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We study the pricing of a Parisian option under a stochastic volatility model. Based on the manipulation problem that barrier
options might create near barriers, the Parisian option has been designed as an extended barrier option. A stochastic volatility
correction to the Black-Scholes price of the Parisian option is obtained in a partial differential equation form and the solution is
characterized numerically.

1. Introduction

The Black-Scholes model is a well-known model in deriva-
tives pricing under which volatility is assumed to be a con-
stant [1]. From empirical studies based on real market data,
one can observe skew or smile effect of implied volatilities,
fat-tailed and asymmetric return distributions, and mean-
reversion of volatility. Thus to overcome these unrealistic
phenomena many alternative underlying models have been
proposed. The constant elasticity of variance model by Cox
[2], a stochastic volatility model by Heston [3], a multiscale
stochastic volatility model by Fouque et al. [4], and a Levy
model by Carr et al. [5] are popular ones amongmany others.

A basic standard option gives its holders the right to sell
or buy a stock for a designated amount of money before or
at a maturity time. However, there are many kinds of options
that have been developed recently in such way that the payoff
of options becomes more complicated. The barrier option is
one of those exotic options where the payoff of the option
depends on the path of its underlying asset.Thebarrier option
can be exercised if the value of underlying asset hits the
barrier during a time period before thematurity. For instance,
the barrier option of knockout type corresponds to a vanilla
European option if the value of an underlying asset does not
hit the barrier 𝐵 before the maturity 𝑇. However, the price
of option immediately becomes worthless if the value of the
underlying asset hits the barrier 𝐵. While this barrier option

has some advantage in that it can lower the price than the
vanilla option and it can be hedged cheaply for the risk of
underlying assets, it creates some problems. First, there is a
manipulation problem. Some hedge funds or investors can
make an intentional manipulation of the barrier option for
their profit. Since the payoff of the barrier option is decided
only by whether the value of an underlying asset touches the
barrier or not, if some hedge funds intentionally buy and sell
a great quantity of the underlying asset, it is possible for the
underlying asset artificially to touch the barrier. Second, there
is a hedging problem. If an underlying asset approaches the
barrier 𝐵, then Gamma in Greeks becomes very large and
then the price of the barrier option may become distorted by
the high Gamma value.

In order to solve these problems, the Parisian option has
been suggested. The payoff of the Parisian option depends
on how much time the value of an underlying asset keeps
over/below the barrier. The value of the underlying asset
hits the barrier 𝐵 and it must keep over the barrier for
the predecided time 𝐷 in order to give rise to a positive
payoff. This paper is interested in the pricing of this Parisian
option. There are previous studies on the Parisian options.
Haber et al. [6] gained the price in the form of a partial
differential equation. Marco and Lixin [7] used the binomial
tree method to price the option. Labart and Lelong in [8]
used Laplace transformation approach for the pricing of the
option.However, these works have not involved the pricing of
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Parisian option under stochastic volatilitymodels directly. So,
this paper extends the study of [6] using a stochastic volatility
model, that is, the multiscale model of [4] for the pricing of a
Parisian option.

In Section 2, we recall a study for the price of a Parisian
option under the Black-Scholes model. In Section 3, we
formulate a stochastic volatility model and obtain an approx-
imate price of the Parisian option in the form of a partial
differential equation. In Section 4, we compute the leading
order price and a correction term by the finite difference
method and find a stochastic volatility effect on the Black-
Scholes price.

2. The Black-Scholes Model

In this section, we review the Parisian option price under the
Black-Scholes model. Refer to Haber et al. [6] and Zhu and
Chen [9]. As Parisian option is a path-dependent option like
barrier option, the price depends on the path of an underlying
asset as well as payoff at the maturity.

