ∑
𝑖

𝜉
𝑖
𝑆
𝐶,𝑖
. (3)

The different types of EV batteries have different ability
to provide energy at time 𝑇now for load shifting. This part of
energy is defined as the capacity of EVs. Actually, most of the
batteries have not been used up when accessing the grid, so
the capacity can be large.

2.1. Type One. If the time left is even not enough for charging
the required SOC, there is no time for discharging. In this
situation, the EV customer only wants to stay for a short time
and then leave for another place. He hopes his car can get
some energy supply at the same time. The aggregator will
arrange the charging plan during all the accessing time and
this EV totally becomes a load rather than energy storage. So
the capacity of these EVs should be zero.

The relationship between the important time points is
shown in Figure 1.

At this situation, it is defined that if (𝑇leave −𝑇now)𝑎 < (1−
𝑄now)𝑆𝑖,

𝑆
𝐶,𝑖
= 0, (4)

where 𝑎 is the charging power of EV. The unit of all the
charging and discharging power is kW in accordance with
the unit of capacity. As expressed above, time parameters 𝑇

𝑥

represent different time points. So the unit of the difference
between two 𝑇

𝑥
is h.

2.2. Type Two. This situation arises when there is adequate
time for discharging all and then charging back. It mainly
happens when people go back home and have no plan to go
out for the night. In fact, most of the car users belong to this
situation and their EVs constitute a large quantity of energy
storage. These EVs’ batteries are extremely useful for load
shifting as they can be dispatched in a flexible manner. As
soon as these EVs are plugged in, they can be used for load
shifting and all the energy left is available.The aggregator only
has to consider how to manage the energy at the peak load
time. If the aggregator releases the EVs’ energy too early then
the energy will not be arranged at the most urgent time and
the peak load will still exist. These batteries may experience
several charge and discharge progress during the accessing
time. But for time 𝑇now, all the energy left in the battery is the
maximum energy which can be released.
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So, if 𝑇leave − 𝑇now > 𝑄now𝑆𝑖/𝑏 + 𝑆𝑖/𝑎

𝑆
𝐶,𝑖
= 𝑄now𝑆𝑖, (5)

where 𝑏 is the discharging power of EV (Figure 2).

2.3. TypeThree. In this situation, charging behavior of the EV
from 𝑇arrive to 𝑇now is known and do not affect the behavior
after time 𝑇. The progress can be described as

𝑄now = 𝑄arrive +
∫
𝑇now

𝑇arrive
𝑃 (𝑡) 𝑑𝑡

𝑆
𝑖

,
(6)

where 𝑃(𝑡) is the charging or discharging power of EV.When
EV is charging, it equals 𝑎; when EV is discharging, it equals
−𝑏; it also can be zero when EV is neither charging nor dis-
charging. However, the value of 𝑃(𝑡) is also known according
to charge behavior between 𝑇arrive and 𝑇now (Figure 3).

At 𝑇now, the capacity that can be used for PLS is the
energy that can be discharged continuously. But after the
discharge progress, the batterymust be charged till full before
the leaving time. In this situation, 𝑇stop is defined to represent
the time when discharging must be stopped and charging
must be started.

So, from 𝑇now to 𝑇stop,

𝑆Capacity,𝑖 = ∫
𝑇stop

𝑇now

𝑏𝑑𝑡 = (𝑇stop − 𝑇now) 𝑏, (7)

where 𝑏 is the power of discharging. And at the same time,
the formula is established as follows:

𝑄stop = 𝑄𝑇now −
𝑆Capacity,𝑖

𝑆
𝑖

. (8)

Then from𝑇stop, it should be always in the chargingmode
in order to fulfill the user’s request:

𝑄leave = 𝑄stop +
1

𝑆
𝑖

∫

𝑇leave

𝑇stop

𝑎𝑑𝑡

= 𝑄stop +
(𝑇leave − 𝑇stop) 𝑎

𝑆
𝑖

.

(9)

From (9), the value of 𝑄leave is also related to 𝑇stop.
Obviously, the bigger 𝑄leave is, the earlier 𝑇stop will be.
Accordingly, 𝑄stop will be smaller. It means that the grid
guarantees that the batteries are always fully charged at the
time when the customers plan to use the vehicles. And in
this way discharge of EVs will be more acceptable. Actually,
low depth charge and discharge can prolong the life of the
batteries. So EVs should not be always fully charged.

