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Crowd dynamics is a discipline dealing with themanagement and flow of crowds in congested places and circumstances. Pedestrian
congestion is a pressing issue where crowd dynamics models can be applied. The reproduction of experimental data (velocity-
density relation and specific flow rate) is a major component for the validation and calibration of such models. In the social force
model, researchers have proposed various techniques to adjust essential parameters governing the repulsive social force, which is
an effort at reproducing such experimental data. Despite that and various other efforts, the optimal reproduction of the real life data
is unachievable. In this paper, a harmony search-based technique called HS-SFM is proposed to overcome the difficulties of the
calibration process for SFM, where the fundamental diagram of velocity-density relation and the specific flow rate are reproduced
in conformance with the related empirical data. The improvisation process of HS is modified by incorporating the global best
particle concept from particle swarm optimization (PSO) to increase the convergence rate and overcome the high computational
demands ofHS-SFM. Simulation results have shownHS-FSM’s ability to produce near optimal SFMparameter values, whichmakes
it possible for SFM to almost reproduce the related empirical data.

1. Introduction

Massive congestion in pedestrian environments has been a
pressing concern lately. This issue stems from an increase in
population growth rate, where among the serious problems
linked to it are crowd stampedes, accidents, and other
disasters. Congestion has therefore motivated researchers to
find solutions, where studies have focused on offering good
pedestrian facilities or understanding incorrect pedestrian
behavior and correcting them [1].

May [2] basically divides pedestrian dynamics studies
into two levels. The first level is the macroscopic studies,
which is concerned with macroscopic behaviors of the whole
crowd. Macroscopic variables resulting from these behaviors
are density (𝜎), mean speed (𝑉), and pedestrian flow (𝑓)
[3]. The second level is the microscopic studies, which
is more concerned with the detailed interactions among
the pedestrians, such as avoiding collisions, deviations,

acceleration and deceleration, and their effect on motion [1].
Compared to the macroscopic pedestrian studies, the con-
sideration of the detailed pedestrian interactions in the
microscopic studies enables the researchers for proposing
models characterized with more comprehensive pedestrian-
flow control and better movement-quality improvement [1].
Famous examples ofmicroscopic crowd dynamicsmodels are
the cellular automata model [4–8] and the social force model
(SFM) [9–19].

For the purpose of validation of such microscopic crowd
dynamics models, a variety of methods was adopted. These
methods include the introduction of the self-organization
phenomena and the reproduction of experimental data
obtained by experimental and empirical studies. The exper-
imental data, for instance, are the specific flow rate (number
of persons crossing an opening per unit of time and width)
and the fundamental diagrams (a graphical representation as
shown in Figure 1 used to describe the relationship between
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Figure 1: The diagram for the estimated speed-density relations
for unidirectional pedestrian traffic flow in empirical studies. Fruin
[20], Sarkar and Janardhan [21], and Older [22] used a linear speed-
density relation, while Weidmann [23] used a double S-bended
curve.

two of macroscopic variables mentioned above, such as the
mean speed and the density (𝑉 = 𝑉(𝜎)). The fundamental
diagrams of unidirectional and bidirectional streams (among
which are Fruin [20], Sarkar and Janardhan [21], Older [22],
and Weidmann [23]) form essential tools for the assessment
of the models; whether, it can describe the pedestrian stream
appropriately with respect to the empirical studies.

The main concern is the calibration of these models. A
commonmethod of the calibration process involved with the
models’ assessment is to optimize some model parameters
and model components long enough; until, the simulations
fit the fundamental diagram, such as that of Weidmann [23],
or fit the specific flow rate such as that proposed by Parisi
et al. [24].

In this paper, we focus our attention on proposing new
technique for calibrating essential parameters in the social
force model (SFM). The model has been rendered as one of
the most vital models in microscopic studies because of its
successful introduction of self-organization phenomena of
pedestrian dynamics in normal and panic situations [14–16].
Themost important feature of the SFM is its representation of
pedestrians’ motivations in terms of the other objects (pedes-
trians and obstacles) surrounding them as social forces. The
sum of these forces is implemented in a Newtonian equation,
which, in turn, determines the acceleration of the pedestrian’s
motion.