To measure how much time the underlying asset price
keeps over or under the barrier, a new state variable 𝜏

𝑡
(a

barrier time) has to be introduced. With the state variable 𝜏
𝑡

we do not need to know all the specific contents of the path
taken. In the case of Up and In, the state variable 𝜏

𝑡
is counted

when the underlying asset price has been over the barrier in
the current excursion. Given the value 𝑋

𝑡
of an underlying

asset, 𝜏
𝑡
is defined by

𝜏
𝑡
= 𝑡 − sup {𝑡󸀠 ≤ 𝑡 | 𝑋 (𝑡󸀠) ≤ 𝐵} . (1)

So, in the Up and In option case, the barrier time 𝜏
𝑡
gives

the difference between the current time 𝑡 and the last time
when the underlying asset price is less than the barrier 𝐵. If
the underlying asset price is presently below the barrier, then
𝜏
𝑡
is zero.
In theDown and In option case, the variable 𝜏

𝑡
is opposite

to the case in the Up and In option. The state variable 𝜏
𝑡
is

defined by

𝜏
𝑡
= 𝑡 − sup {𝑡󸀠 ≤ 𝑡 | 𝑋 (𝑡󸀠) ≥ 𝐵} . (2)

In the Down and In option case, the barrier time 𝜏
𝑡
gives the

difference between the current time 𝑡 and the last time when
the underlying asset price is bigger than the barrier 𝐵. If the
underlying asset is presently over the barrier, then 𝜏

𝑡
is zero.

In the Down and In option case, dynamics of 𝜏
𝑡
are given

by

𝑑𝜏
𝑡
=

{{

{{

{

𝑑𝑡, if 𝑋
𝑡
> 𝐵,

−𝜏 (𝑡−) , if 𝑋
𝑡
= 𝐵,

0, if 𝑋
𝑡
< 𝐵,

(3)

where 𝜏(𝑡−) denotes the left limit of 𝜏
𝑡
. The barrier time rises

at the same rate with 𝑡 if the share price𝑋
𝑡
is over the barrier

𝐵 (i.e., 𝑋
𝑡
> 𝐵). As soon as the underlying asset price hits

the barrier 𝐵 (i.e., 𝑋
𝑡
= 𝐵), it is reset to zero. Also, if the

underlying asset price is below the barrier 𝐵 (i.e., 𝑋
𝑡
< 𝐵),

then it does not change. The state variable 𝜏
𝑡
can be viewed

as a time that starts ticking as soon as the underlying asset
crosses the barrier level 𝐵.

Additionally, we need a new variable 𝐷 which is called
a threshold time. If the barrier time 𝜏

𝑡
is more than the

threshold time 𝐷, the Parisian option becomes an effective
option.

Under the Black-Scholes model

𝑑𝑋
𝑡
= 𝑟𝑋
𝑡
𝑑𝑡 + 𝜎𝑋

𝑡
𝑑𝑊
∗

𝑡
, (4)

where 𝑟 is an riskless interest rate and 𝑊∗
𝑡

is a Brownian
motion under a risk-neutral measure 𝑄, the price 𝑃 of a
Parisian option is a function depending on the state variables
𝑋
𝑡
, 𝑡, and 𝜏

𝑡
(i.e., 𝑃 = 𝑃(𝑡, 𝑋

𝑡
, 𝜏
𝑡
)). The price 𝑃 of the Parisian

option satisfies two different partial differential equations
depending on whether the current underlying asset is over
or under the barrier 𝐵. For example, let us consider the Up
and Out Parisian option. If the underlying asset is below the
barrier (i.e.,𝑋

𝑡
< 𝐵), the barrier time variable 𝜏

𝑡
is not ticking

and remains unchanged. Then given 𝑋
𝑡
= 𝑥 and 𝜏

𝑡
= 𝜏 the

price 𝑃 satisfies the Black-Scholes equation given by

𝜕𝑃

𝜕𝑡
+
1

2
𝜎
2
𝑥
2 𝜕
2
𝑃

𝜕𝑥2
+ 𝑟(𝑥

𝜕𝑃

𝜕𝑥
− 𝑃) = 0. (5)

On the other hand, if the underlying asset rises over the
barrier (i.e., 𝑋

𝑡
> 𝐵) and so the barrier time 𝜏

𝑡
is ticking,

the barrier time 𝜏
𝑡
is valid. Then the price 𝑃 must have the

derivative with respect to the variable 𝜏
𝑡
so that it satisfies a

new partial differential equation given by

𝜕𝑃

𝜕𝑡
+
1

2
𝜎
2
𝑥
2 𝜕
2
𝑃

𝜕𝑥2
+ 𝑟(𝑥

𝜕𝑃

𝜕𝑥
− 𝑃) +

𝜕𝑃

𝜕𝜏
= 0. (6)