With (6)∼(9), 𝑇stop and 𝑆capacity,𝑖 can be solved:

𝑇stop =
𝑏𝑇now + 𝑎𝑇leave − (1 − 𝑄now) 𝑆𝑖

𝑎 + 𝑏
, (10)

𝑆Capacity,𝑖 =
𝑏

𝑎 + 𝑏
[(𝑇leave − 𝑇now) 𝑎 − (1 − 𝑄now) 𝑆𝑖] . (11)

In (10) and (11), all the variables are known at 𝑇now. It is
feasible to evaluate the capacity and 𝑇stop at 𝑇now.
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Figure 2: The SOC and time points of type-two EV.
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Figure 3: The SOC and time points of type-three EV.

Thus, (4), (5), (10), and (11) constitute the whole model of
capacity.

3. Capacity Evaluation and Results Analysis

3.1. Data Illustration. References [18, 19] provide us a sample
of different users’ charging habits of EVs, such as accessing
time. These habits are summarized in a probabilistic way
which can be simulated based on themethod ofMonte Carlo.
In the following study, our simulation is completely based on
them and the computer software MATLAB is used to help us
solve the complicated question.

Assume that all the EVs are the same and the charging
and discharging power are, respectively, 5 kW and 4 kW
in consideration of energy loss. And the capacity of every
battery is 35 kWh.

3.2. Scenario Description. In this section, the capacity of EVs
is simulated in order to know how much capacity can be
dispatched for PLS. Three scenarios in [20] are set for the
research under different demand side managements. The
research results show how the demand side management
affects the capacity. All the EVs in the simulation can charge
as soon as they are plugged in. But it is assumed that the users
will follow the management and try their best to pursue their
benefits.

Scenario 1. Unconstrained charging: it assumes that EV
charging begins as soon as the EVs access the grid and the
grid can afford the load of charging.

Scenario 2. Unconstrained charging with a time delay: it
assumes that EVs will delay charge for one hour or two after
accessing the grid.

Scenario 3. Charging according to peak-valley time-of-use
(TOU) power price: the valley time scale in this paper is from
21:00 to 8:00 in the next morning. Assume that all the users
will begin charging at the valley time except for the EVs of
type one.
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Figure 4: The flowchart of evaluation progress.
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Figure 5: The simulation results of average SOC in three scenarios.

3.3. Simulation Results. 100000 samples of EVs are used to
evaluate the average capacity. These EVs are arranged to
charge under different scenarios. The specific simulation and
evaluation steps are shown in Figure 4.

The simulation results from 18:00 to 24:00 are shown in
the following figures. Each figure has three curves represent-
ing three scenarios. Yet, limited by the similar data samples,
they follow a similar overall trend.

3.3.1. The Curves of SOC. Figure 5 shows the average SOC of
all the EVs. The SOC of the EVs disconnected from the grid
is recognized as 0.
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Figure 6: The simulation results of average capacity in three
scenarios.

Because most of the EV users arrive home from work
around 19:00, all the curves rise at first. Before 19:00, this
phenomenon is dominantly caused by the accumulation of
EVs rather than the growing of charging load.

After that, the EVs begin to charge in succession accord-
ing to respective scenarios and express different growing
patterns. Scenario 1 grows fast as the users will plug their EVs
as soon as they arrive. Scenario 2 grows more gently than
Scenario 1 and a part of charging load is postponed because
of the time delay. In Scenario 3, one obvious plateau appears
from 19:30 to 21:00. It proves that the implement of TOU
power price is effective.

The peak points of SOC appear around 20:00 in Scenario
1, 21:00 in Scenario 2, and 22:00 in Scenario 3.The peak points
are also delayed due to the different charging strategies.

At last, the leaving of EVs leads to some energy loss. But
most EVs will stay plugged-in at night which ensures the total
amount of energy. Almost all the batteries in this period are
fully charged.

3.3.2. The Curves of Capacity. The trend of capacity basically
follows the SOC curve but it changes more gently. With the
charge of EV, the capacity is enhanced. In Scenario 1, the peak
points appear at similar time of SOC. But in Scenarios 2 and
3, the peak points seem to be made earlier. Actually, it is the
charging strategy that smooths those peak points which are
supposed to appear later. So the demand side management
strategies also benefit for the use of EVs as well as the capacity
of EVs.