In [18, 19, 24–27], calibrating the SFM parameters Arep,
Brep, and 𝜆, which represent the strength of the social forces,
the repulsive distance range of these forces, and the angular
perception parameter, respectively, is a challenging task for
the reproduction of the fundamental diagram. Johansson et
al. [25] proposed an evolutionary optimization algorithm

to determine optimal parameter specifications for the SFM.
Zainuddin and Shuaib [26] adopted a different approach
where themodel of the parameterBrep is introduced as a func-
tion in terms of density. However, although the reproduction
of the fundamental diagramwas successful in [25, 26]without
changing the principles of the SFM, the values of the adopted
parameters do not help in reproducing the flow rate in normal
evacuation situations within the range that lied from 1.25 to
2 p/m/s as stated in [24].

In this paper, a harmony search-based optimization
technique named HS-SFM is proposed to overcome the
difficulties of the calibration process for the SFM, wherein
the fundamental diagram of velocity-density relation and the
specific flow rate are reproduced in conformance with the
related empirical data. Harmony search (HS) is a relatively
new population based on metaheuristic algorithm, which
has obtained excellent results in the field of combinatorial
optimization [28]. With the intention of increasing the
convergence rate and overcoming the high computational
demands of the proposed HS-SFM algorithm, the memory
consideration, which is the most important operator in
the improvisation process of HS, is modified. The global
best particle concept from PSO is used as a new memory
consideration operator to mimic the best harmony among
the HM vectors, which in turn is used to construct the new
harmony. In addition, a new multicriteria objective function
is proposed to include the abovementioned two main factors
that affect the goodness of the solution with respect to
SFM.

The organization of this paper is described as follows.
Section 2 provides an introduction to the social force model.
Section 3 introduces readers to the harmony search algo-
rithm. A detailed description of the proposed HS-SFM algo-
rithm is provided in Section 4. The simulation study of the
proposed algorithm is presented in Section 5. We conclude
our findings in Section 6, including remarks regarding future
works.

2. The Social Force Model

The representation of the pedestrians’ motivations as social
forces implemented in a Newtonian equation for introducing
the pedestrians’ motion is an essential feature of the SFM.
An extension by Helbing et al. [13] incorporated the physical
forces arising in the case of contact among the pedestrians
into the model. The model is characterized by reproducing
the self-organized phenomena of pedestrian dynamics in
normal and panic situations [13–16].

The main equations of the model are
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where 𝑑�⃗�
𝑖
(𝑡)/𝑑𝑡 is the rate of change in the location of

pedestrian 𝑖 at time 𝑡; V⃗
𝑖
(𝑡) represents his actual velocity,

which is computed numerically by solving (1) and (2);
𝑑V⃗
𝑖
(𝑡)/𝑑𝑡 is the acceleration of pedestrian 𝑖 resulting from the

sum of the total forces upon him; 𝜀
𝑖
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time, respectively; and the function ⃗
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forces exerted by pedestrian 𝑗 upon pedestrian 𝑖, which are
of two types. The first type is the social forces: the repulsion
force ⃗

𝑓
rep
𝑖𝑗
(𝑡) and the attraction force ⃗

𝑓
att
𝑖𝑗
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the model of the repulsive and attractive motivations inside
pedestrian 𝑖 against and towards pedestrian 𝑗, respectively
[10]; they were modeled as exponential functions with dif-
ferent values of the parameters and opposite directions. The
second type is the physical forces ( ⃗

𝑓
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𝑖𝑗
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𝑓
friction
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), which
were modeled as linear functions in [13, 14], in analogy with
the granular forces; ⃗
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regard to objects such as walls and columns.
The model of the repulsive social force is
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where Arep and Brep are constant parameters that denote the
strength and the repulsive distance range of the correspond-
ing force, respectively; ⃗𝑛

𝑖𝑗
is the normalized vector which

points from the object 𝑗 to the pedestrian 𝑖; 𝑅
𝑖𝑗
and 𝑑
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the sum of the radius of 𝑖 and 𝑗 and the distance between
the centers of 𝑖 and 𝑗, respectively; 𝜑
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perception parameter to model the effect of the perception of
individual 𝑖 to those who are behind him on themagnitude of
the force. Its value belongs to the range [0, 1] and specifies the
shape of the anisotropic force field (territorial area) around
individual 𝑖.