Here, the price of the Parisian option is defined differently in
each domain of𝑋

𝑡
> 𝐵 and𝑋

𝑡
< 𝐵. So, to give the continuity

of 𝑃 at 𝑥 = 𝐵, we define

𝑃 (𝑡, 𝐵, 𝜏) = 𝑃 (𝑡, 𝐵, 0) . (7)

Now, we give a boundary condition for each case (In or
Out). First, we use functions 𝐹(𝑥, 𝜏) and 𝐺(𝑥) to define

𝑃 (𝑇, 𝑥, 𝜏) =: 𝐹 (𝑥, 𝜏) , 0 ≤ 𝜏 < 𝐷,

𝑃 (𝑡, 𝑥, 𝐷) =: 𝐺 (𝑥) , 0 ≤ 𝑡 ≤ 𝑇.

(8)

If at the maturity 𝑇 the barrier time 𝜏
𝑡
is less than 𝐷, then

the Out option has the same payoff (𝑥 −𝐾)+ as the European
option payoff, while the payoff of the In option is zero. When
the underlying asset touches the barrier 𝐵 and the barrier
time 𝜏 also keeps on the situation 𝜏 ≥ 𝐷, the payoff of the Out
option is zero while the In option has the payoff (𝑥 −𝐾)+. So,
the boundary conditions are given by

𝐹 (𝑥, 𝜏) = {
(𝑥 − 𝐾)

+
, Out,

0, In,

𝐺 (𝑥) = {
0, Out,
(𝑥 − 𝐾)

+
, In .

(9)
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3. Stochastic Volatility

3.1. A Model Formulation. In this section, we use a stochastic
volatility model of Fouque et al. of [4] for an underlying asset
of the Up and Out Parisian call option. In this stochastic
volatility model, the volatility is assumed to be given by
an Ornstein-Uhlenbeck process which is a kind of ergodic
process. The stochastic volatility model is given by the
stochastic differential equations (SDEs)

𝑑𝑋
𝑡
= 𝑟𝑋
𝑡
𝑑𝑡 + 𝑓 (𝑌

𝑡
)𝑋
𝑡
𝑑𝑊
𝑥

𝑡
,

𝑑𝑌
𝑡
= (

1

𝜖
(𝑚 − 𝑌

𝑡
) −

]√2
√𝜖

Λ)𝑑𝑡 +
]√2
√𝜖

𝑑𝑊
𝑦

𝑡

(10)

under a risk-neutral measure 𝑄, where 𝑟 is a constant and 𝑓
is a function depending on the variable 𝑦. Here, the market
price of volatility Λ is assumed to be independent of 𝑥 and
𝑦. 𝑊𝑥
𝑡
and 𝑊𝑦

𝑡
are correlated Brownian motions such that

𝑑⟨𝑊
𝑥
,𝑊
𝑦
⟩
𝑡
= 𝜌(𝑡)𝑑𝑡 and 𝜌 is a function depending on time

𝑡. If 𝜌(𝑡) is positive, 𝑋
𝑡
may fail to be a true martingale since

𝑌
𝑡
may explode to infinite. Analyzing the most financial data,

except in some commodity markets, the negative correlation
or leverage effect between stock price and volatility of stocks
is observed. So, in this paper, 𝜌(𝑡) is assumed to be negative.
Also, for simplicity and from empirical data observed in
practical situation, we assume that 𝜌 is a constant. Refer to
[10]. The function 𝑓 is not limited to specific functions. But,
to avoid the nonexistence of moments of 𝑋

𝑡
, we assume 𝑓 to

be a function satisfying the condition 0 < 𝑐
1
≤ 𝑓 ≤ 𝑐

2
< ∞

for some positive constants 𝑐
1
and 𝑐
2
.

From now on, we assume that the parameter 𝜖 is positive
and small such that 0 < 𝜖 ≪ 1.Then the Ornstein-Ulhenbeck
process 𝑌

𝑡
becomes a fast mean-reverting process. From

the empirical analysis for financial data of high-frequency
S&P 500 index, one can observe that volatility is fast mean-
reverting when looked at over the time scale of contingent
claims. Refer to [11]. The S&P 500 index data yield that 𝜖−1
is large and ]2 is a stable such that it is an O(1) constant
which means that the long run magnitude of volatility
fluctuations remains fixed as a constant. The parameters 𝑚
and ] stand for the mean level and the standard deviation of
the invariant distribution of 𝑌

𝑡
, respectively. The probability

density function of 𝑌
𝑡
is given by

Φ(𝑦) =
1

√2𝜋]2
𝑒
−(𝑦−𝑚)

2
/2]2 (11)

so that the two parameters control the long-run size of the
volatility fluctuation.