Figures 5 and 6 only show the results before 24:00. After
24:00, the SOC and capacity is continuously decreasing.
The decrease has two reasons. Firstly, capacity calculated by
formula (11) introduces that the closer the departure time
is, the smaller the capacity will be. Secondly, the departure
of EVs also causes the decrease of SOC and capacity. The
number of EVs accessing the grid plays an important role in
the capacity.
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Table 1: The average capacity of EVs during 18:00–24:00.

Capacity/kWh
Scenario 1 8.523
Scenario 2 8.144
Scenario 3 7.846
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Figure 7: Three choices for aggregator in one period.

Table 1 shows the average discharging capacities of EVs
during 18:00–24:00. The results show that each EV can
provide some capacity for PLS (Figure 9).Thus, large number
of EVs will form an impressive scale of capacity which can be
flexibly dispatched for the grid.

4. Peak Load Shifting with Electric Vehicles

4.1. Electric Vehicles in One Time Period. Every time an EV
accesses the grid, it has three choices for the next time period:
charging, discharging, or staying unused.

If the EV chooses to charge, it will enhance the load of
the grid and its SOC will rise. At the same time, the capacity
which can be used for load shifting also rises.

If the EV chooses to do nothing, the state of the EV will
not change in the next period. But since it remains connected
with the grid, the capacity of the EV is always ready for PLS.
What is more, if the unused state is changed from charging
state by the aggregator, it will also lower the load of the grid
just like load shedding and its effect can be remarkable.

The last choice of discharging happens mainly in the
situation of PLS.The EVs are changed to be batteries’ storages
that can release energy to support the grid. Unlike the
previous choices, discharge is a limited selectionwhichmeans
EV cannot choose to discharge at any time and any state. The
limitation has been discussed in Section 2.

Figure 7 describes the three choices in one period
between 𝑡

1
and 𝑡
2
for one EV. Different choices will bring

different load to the grid. The SOC curve will also respond
accordingly. The red curves show the load and SOC of
charging behavior. The step value of AB is the slope value of

Time
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Original load Load of EVs
Load after shifting

0

t1 t2 t3

S1

S1
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S2

Figure 8: The diagram explaining how peak load shifting produces
new peak load.
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Figure 9: The simulation results of the capacity of EVs in PLS.

AB which matches the power of charging. The blue curves
are for discharging and the step value of AD (negative) is the
slope value of AD which matches the power of discharging.
The curves reveal the different tendency affected on the
curves on load and SOC according to different choices.

In PLS, when to use EVs for load shifting is worth
considering and EVs should not be immediately dispatched
at any needed time. It is because using EVs for load shifting
in this period may cause EVs to be less effective in the next
period. In some extreme cases, those discharged EVsmust be
immediately charged in the next period in order to fulfill the
customers’ request. In the extreme case, the discharge does
not solve the peak load problem but only postpones the peak
load. The result is usually to produce another new peak load
which is even higher as shown in Figure 8.

In Figure 8, the red curve stands for the original load of
the grid. The load is assumed to be so high that it requires
load shifting at 𝑡

1
. If EVs are discharging to shift the peak

load of the gird in the next period [𝑡
1
, 𝑡
2
], the red curve can
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be lowered to be the blue curve and the result is satisfying.
But in the next period [𝑡

2
, 𝑡
3
], part of the EVs used in [𝑡

1
, 𝑡
2
]

requires charging. The charging load is added to the original
load which in the end makes a new peak load (blue curve in
[𝑡
2
, 𝑡
3
]). So the PLS operation in [𝑡

1
, 𝑡
2
] is meaningless. The

green curve describes the load of EVs in this procedure. In
the energy’s point of view, the EVs release the energy of 𝑆

1
in

[𝑡
1
, 𝑡
2
] and absorb 𝑆

2
in [𝑡
2
, 𝑡
3
]. The EVs finish an operation

of transporting energy in PLS.