3. Harmony Search Algorithm

Geem et al. [28] developed HS to solve optimization
problems. Ever since its inception, HS has attracted many

researchers to develop HS-based applications for a variety
of optimization problems [29]. HS imitates the natural
phenomenon of musicians’ behaviors when they collectively
tune the pitches of their instruments to achieve a fantastic
harmony as measured by aesthetic standards. It is an effective
metaheuristic algorithm that can explore the search space
of the given dataset in a parallel optimization environment,
where each solution (harmony) vector is generated through
intelligent exploration and exploitation of a search space. It
is thus considered a population-based algorithm with local
search-based aspects. The following provides a description
of HS. The standard HS algorithm consists of five steps as
follows.

Step 1 (HS initialization and optimization problem parame-
ters). In the case of HS, optimization is treated as a mini-
mization (or maximization) problem. Basically, minimize (or
maximize) 𝑓(𝑎) subject to 𝑎

𝑖
∈ 𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑁, where

𝑓(𝑎) is the objective function; 𝑎 is the set of decision variables
(𝑎
𝑖
);𝐴 is the set of the possible range of any decision variable,

𝐴
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𝑖
(2), 𝑎
𝑖
(3), . . . 𝑎

𝑖
(𝑀), }; (𝑀) is the number of

possible ranges for each decision variable; and 𝑁 is the
number of decision variables. These parameters of the HS
are then initialized, which form the harmony memory size
(HMS), harmonymemory consideration rate (HMCR), pitch
adjustment rate (PAR), and the number of improvisations
(NI).

Step 2 (harmonymemory initialization). Theharmonymem-
ory (HM) is a matrix of solutions with size HMS, as shown
in (8). In this step, the solutions are randomly constructed
and rearranged progressively according to their objective
function values
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Step 3 (improvise a new harmony). In this step, the HS
generates (improvises) a new harmony vector, 𝑎NEW =

(𝑎
NEW
1

, 𝑎
NEW
2

, 𝑎
NEW
3

, . . . , 𝑎
NEW
𝑁

), based on the three operators
of memory consideration, random consideration, and pitch
adjustment. In memory consideration, the values of the new
harmony vector are randomly inherited from the historical
values stored in the HM with the probability of HMCR.
The value of the decision variable 𝑎NEW

1
is chosen from

{𝑎
1

1
, 𝑎
2

1
, 𝑎
3

1
, . . . , 𝑎

HMS
1

}, which is stored in HM. The next deci-
sion variable 𝑎NEW

2
is chosen from {𝑎

1

2
, 𝑎
2

2
, 𝑎
3

2
, . . . , 𝑎

HMS
2

}, and
the other decision variables, (𝑎NEW

3
, 𝑎

NEW
4

, 𝑎
NEW
5

, . . .), are con-
secutively chosen in the same manner within the probability
of HMCR ∈ [0, 1].TheHMCR parameter is the probability of
selecting one value from the decision variable, (𝑎NEW

𝑖
) based

on the historical values stored in the HM. The usage of the
HM is similar to the step where the musician uses his or
her memory to generate an excellent tune. This important
step ensures that good harmonies are considered as the
elements of the new harmony vectors. Since it is a cumulative
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process, other values are not chosen depending on memory
consideration but are chosen according to their possible
ranges through random consideration with a probability of
1-HMCR. This step is called randomization, which increases
the diversity of the solutions and drives the system further
to explore various diverse solutions so as to attain the global
optimum. Furthermore, the new vector components that
are selected out of the memory consideration operator are
examined to be pitch adjustedwith probability of PAR ∈ [0, 1]
as

(𝑎
NEW
𝑖

) = (𝑎
NEW
𝑖

) + rand (−1, 1) ∗ 𝑏𝑤. (9)

The variable 𝑏𝑤 is an arbitrary distance bandwidth used
to improve the performance of HS. The PAR parameter sim-
ulates the music by “changing the frequency”, which means
generating a slightly different value for the new harmony
vector component. This parameter explores more solutions
in the search space for that purpose.