3.2. A Partial Differential Equation. In this paper, we derive
a partial differential equation for the Parisian call option
(especially,Up andOut type) based on the stochastic volatility
model discussed in Section 3.1.

The price of the Parisian call option is given by

𝑃
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) = E

∗
{𝑒
−𝑟(𝑇−𝑡)

ℎ (𝑋
𝑇
) | 𝑋
𝑡
= 𝑥, 𝑌

𝑡
= 𝑦, 𝜏

𝑡
= 𝜏} ,

(12)

where

ℎ (𝑋
𝑇
) = {

(𝑋
𝑇
− 𝐾)
+

1
{∃𝑡≤0 s.t. 𝑡≤𝑇,𝜏

𝑡
≥𝐷}
, if In,

(𝑋
𝑇
− 𝐾)
+

1
{0≤∀𝑡≤𝑇, 𝜏

𝑡
<𝐷}
, if Out.

(13)

Here, the price of the Parisian call option (12) has the domain
given by

H
1
: {(𝑡, 𝑥, 𝑦, 𝜏) : 𝐵 ≤ 𝑥 < ∞, −∞ < 𝑦 < ∞,

0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝜏 ≤ 𝐷} ,

H
2
: {(𝑡, 𝑥, 𝑦, 𝜏) : 0 ≤ 𝑥 ≤ 𝐵, −∞ < 𝑦 < ∞,

0 ≤ 𝑡 ≤ 𝑇, 𝜏 = 0} .

(14)

Given the barrier time 𝜏, it is not possible that the elapsed
time 𝑡 is less than barrier time 𝜏 in both domains. Also, the
Parisian option cannot be exercised if the time to maturity
𝑇 − 𝑡 is less than the remaining time to barrier 𝐷 − 𝜏. So, we
do not care about the regions 𝑡 < 𝜏 and 𝑇 − 𝐷 + 𝜏 < 𝑡 for a
given 𝜏. Thus we have the reduced regionsA

1
and A

2
given

by

A
1
: {(𝑡, 𝑥, 𝑦, 𝜏) : 𝐵 ≤ 𝑥 < ∞, −∞ < 𝑦 < ∞,

𝜏 ≤ 𝑡 ≤ 𝜏 + 𝑇 − 𝐷, 0 ≤ 𝜏 ≤ 𝐷} ,

A
2
: {(𝑡, 𝑥, 𝑦, 𝜏) : 0 ≤ 𝑥 ≤ 𝐵, −∞ < 𝑦 < ∞,

0 ≤ 𝑡 ≤ 𝑇 − 𝐷, 𝜏 = 0} .

(15)

See [9] for details. For convenience, we denote 𝑃𝜖(𝑡, 𝑥, 𝑦, 𝜏)
separately by 𝑈𝜖(𝑡, 𝑥, 𝑦, 𝜏) and 𝑉𝜖(𝑡, 𝑥, 𝑦) in the regions A

1

andA
2
, respectively. That is,

𝑃
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) = {

𝑈
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) , on A

1
,

𝑉
𝜖
(𝑡, 𝑥, 𝑦) , on A

2
.

(16)

Now, we construct the boundary condition on the
domains A

1
and A

2
. First of all, whenever the value of

an underlying asset goes to zero, the worth of call option
disappears. So, when the underlying price goes to zero, we
can set the option price as follows:

lim
𝑥→0

𝑉
𝜖
(𝑡, 𝑥, 𝑦) = 0. (17)

Also, for the continuity of the option prices𝑈𝜖 and𝑉𝜖 defined
on the different domainsA

1
andA

2
, respectively, we set the

following condition at the barrier 𝐵:

lim
𝑥→𝐵

𝑉
𝜖
(𝑡, 𝑥, 𝑦) = lim

𝑥→𝐵

𝑈
𝜖
(𝑡, 𝑥, 𝑦, 0) . (18)

Moreover, if the underlying asset is too large to fall back to the
barrier 𝐵 before the maturity 𝑇, the option can be exercised.
So, in the case that the underlying asset price is infinitely large,
we have

lim
𝑥→∞

𝑈
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) = 0. (19)