4.2. Electric Vehicles in Peak Load Shifting. The load of the
grid is divided into several periods in the research. The peak
load is the load exceeding the limitation. Usually peak load
is dealing with enhancing the output of power plant. But in
an emergency, the EVs can be a fantastic support. According
to the request of PLS, the aggregator changes the state of
a sufficient number of EVs. In this way, the load is shifted
because of two reasons: the load shedding of EVs which are
charging and the power produced by discharging:

Δ𝑃 = 𝑎 ∗ 𝑛
1
+ (𝑎 + 𝑏) ∗ 𝑛

2
+ 𝑏 ∗ 𝑛

3
, (12)

where Δ𝑃 is the peak load which needs shifting; 𝑛
1
is the

number of EVs whose states are changed from charging to
unused. 𝑛

2
is the number of EVs whose states are changed

from charging to discharging. 𝑛
3
is the number of EVs whose

states are changed from unused to discharging. One group of
(𝑛
1
, 𝑛
2
, 𝑛
3
) constitutes a solution to the load shifting problem.

So the aggregator has various solutions that can be adopted
for a definite value of Δ𝐿.

However, 𝑛
1
, 𝑛
2
, and 𝑛

3
all have their value ranges

according to the state before peak load. Assume that 𝑁charge
and 𝑁unused are the total number of the EVs which are
correspondingly charging and unused. So we have

0 ≤ 𝑛
1
+ 𝑛
2
≤ 𝑁charge,

0 ≤ 𝑛
3
≤ 𝑁unused.

(13)

So the value range of load that can be shifted is

0 ≤ Δ𝑃 ≤ (𝑎 + 𝑏) ∗ 𝑁charge + 𝑏 ∗ 𝑁unused. (14)

As discussed in part II, what the grid needs is a long-time
active power support. Equation (14) alone cannot fulfill the
request.The aggregator should ensure that the capacity is also
enough as

∑

𝑇

Δ𝑃 ≤ 𝑆capacity. (15)

In the progress of load shifting, the value of 𝑆cpacity
becomes gradually smaller because of Δ𝑃. Actually, Δ𝑃 is
the slope of 𝑆cpacity. So (𝑛1, 𝑛2, 𝑛3) determines the Δ𝑃 and
indirectly determines 𝑆cpacity.

5. Performance Simulation and Analysis

To test the performance of EVs in load shifting, a simple
simulation based on the scenarios in Section 3 is formed. In

the simulation, almost all the EVs that can support the grid
are changed into discharge by the aggregator. And the PLS
that EVs take part in is from 19:30 to 20:00.

Compared with Figure 6, the capacity of EVs is reduced
because of load shifting. But the curves slowly recover to their
expected levels. The recovery progress is offset by the leaving
EVs which makes it slower than the load shifting progress.
Figure 6 proves that there will be adequate capacity left after
all the available EVs have taken part in the PLS. It proves that
EV is one kind of energy storage just like the battery storage.

6. Conclusion

This paper researches on the model of EVs’ capacity and
its performance in PLS. The three types of EVs include
all the situations that the aggregator may deal with. They
constitute the whole model of capacity. The model can help
the aggregator evaluate the capacity before making decisions.
The evaluation varies under different scenarios and shows
different characteristics. The evaluation results indicate that
EVs can provide potential energy to participate in PLS
services.

After the simulation of capacity, we research on the
principle when EVs take part in PLS. The performance is
analyzed from one period to the whole PLS progress. At last,
a simulation of PLS with EVs is also proposed. The result
indicates that participating in PLS will not produce a harmful
effect on the regular EVs’ energy supply.

All the results in this paper are reasonable andmeaningful
for the application of PLS with EVs. What is more, the model
and principle can also be referenced for other affiliation
services of V2G.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research is sponsored by National Key Technology
Support Program (2013BAA01B00), National Natural Sci-
ence Foundation of China (51361130152, 51377021), National
Energy Administration (NY20110702-1), and Qing Lan
Project.

References

[1] L. Yujun, X. Qingshan, C. Kai, and X. Xiaohui, “Prospective
analysis of distribution network reconstruction on electric
vehicles access to demonstration district,” Elektronika ir Elek-
trotechnika, vol. 19, no. 6, pp. 13–18, 2013.

[2] F. Querini, S. Dagostino, S. Morel, and P. Rousseaux, “Green-
house gas emissions of electric vehicles associated with wind
and photovoltaic electricity,” Energy Procedia, vol. 20, pp. 391–
401, 2012.

[3] J. G. Vlachogiannis, “Probabilistic constrained load flow con-
sidering integration of wind power generation and electric



Journal of Applied Mathematics 7

vehicles,” IEEE Transactions on Power Systems, vol. 24, no. 4, pp.
1808–1817, 2009.

[4] E. Larsen, D. K. Chandrashekhara, and J. Østergård, “Electric
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