Step 4 (harmonymemory updating). The generated harmony
vector, 𝑎NEW = (𝑎

NEW
1

, 𝑎
NEW
2

, 𝑎
NEW
3

, . . . , 𝑎
NEW
𝑁

), replaces the
worst harmony in the HM, only if its fitness value (measured
in terms of the objective function) is better than that of the
worst harmony.

Step 5 (check the stopping criterion). Termination occurs
when themaximum number of improvisations NI is reached.

The following section describes the proposed HS-SFM
algorithm.

4. The Harmony Search-Based Social Force
Model (HS-SFM)

This section presents the proposed HS-SFM algorithm in
detail and shows how HS is implemented to find the optimal
values of SFM’s parameters.

4.1. HarmonyMemory Initialization. Each harmonymemory
vector represents a candidate of SFM parameter values. To
initialize the HM with feasible solutions, each parameter
value is randomly generated from its valid range. In this study,
the valid ranges are as follows:

(i) strength of the social repulsive force (𝐴rep
): [0, 3000];

(ii) repulsive distance range of the corresponding force
(𝐵rep): [0, 2];

(iii) angular parameter (𝜆
𝑖
): [0, 1].

For example, the vector [1250, 0.67, 0.45] is a candidate
harmony memory vector that can be randomly generated
from the given ranges.

In order to discover the goodness of the generated
harmony vector with regard to SFM, the fitness function for
each harmony vector is calculated (as will be discussed in
Section 4.3) and saved in the harmony memory. After the
harmony memory is constructed and the fitness function
for each vector is calculated, the HS-FSM algorithm initiates

an iterative search for the optimal values for the given SFM
parameters. This search is governed by improvisation rules,
which are described in the following section.

4.2. Improvise a New Harmony. The new harmony vector
is a new candidate SFM parameter value vector, and the
values of this new harmony vector is generated depending
on the HS’s improvisation rules. In this study, however,
memory consideration, which is the most vital operator in
HS, is modified. In the standard HS, most of the variables
in the new harmony are randomly selected from the other
vectors stored in HM. In this study, we adopt the supporting
mechanism concept from PSO [30] to select a promising
value for the variables from the vectors stored in the HM.
This supporting conceptmimics the best harmony among the
HM vectors to construct the new harmony. The inspiration
behind this modification is so that HS-SFM converges faster
as compared to the standard HS algorithm. In standard HS,
convergence to the optimal parameter values is smoothly
achieved. In this scheme, the number of simulations needed
to reach the optimal state of HS-SFM is reduced. It is worth
noting that although having different convergence rates, this
modification does not affect the quality of the solutions for
both the HS and HS-SFM algorithms [31].

Based on this modification, the values of the new har-
mony vector components will be selected from the best
harmony memory vector stored in HM, with the probability
of HMCR. On the other hand, the value of the components
of the new harmony vector is selected from the possible
range with a probability of 1-HMCR. The following equation
summarizes these two steps, that is, memory consideration
and random consideration

𝑎
NEW
𝑖

← {

𝑎
NEW
𝑖

∈ 𝑎
best
𝑖

𝑤 ⋅ 𝑝 HMCR
𝑎
NEW
𝑖

∈ 𝑅 𝑤 ⋅ 𝑝 (1 −HMCR) .
(10)

Furthermore, the new vector components selected out of the
memory consideration operator are examined to be pitch
adjusted with the probability of PAR as in (11). In this study,
we used the standard process of the pitch adjustment in HS
as in (9). The bandwidth parameter, 𝑏𝑤, is responsible for
the slight modification of the selected component, which will
hopefully achieve better solutions by deeply exploiting the
search space. Consider

𝑎
NEW
𝑖

← {

Adjusting Pitch 𝑤 ⋅ 𝑝 PAR
No change 𝑤 ⋅ 𝑝 (1 − PAR) .

(11)

Next, the fitness function is computed for the new generated
harmony memory vector as described in Section 4.3. Then,
the new vector is compared with the worst harmonymemory
solution using a fitness function. If it is better than the
existing solution, the new vector is included in the harmony
memory and the worst harmony is discarded. This process
is repeated until the maximum number of iterations NI is
reached. Finally, the best solution among themaximum value
of fitness function of each HM solution vectors is selected as
the best solution vector.
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4.3. Evaluation of Solutions. In order to measure the good-
ness of each harmony memory vector, which in turn mea-
sures the goodness of the SFMparameter values, a new fitness
function is proposed that includes the two main factors that
affect the goodness of the solution with respect to SFM.These
factors are

(1) the reproduction of the fundamental diagram and

(2) the reproduction of the flow rate.