Furthermore, since we cover the case of the Out option, the
option value disappears once the accumulated time 𝜏 over the
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barrier 𝐵 becomes 𝐷. So, the option value near the 𝜏 = 𝐷

vanishes such that

lim
𝜏→𝐷

𝑈
𝜖
(𝑡, 𝑠, 𝑦, 𝜏) = 0. (20)

Now, applying the Feynman-Kac formula to the Parisian
option price (12) with the boundary condition (8), we obtain
a partial differential equation in each of the regions A

1
and

A
2
, respectively, as follows:

(
1

𝜖
L
0
+
1

√𝜖
L
1
+LPar(𝑓(𝑦)))𝑈

𝜖
(𝑡, 𝑥, 𝑦, 𝜏) = 0,

𝑈
𝜖
(𝑇, 𝑥, 𝑦, 𝜏) = (𝑥 − 𝐾)

+
, 0 ≤ 𝜏 < 𝐷

𝑈
𝜖
(𝑡, 𝑥, 𝑦, 𝐷) = 0, 0 ≤ 𝑡 ≤ 𝑇,

(
1

𝜖
L
0
+
1

√𝜖
L
1
+LBS(𝑓(𝑦)))𝑉

𝜖
(𝑡, 𝑥, 𝑦) = 0,

𝑉
𝜖
(𝑇, 𝑥, 𝑦) = (𝑥 − 𝐾)

+
,

(21)

where

L
0
= ]2

𝜕
2

𝜕𝑦2
+ (𝑚 − 𝑦)

𝜕

𝜕𝑦
,

L
1
= √2𝜌]𝑥𝑓 (𝑦)

𝜕
2

𝜕𝑥𝜕𝑦
− √2]Λ

𝜕

𝜕𝑦
,

LBS(𝑓(𝑦)) =
𝜕

𝜕𝑡
+
1

2
𝑓 (𝑦)
2

𝑥
2 𝑥
2

𝜕𝑥2
+ 𝑟(𝑥

𝜕

𝜕𝑥
− ⋅) ,

LPar(𝑓(𝑦)) =
𝜕

𝜕𝜏
+L
2(𝑓(𝑦))

.

(22)

3.3. Asymptotic Analysis. In this section, we approximate the
price of the Parisian option satisfying the partial differential
equations (21) by using the expansions

𝑈
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) =

∞

∑

𝑖=0

𝜖
𝑖/2
𝑈
𝑖
(𝑡, 𝑥, 𝑦, 𝜏) ,

𝑉
𝜖
(𝑡, 𝑥, 𝑦) =

∞

∑

𝑖=0

𝜖
𝑖/2
𝑉
𝑖
(𝑡, 𝑥, 𝑦) .

(23)

Putting the asymptotic expansions (23) into (21), we have the
following asymptotic partial differential equations given by

1

𝜖
L
0
𝑈
0
+
1

√𝜖
(L
0
𝑈
1
+L
1
𝑈
0
)

+L
0
𝑈
2
+L
1
𝑈
1
+
𝜕𝑈
0

𝜕𝑙
+LPar(𝑓(𝑦))𝑈0

+ √𝜖(L
0
𝑈
3
+L
1
𝑈
2
+
𝜕𝑈
1

𝜕𝑙
+LPar(𝑓(𝑦))𝑈1)

+ ⋅ ⋅ ⋅

= 0,

(24)

1

𝜖
L
0
𝑉
0
+
1

√𝜖
(L
0
𝑉
1
+L
1
𝑉
0
)

+L
0
𝑉
2
+L
1
𝑉
1
+
𝜕𝑉
0

𝜕𝑙
+LBS(𝑓(𝑦))𝑉0

+ √𝜖(L
0
𝑉
3
+L
1
𝑉
2
+
𝜕𝑉
1

𝜕𝑙
+LBS(𝑓(𝑦))𝑉1)

+ ⋅ ⋅ ⋅

= 0.

(25)

Additionally, the boundary conditions for each function
of 𝑈
𝑖
and 𝑉

𝑖
(𝑖 = 0, 1, 2, . . .) become

𝑈
0
(𝑇, 𝑥, 𝑦, 𝜏) = (𝑥 − 𝐾)

+
, 0 ≤ 𝜏 < 𝐷,

𝑈
0
(𝑡, 𝑥, 𝑦, 𝐷) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑈
𝑖
(𝑇, 𝑥, 𝑦, 𝜏) = 0, 0 ≤ 𝜏 < 𝐷 (𝑖 = 1, 2, . . .) ,

𝑈
𝑖
(𝑡, 𝑥, 𝑦, 𝐷) = 0, 0 ≤ 𝑡 ≤ 𝑇 (𝑖 = 1, 2, . . .) ,

(26)

𝑉
0
(𝑇, 𝑥, 𝑦) = (𝑥 − 𝐾)

+
,

𝑈
𝑖
(𝑇, 𝑥, 𝑦) = 0. (𝑖 = 1, 2, . . .) .

(27)

Now, we derive the leading order term 𝑈
0
and the

correction term 𝑈
1
in a partial differential equation form.

From (24), we have
1

𝜖
:L
0
𝑈
0
= 0, (28)

1

√𝜖
:L
0
𝑈
1
+L
1
𝑈
0
= 0, (29)

1 :L
0
𝑈
2
+L
1
𝑈
1
+LPar(𝑓(𝑦))𝑈0 = 0, (30)

√𝜖 :L
0
𝑈
3
+L
1
𝑈
2
+LPar(𝑓(𝑦))𝑈1 = 0. (31)

In the following theorems, we derive partial differential
equations for 𝑈

0
and 𝑈

1
on the region A

1
and 𝑉

0
and 𝑉

1
on

the regionA
2
, respectively.

Theorem 1. Suppose that 𝑈
𝑖
, (𝑖 = 0, 1, 2, . . .) does not grow as

much as𝑈
𝑖
∼ 𝑒
𝑦
2
/2 as𝑦 goes to∞.Then, the leading order term

𝑈
0
and the correction term 𝑈

1
do not depend on the variable

𝑦; that is,

𝑈
𝑖
(𝑡, 𝑥, 𝑦, 𝜏) = 𝑈

𝑖
(𝑡, 𝑥, 𝜏) , 𝑖 = 0, 1. (32)

Suppose that 𝑉
𝑖
(𝑖 = 0, 1, 2, . . .) does not grow as much as 𝑉

𝑖
∼

𝑒
𝑦
2
/2 as 𝑦 goes to∞. Then, the leading order term 𝑉

0
and the

correction term 𝑉
1
do not depend on the variable 𝑦; that is,

𝑉
𝑖
(𝑡, 𝑥, 𝑦) = 𝑉

𝑖
(𝑡, 𝑥) , 𝑖 = 0, 1. (33)

Proof. As (28) is an ordinary differential equation with
respect to 𝑦, one can obtain the solution easily given by

𝑃
0
(𝑡, 𝑥, 𝑦, 𝜏) = 𝑐

1
(𝑡, 𝑥, 𝜏) ∫

𝑦

0

𝑒
((𝑧−𝑚)

2
/2]2)𝑑𝑧

+ 𝑐
2
(𝑡, 𝑥, 𝜏)

(34)
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for some functions 𝑐
1
and 𝑐
2
independent of 𝑦.Then, from the

assumed growth condition,𝑈
0
is independent of the variable

𝑦. Since𝑈
0
is independent of 𝑦 and each term ofL

1
contains

derivative with respect to 𝑦, we have L
1
𝑈
0
= 0. So, 𝑈

1
is

independent of 𝑦 from the order 1/√𝜖 term (29).
Similarly, we have the results for 𝑉

0
and 𝑉

1
.

The following theoremgives a partial differential equation
for 𝑈
0
.

Theorem 2. The leading order term 𝑈
0
is the solution of a

partial differential equation problem given by

L
𝑃𝑎𝑟(𝜎)

𝑈
0
(𝑡, 𝑥, 𝜏) = 0,

𝑈
0
(𝑇, 𝑥, 𝜏) = (𝑥 − 𝐾)

+
, 0 ≤ 𝜏 < 𝐷,

𝑈
0
(𝑡, 𝑥, 𝐷) = 0, 0 ≤ 𝑡 ≤ 𝑇,

(35)

where

𝜎 = √⟨𝑓2⟩ = √∫𝑓2 (𝑦)
1

√2𝜋]
𝑒−(𝑦−𝑚)

2
/2]2𝑑𝑦. (36)

The leading order term𝑉
0
is the solution of a partial differential

equation problem given by

L
𝐵𝑆(𝜎)

𝑉
0
(𝑡, 𝑥) = 0,

𝑉
0
(𝑇, 𝑥) = (𝑥 − 𝐾)

+
.