The basic model of our proposed fitness function is

Minimize 𝑓HS-SFM = 𝑓fundemental + 𝑓evacuation, (12)

where

𝑓fundemental =




Vsim (𝜎) − Vweid (𝜎)





, (13)

𝑓evacuation

=

{
{

{
{

{

min {

flowRate − UpFlow


,

|flowRate − LowFlow|} flowRate ∉ range,
0 flowRate ∈ range,

(14)

Vweid = 1.34𝑚𝑠
−1
{1 − exp [−1.913𝑚−2 (1

𝜌

−

1

5.4𝑚
2
)]} ,

(15)

where the function 𝑓fundemental denotes the absolute deviation
between the mean velocity Vsim(𝜎) resulting from our simu-
lation and the correspondingmean velocity Vweid(𝜎) resulting
from (15), which is an estimation by [23].The density 𝜌 in (15)
is calculated as the number of pedestrians within a specific
area at any givenmoment.The optimal value for𝑓fundemental is
zero, which means that the mean velocity Vsim(𝜎) produced
from our simulation fits the corresponding mean velocity
Vweid(𝜎) produced from (15). Therefore, the improvisation
process in each iteration tries to reach the optimal value for
this factor, which is zero.

The measurement flow rate is defined as the number of
pedestrians passing through a section per unit time. The
allowed range for a specific flow rate is [low flow, up Flow],
which is determined according to the relevant empirical
studies mentioned in [24]. Specifically, these studies state
that the various values of flow rates in normal evacuation
situations lie within the range of 1.25 to 2 p/m/s. According
to (14), the flow rate produced from our simulation that falls
within the optimal range results in 𝑓evacuation to be equal to
zero, which is the optimal value for this factor. Accordingly,
this also indicates that the generated harmony vector can
produce a good solution for SFM andmay also reproduce the
fundamental diagram of [23]. Resultantly, the minimization
of 𝑓evacuation and 𝑓fundemental to reach the optimal value of
𝑓HS-SFM, which is equal to zero, is desired and any harmony
vector solution that can reach this value is considered as the
optimal solution for the HS-SFM algorithm.

Table 1: HS-SFM parameters.

The Pedestrian’s parameters

𝑚 = [77, 83] kg The pedestrians’ mass: uniformly
distributed within the range [77, 83] kg

𝑟 = [0.25, 0.30]m
The pedestrians’ radius: uniformly
distributed within the range [0.25,
0.30]m

The SFM’s parameters

𝑘 = 1.2 × 10
5 kg/sec2 The strength of the contact (pushing)

force
𝑘 = 2.4×10

5 kgm−1 s−1 The strength of the friction
V0 = 1.34m/s The preferred velocity
𝜏 = 0.5 s The reaction time

𝜀𝜖 [0, 0.05 ∗ V0/𝜏]
The fluctuation source of the
pedestrian’s acceleration is randomly
assigned to each individual

The HS-SFM parameters
HMCR = 0.95 Harmony memory consideration rate
HM = 20 Harmony memory size
PAR = 0.75 Pitch adjustment rate
NI = 500 Number of improvisation

5. Simulation Results

5.1. Simulation Setting. This section presents the simulation
results of the proposed HS-SFM algorithm. All simula-
tions were conducted using MATLAB version R2010a. Each
simulation comprises two scenarios (or parts), which were
conducted simultaneously. The physical environment in the
first scenario used for the reproduction of the fundamental
diagram is that used in [26, 32]. The positions of all simu-
lated pedestrianswere simultaneously randomly initialized in
the simulated area, which represents a horizontal unidirec-
tional walkway, and their motions were directed horizontally
towards their destination. Analogous to the characteristics
of pedestrians in the experimental studies performed by
Weidmann [23], all pedestrians had the same preferred
direction, with preferred speeds varying between 0.97m/s
and 1.65m/s. For the reproduction of the specific flow, the
second scenario was for the evacuation process. Similar to
the simulations performed by Parisi et al. [24], the physical
environment was a 20-meter × 20-meter room, with one,
1.2 width, exit. The simulated pedestrians were randomly
initialized inside the room with the verification that there
was no overlap between any two pedestrians or a pedestrian
with a wall. The simulated pedestrians evacuated from the
environment were 100, 200, 300, and 400. Table 1 shows the
values of pedestrians’ parameters and the parameters of the
HS-SFM used in this simulation.