(37)

Proof. Since 𝑈
1
is independent of 𝑦 and every term of L

1

contains derivative with respect to the variable 𝑦, L
1
𝑈
1
= 0

holds and so the O(1) term (30) becomes

L
0
𝑈
2
+LPar(𝑓(𝑦))𝑈0 = 0. (38)

Thus we obtain a partial differential equation for 𝑈
2
which

is the Poisson equation with respect to the operator L
0
.

Applying the centering condition, we obtain

⟨LPar(𝑓(𝑦))𝑈0⟩ = (
𝜕

𝜕𝜏
+ ⟨LBS(𝑓(𝑦))⟩)𝑈0

= (
𝜕

𝜕𝜏
+LBS(𝜎))𝑈0 =LPar(𝜎)𝑈0 = 0.

(39)

By adding the boundary condition (26) to this equation, the
result for 𝑈

0
is derived.

Similarly, 𝑉
0
satisfies the problem (37).

Now, we derive the correction term 𝑉
1
in the form of a

partial differential equation satisfied by the term.

Theorem 3. The correction term𝑈
1
is the solution of a partial

differential equation problem given by

L
𝑃𝑎𝑟(𝜎)

𝑈
1
(𝑡, 𝑥, 𝜏) = 𝑊

2
𝑥
2 𝜕
2
𝑈
0

𝜕𝑥2
+𝑊
3
𝑥
3 𝜕
3
𝑈
0

𝜕𝑥3
,

𝑈
1
(𝑇, 𝑥, 𝜏) = 0, 0 ≤ 𝜏 < 𝐷,

𝑈
1
(𝑡, 𝑥, 𝐷) = 0, 0 ≤ 𝑡 ≤ 𝑇,

(40)

where

𝑊
2
= √2𝜌] ⟨𝑓𝜙󸀠⟩ −

√2

2
] ⟨Λ𝜙󸀠⟩ , (41)

𝑊
3
=
√2

2
𝜌] ⟨𝑓𝜙⟩ . (42)

The correction term 𝑉
1
satisfies a partial differential equation

problem given by

L
𝐵𝑆(𝜎)

𝑉
1
(𝑡, 𝑥) = 𝑊

2
𝑥
2 𝜕
2
𝑉
0

𝜕𝑥2
+𝑊
3
𝑥
3 𝜕
3
𝑉
0

𝜕𝑥3
,

𝑉
1
(𝑇, 𝑥) = 0.

(43)

Proof. From (38) and (39), we have a Poisson equation for𝑈
2

with respect to the operatorL
0
given by

L
0
𝑈
2
= − (LBS(𝑓(𝑦)) −LBS(𝜎))𝑈0. (44)

Define a function 𝜙 by the solution of an ordinary differential
equation given by

L
0
𝜙 (𝑦) = 𝑓 (𝑦)

2

− 𝜎
2
. (45)

Then we have

L
0
𝑈
2
= − (LBS(𝑓(𝑦)) −LBS(𝜎))𝑈0

= −
1

2
(𝑓
2
(𝑦) − 𝜎

2
) 𝑥
2 𝜕
2
𝑈
0

𝜕𝑥2

= −
1

2
L
−1

0
(𝑓
2
(𝑦) − 𝜎

2
) 𝑥
2 𝜕
2
𝑈
0

𝜕𝑥2
.

(46)

Thus we obtain

𝑈
2
(𝑡, 𝑥, 𝑦, 𝜏) = −

1

2
(𝜙 (𝑦) + 𝑘 (𝑡, 𝑥, 𝜏)) 𝑥

2 𝜕
2
𝑈
0

𝜕𝑥2
(𝑡, 𝑥, 𝜏)

(47)

for some 𝑦-independent function 𝑘.
On the other hand, applying the centering condition to

the √𝜖 term (31), we have a partial differential equation for
𝑈
1
given by

LPar(𝜎)𝑈1 = −L1𝑈2. (48)

Applying the operatorL
1
to (47), we obtain

LPar(𝜎)𝑈1 (𝑙, 𝑥; 𝜏) = 𝑊2𝑥
2 𝜕
2
𝑈
0

𝜕𝑥2
(𝑡, 𝑥, 𝜏)

+ 𝑊
3
𝑥
3 𝜕
3
𝑈
0

𝜕𝑥3
(𝑡, 𝑥, 𝜏) .

(49)

By adding the boundary condition (26), we obtain the desired
result for 𝑈

2
.

Using the similar argument as above, we have the result
for 𝑉
1
.
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Figure 1:The leading order𝑃
0
with respect to the price of underlying

asset𝑋
𝑡
and the barrier time 𝜏

𝑡
.

4. Computation

This section shows the effect of the stochastic volatility on the
Parisian option price through a numerical experiment.

In the previous section, we have derived the partial
differential equations (35), (37), (40), and (43) for the leading
order terms 𝑈

0
and 𝑉

0
and the correction terms 𝑈

1
and 𝑉

1
,

respectively. So, we have an approximation of the Parisian
option price 𝑃𝜖 (12) in the form

𝑃
𝜖
(𝑡, 𝑥, 𝑦, 𝜏) ≈ 𝑃

0
(𝑡, 𝑥, 𝜏) + √𝜖𝑃

1
(𝑡, 𝑥, 𝜏)

:= 𝑃
0
(𝑡, 𝑥, 𝜏) + 𝑃̃

1
(𝑡, 𝑥, 𝜏) ,

(50)

where the leading order term 𝑃
0
and the correction term 𝑃

1

are given by

𝑃
0
(𝑡, 𝑥, 𝜏) = {

𝑈
0
(𝑡, 𝑥, 𝜏) , on A

1
,

𝑉
0
(𝑡, 𝑥) , on A

2
,

𝑃
1
(𝑡, 𝑥, 𝜏) = {

𝑈
1
(𝑡, 𝑥, 𝜏) , on A

1
,

𝑉
1
(𝑡, 𝑥) , on A

2
,

(51)

respectively.
We use the finite difference method (more concretely,

the Crank-Nicolson scheme) to solve the partial differential
equations. The parameters are set by 𝐵 = 12, 𝑇 = 1, 𝑡 = 0,
𝐷 = 0.1, 𝐾 = 10, 𝜎 = 0.2, 𝑟 = 0.05, 𝑊

2
= −0.00001,

𝑊
3
= 0.0041, and 𝜖 = 0.0001.
Figure 1 shows the leading order term 𝑃

0
with respect to

the price 𝑋
𝑡
(the range of 𝑋

𝑡
is from 6 to 15) and the barrier

time 𝜏
𝑡
(the range of 𝜏

𝑡
is from 0 to𝐷 = 0.1). As the feature of

Up andOut type option, one can observe that the option price
is almost zero when the price𝑋

𝑡
is bigger than the barrier 𝐵.

Also the leading order term 𝑃
0
has the highest value near the

strike price 𝐾, while the delta of 𝑃
0
is almost zero near the

strike price𝐾.
Figure 2 shows the correction term 𝑃̃

1
with respect to the

price𝑋
𝑡
(the range of𝑋

𝑡
is from 6 to 15) and the barrier time

𝜏
𝑡
(the range of 𝜏

𝑡
is from 0 to 𝐷 = 0.1). One can observe

that the correction term 𝑃̃
1
has a big fluctuation near the

strike price 𝐾. The interesting feature is that the delta of 𝑃
1

is instantaneously very high near the strike price 𝐾. Clearly,
it shows a different aspect of the stochastic volatility model in
comparison with the Black-Scholes model.
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Figure 2: The correction term 𝑃̃
1
with respect to the price of

underlying asset𝑋
𝑡
and the barrier time 𝜏

𝑡
.

5. Conclusion

Based on the shortcomings of the Black-Scholes model, we
choose a stochastic volatility model for the underlying asset
price and study the pricing of a Parisian option. Under
the fast mean-reverting stochastic volatility assumption, we
approach the problem asymptotically and obtain equations
for the approximated price and gain the price numerically
by using the finite difference method. A remarkable feature
is found as a correction effect of the stochastic volatility to
the Black-Scholes model near the barrier. It is observed that
the correction term is negative and has a hump shape around
the barrier. So, the price of the Parisian option under the
stochastic volatility model is underpriced compared to the
price under the Black-Scholes model, particularly, near the
barrier.
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