5.2. Simulation Results. The validation of each simulation
being done by HS-SFM algorithm is done by a comparison
between those results obtained from HS-SFM algorithm and
those obtained from the fundamental diagram, developed
by Weidmann [23], and the value of the flow rate for an
evacuation process, obtained by Parisi et al. [24].
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The simulations were run 400 times, and a snapshot
of the results is shown in Table 2. The highlighted rows in
Table 2 show that our HS-SFM algorithm can find a near
optimal SFM parameter value and can almost reproduce the
fundamental diagram as estimated by [23]. Furthermore, the
flow rate produced by our simulation is within the optimal
range as stated in [24].

For further clarification of the results obtained from the
HS-SFM algorithm and the results shown in Table 2, an
arbitrary case can be considered and described. The case is
simulation number 38, where the optimal values obtained by
HS-SFM are 𝐴rep

= 230.85, 𝐵rep = 0.67, and 𝜆 = 0.76, and
the fundamental diagram obtained from these parameters is
shown in Figure 2 with a comparison with the fundamental
diagram estimated by [23]. It can be seen that in most
densities (i.e., 1, 2, 3, and 6),HS-SFMproduced a fundamental
diagram as in [23]. However, some differences between the
simulated and Weidmann fundamental diagrams appeared
when the density is equal to 4 and 5.This affected the objective
function 𝑓fundemental, whose result was equal to 0.07. Our
future work is to study how to improve the performance of
HS-SFM to overcome this shortcoming. For the flow rates
produced for this case study, where the number of pedestrian
varied from 100 to 400 pedestrians in a room/simulation,
all of them are in the optimal range as stated in [24] and
consequently the value of 𝑓evacuation was equal to zero. In
total, the HS-SFM objective function was equal to 𝑓HS-SFM =
0.07 + 0, which is an acceptable solution. We can summarize
our findings of the optimal SFM’s parameter values by setting
an optimal range for each parameter as seen in Table 3.
Experimentally, the optimal range for the 𝐴rep is set to
[120, 235], 𝐵rep is set to [0.41, 0.98], and 𝜆 is set to [0.53, 0.76].

It is important to note that firstly the resulting funda-
mental diagram shown in Figure 2 conforms to the diagrams
shown in Figure 1, which exhibits the same linear shape.
Secondly, in contrast to the results of the computer simulation
models, with these optimal vector values, the mean speed of
the simulated pedestrians in the case of jam density (𝜎 > 4)
does not vanish. Such behavior is in conformance with the
experimental and relevant field studies stated by Zhang et al.
[33]. Thus, our result justifies the reliability of our approach
for the calibration of the parameters.

Thirdly, the range of the 𝐵rep obtained in our study is
consistent with the literature, that is, [10, 13, 18]. For the
purpose of comparison, in [25], the best fit curve to the
Weidmann fundamental diagram was established when the
repulsive distance range parameter has a significantly high
value,𝐵rep = 3.22. Such a high value would cause social forces
between pedestrians to enforce longer distances between
their locations. As a result, while performing simulations for
the evacuation process with the consideration of this value,
the densities of the clogging areas on exits were lesser as
compared to those stated in the literature and observed in
reality.This result is a main reason for a low specific flow rate.

Fourth, the repulsive distance parameter in [26] was
modeled as a function of density, and thereby, the values of
the parameter were more consistent with the literature, that
is, [10, 13, 18]. However, the value of the angular parameter
was significantly high, 𝜆 = 0.9, which granted the pedestrians
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Figure 2: The fundamental diagrams of our HS-SFM simulations
compared with Weidmann [23].

almost full perception for those who were behind. From
psychological point of view, such results are unrealistic as
pedestrians (who have high behind perception) are exposed
to pushing social forces from the pedestrians behind them.
Therefore, the pedestrians become competitive as described
in [24]. Due to this competitiveness, the specific flow rate is
higher than the range stated in the literature. In our results,
the range of the angular perception, 𝜆 ∈ [0.53, 0.76], is
significantly moderate, which results in lower flow rate than
what was reproduced in [26].

6. Conclusions and Recommendations

The SFM is considered one of the most distinguished
representative microscopic dynamics models that present
solutions to pedestrians’ congestion problems. In order to
improve its performance, we proposed the HS-based algo-
rithm HS-SFM that offers near optimal parameter values for
the SFM. Simulations conducted showed the ability of HS-
SFM to find near optimal parameter values that can help in
the reproduction of both the fundamental diagram as in [23]
and flow rate as in [24].

Our future work will focus on improving the ability of
HS-SFM to reduce the difference between the mean velocity
Vsim(𝜎) resulting from our simulation and the corresponding
mean velocity Vweid(𝜎) resulting from (15). The second direc-
tion of our future work will focus on how to decrease the
computational time required by HS-SFM.

As the microscopic dynamics models have been exposed
to many amendments, such as the incorporation of new
submodels or refining the models itself, the need for a
technique that can offer near optimal parameter values is
necessary. We foresee that more effort for the development
of these techniques is necessary by studying and potentially
improving their behaviors in exploring the search space of
the dynamics models parameter values. We also recommend
the hybridization of techniques such as harmony search
with other metaheuristic optimization algorithms in order
to improve search capabilities to find the optimal parameter
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Table 3: Optimal SFM’s parameter ranges.

SFM’s parameter Optimal range Means value
𝐴

rep
[120, 235] 173

𝐵
rep

[0.41, 0.98] 0.69
𝜆 [0.53, 0.76] 0.66

values of the microscopic dynamics models. This in turn can
help improve the representation capabilities of the micro-
scopic dynamics models to represent pedestrians’ congestion
problems.
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teme, Zürich, Switzerland, 1993.

[24] D. R. Parisi, M. Gilman, and H. Moldovan, “A modification of
the SFM can reproduce experimental data of pedestrian flows
in normal conditions,” Physica A: Statistical Mechanics and its
Applications, vol. 388, no. 17, pp. 3600–3608, 2009.

[25] A. Johansson, D. Helbing, and P. K. Shukla, “Specification of
the social force pedestrian model by evolutionary adjustment
to video tracking data,” Advances in Complex Systems, vol. 10,
pp. 271–288, 2007.

[26] Z. Zainuddin and M. Shuaib, “Incorporating decision making
capability into the social force model in unidirectional flow,”
Research Journal of Applied Sciences, vol. 5, no. 6, pp. 388–393,
2010.

[27] A. Seyfried, B. Steffen, and T. Lippert, “Basics of modelling
the pedestrian flow,” Physica A: Statistical Mechanics and its
Applications, vol. 368, no. 1, pp. 232–238, 2006.

[28] Z. W. Geem, J. H. Kim, and G. V. Loganathan, “A new heuristic
optimization algorithm: harmony search,” Simulation, vol. 76,
no. 2, pp. 60–68, 2001.

[29] O.M.Alia andR.Mandava, “Thevariants of the harmony search
algorithm: an overview,” Artificial Intelligence Review, vol. 36,
no. 1, pp. 49–68, 2011.

[30] R. Eberhart and J. Kennedy, “A New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.



Journal of Applied Mathematics 9

[31] M. A. Al-Betar and A. T. Khader, “A hybrid harmony search for
university course timetabling,” in Proceedings of the 4nd Multi-
disciplinary Conference on Scheduling: Theory and Applications
(MISTA ’09), J. Blazewicz, M. Drozdowski, G. Kendall, and B.
McCollum, Eds., pp. 157–179, Dublin, Ireland, 2009.

[32] M. M. Shuaib, O. M. Alia, and Z. Zainuddin, “Incorporating
prediction factor into the investigation capability in the social
force model: application on avoiding grouped pedestrians,”
Applied Mathematics & Information Sciences, vol. 7, no. 1, pp.
323–331, 2013.

[33] J. Zhang, W. Klingsch, A. Schadschneider, and A. Seyfried,
“Ordering in bidirectional pedestrian flows and its influence
on the fundamental diagram,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2012, no. 2, Article IDP02002, 2012.


